An Improved Attack for Recovering Noisy RSA Secret Keys and its Countermeasure

Noboru Kunihiro

The University of Tokyo, Japan
November 24th, 2015

This research was supported by CREST, JST.

RSA Scheme \& PKCS \#1 standard

(Textbook) RSA

- $N(=p q), e d \equiv 1(\bmod (p-1)(q-1))$
- Public Key (N, e), Secret Key d
- Encryption $C=M^{e} \bmod N$
- Decryption $M=C^{d} \bmod N$

Speeding-up via Chinese Remainder Theorem

- Auxiliary Secret Key: $d_{p}=d \bmod p-1, d_{q}=d \bmod q-1$.
- Compute $M_{p}=C^{d_{p}} \bmod p$ and $M_{q}=C^{d_{q}} \bmod q$.
- Find M s. t. $M=M_{p} \bmod p$ and $M=M_{q} \bmod q$ via CRT.
- Secret Key tuples $\left(p, q, d, d_{p}, d_{q}, q^{-1} \bmod p\right)$

Secret keys have a redundancy.

Side Channel Attacks against RSA

Extract related values to secret key $\left(p, q, d, d_{p}, d_{q}\right)$ by physical observation.

$$
\text { Correct Secret Key } \xrightarrow[\text { Leakage }]{\text { Observation }} \text { Measured Value }
$$

$$
\begin{array}{rlrl}
p & =110011011 \cdots 1 \\
q & =100100110 \cdots 1 \\
d & =1 \cdots 00111 \cdots 1 \\
d_{p} & =10111110 \cdots 10 & \xrightarrow[\text { Leakage }]{\text { Observation }} & \\
d_{q} & =11110110 \cdots 100 & & \tilde{p}=100111011 \cdots 1 \\
\tilde{q}=100000111 \cdots 1 \\
\tilde{d}=1 \cdots 00011 \cdots 1 \\
\tilde{d}_{p}=10111110 \cdots 10 \\
\tilde{d}_{q}=10010110 \cdots 100
\end{array}
$$

Denote by m the number of involved keys in attacks.

Previous Works for Noisy RSA

Noise Model : Each bit is

- erased with prob. δ. (Heninger-Shacham (CRYPTO2009))
- bit-flipped with prob. ϵ. (Henecka-May-Meurer (CRYPTO2010))
- bit-flipped with asymmetric prob. (Paterson et al. (AC2012))
- erased with prob. δ and bit-Flipped with prob. ϵ. (K-Shinohara-Izu (PKC2013)).

Best Known Results (KSI@PKC2013)

The secret key can be recovered in polynomial time when

$$
1-\delta-2 \epsilon>\sqrt{\frac{2(1-\delta) \ln 2}{m}}
$$

Theoretical Bound (KSI@PKC2013)

We cannot recover the secret key in polynomial time if

$$
(1-\delta)\left(1-H\left(\frac{\epsilon}{1-\delta}\right)\right)<\frac{1}{m}
$$

Open Problem

- KSI pointed out that there is a small gap between the derived condition and the theoretical bound.
- Closing the gap is an open problem.

Our Contributions

Contribution 1

We close the gap by employing Chernoff-Hoeffding Bound.

Contribution 2

- We give a practical countermeasure against the secret-key extraction attack.
- We show the condition so that our countermeasure is valid.

Contribution 3

We give a (provable) bound for asymmetric errors.

Preliminaries

Definition (Binary Entropy)

The binary entropy function $H(x)$ is defined by $H(x):=-x \log x-(1-x) \log (1-x)$.

Definition (Kullback-Leibler Divergence)

The Kullback-Leibler divergence $D(p, q)$ is defined by

$$
D(p, q):=p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q}
$$

Useful Inequalities about Binomial Distribution

Proposition (Hoeffding Bound)

Suppose that $X \sim \operatorname{Bin}(n, p)$. For all every $0<\gamma<1$, we have

$$
\begin{aligned}
& \operatorname{Pr}[X \leq n(p-\gamma)] \leq \exp \left(-2 n \gamma^{2}\right) \text { and } \\
& \operatorname{Pr}[X \geq n(p+\gamma)] \leq \exp \left(-2 n \gamma^{2}\right)
\end{aligned}
$$

Proposition (Chernoff-Hoeffding Bound)

Suppose that $X \sim \operatorname{Bin}(n, p)$. For every $0<\gamma<1$, we have

$$
\begin{aligned}
& \operatorname{Pr}[X \leq n(p-\gamma)] \leq \exp (-n D(p-\gamma, p) \ln 2) \text { and } \\
& \operatorname{Pr}[X \geq n(p+\gamma)] \leq \exp (-n D(p+\gamma, p) \ln 2)
\end{aligned}
$$

Common Framework

We use Tree-Based approach (proposed by Heninger and Shacham).

$$
\operatorname{slice}(i):=\left(p[i], q[i], d[i+\tau(k)], d_{p}\left[i+\tau\left(k_{p}\right)\right], d_{q}\left[i+\tau\left(k_{q}\right)\right]\right)
$$

Assume we obtained a partial secret key up to slice $(i-1)$.
Constraints that each bits satisfies in secret key

$$
\begin{aligned}
p[i]+q[i] & =c_{1} \bmod 2, \\
d[i+\tau(k)]+p[i]+q[i] & =c_{2} \bmod 2, \\
d_{p}\left[i+\tau\left(k_{p}\right)\right]+p[i] & =c_{3} \bmod 2, \\
d_{q}\left[i+\tau\left(k_{q}\right)\right]+q[i] & =c_{4} \bmod 2 .
\end{aligned}
$$

Each bits in slice (i) have four constraints for five variables. \Rightarrow There are two candidates.

Tree-based Approach

- Represent slice (i) by binary tree.
- Once the public key is fixed, the whole binary tree is uniquely determined. The number of leafs in the tree is $2^{n / 2}$.
- One of leafs corresponds to the correct secret key.
- Determine with an adequate rule whether each node is discarded or remained by using observed sequence and candidate sequence.

$$
\text { Ex.) } N=143, m=2
$$

KSI Algorithm@PKC2013

Expansion Phase

- Parameter T.
- We divide the sequence into a T-bit subsequence skipping erasure bits in $\overline{\mathbf{s k}}$.

Rule in Pruning Phase

- Threshold C.
- The Hamming distance between the observed and candidate sequences is larger than C, discard the candidate.
- KSI chose T and C based on the Hoeffding Bound.
- We use Chernoff-Hoeffding bound for improving the success condition.

Success Condition for the Attack

Success Condition

Suppose that we obtain a noisy RSA secret key with error rate (ϵ, δ) satisfying

$$
(1-\delta)\left(1-H\left(\frac{\epsilon}{1-\delta}+\zeta\right)\right) \geq\left(1+\frac{1}{t}\right) \frac{1}{m}
$$

Parameter Setting

Suppose that the number of erasure bits is Δ for each block. We choose

$$
T=\left\lceil\frac{\log n}{D(\epsilon+\zeta, \epsilon)}\right\rceil \text { and } C=T\left(\frac{1}{2}+\gamma^{\prime}\right),
$$

where γ^{\prime} is the solution of the equation of x :

$$
(1-\delta)\left(1-H\left(\frac{1}{2}-x\right)\right)=\left(1+\frac{1}{t}\right) \frac{1}{m}
$$

Computation Time and Success Probability

Our algorithm recovers the correct secret key in average time

$$
O\left(n^{2+\frac{2}{m D(\epsilon+\zeta, \epsilon)}+\delta t \frac{\ln 2}{\ln n}}\right)
$$

with success probability at least

$$
1-\left(\frac{m D(\epsilon+\zeta, \epsilon)}{\log n}+\frac{1}{n}\right)
$$

Remark

For sufficiently large n, t goes to the infinity, and the success probability is close to 1 . Ignoring the term " ζ ", we just write the success condition as

$$
(1-\delta)\left(1-H\left(\frac{\epsilon}{1-\delta}\right)\right) \geq \frac{1}{m}
$$

Comparison between KSI and our Bounds

(Practical) Countermeasure

Definition ($\epsilon, \delta)$-Adversary)

Extract the secret key with error rate ϵ and erasure rate δ from the storage.

Key idea

The legitimate decryptor intentionally adds small random errors to the original secret key. The error rate is carefully chosen:

- He can performa a fast decryption even if the error is added.
- The attacker cannot reconstruct the correct secret key due to the added errors and his ability.

Experimental results in HMM10 and PPS12 show

- The secret key can be reconstructed rather fast (less than one second) with high prob. if $\epsilon^{\prime} \leq 0.15$.
- It is practical to set $\epsilon^{\prime}=0.15$ for fast decryption.

Countermeasure

- Setup Phase: (done only once)
(1) Estimate ϵ and δ, which corresponds to the ability of attackers.
(2) Choose ϵ^{\prime}. Ex.) $\epsilon^{\prime}=0.15$ (moderate setting) or $\epsilon^{\prime}=0.24$ (aggressive setting)
(3) Store the degraded secret key: each bit in the original secret key is intentionally bit-flipped with probability ϵ^{\prime}.
(4) Discard the original secret key.
- Decryption Phase: (done for each actual decryption)
(1) Reconstruct the original secret key from the stored secret key.

2 Decrypt the ciphertext by using reconstructed secret key.

Success Condition for Attack

Total Transition Probability
Intentional error side-channel attack

Success Condition for Attack

$$
(1-\delta)\left(1-H\left(\frac{\epsilon+\epsilon^{\prime}-2 \epsilon \epsilon^{\prime}-\epsilon^{\prime} \delta}{1-\delta}\right)\right)>\frac{1}{m}
$$

Whole Secret Key is Revealed with Errors: $\delta=0$

The condition ϵ^{\prime} that the countermeasure is valid is given by

$$
\frac{0.243-\epsilon}{1-2 \epsilon}<\epsilon^{\prime}<0.243
$$

Observation:

When setting $\epsilon^{\prime}=0.15$, the countermeasure is valid against the $(\epsilon, 0)$-adversary with $\epsilon>0.13$.

Secure/Insecure Region for $\left(\epsilon, \epsilon^{\prime}\right)$

A Random Fraction is Revealed without any Error

The condition ϵ^{\prime} that the countermeasure is valid is given by

$$
(1-\delta)\left(1-H\left(\epsilon^{\prime}\right)\right)>\frac{1}{m}
$$

Secure/Insecure Region for $\left(\delta, \epsilon^{\prime}\right)$

Observation:

- When setting $\epsilon^{\prime}=0.15$, the countermeasure is valid against the $(0, \delta)$-adversary with $\delta>0.49$.
- When setting $\epsilon^{\prime}=0.24$ (aggressive setting), more than a 0.976 fraction is necessary for recovering the secret key.

Implications to the Heartbleed Bug

Attacking Situation

The attacker steals only one bit at a random position in a storage.

M bits

10011100:• \quad secret key

L bits

The average number of trials for obtaining αL-bit ($\alpha \leq 1$) of secret key is given by

$$
\frac{M}{L}+\frac{M}{L-1}+\cdots+\frac{M}{L(1-\alpha)} .
$$

Bounded by

$$
M\left(\frac{1}{L}+\frac{1}{L-1}+\cdots+\frac{1}{L(1-\alpha)}\right)<M \frac{\alpha}{1-\alpha}
$$

Ex.) If $\alpha=0.2$, upper bounded by $0.25 M$.

It is not so tight if α is close to 1 . From the so-called coupon collectors argument, the (tighter) upper bound is given by

$$
M\left(\frac{1}{L}+\frac{1}{L-1}+\cdots+\frac{1}{1}\right)<M(\ln L+0.5772)
$$

- For typical 2048-bit RSA, it is evaluated by $9.12 M$.
- The attacker needs about $36(=9.12 / 0.25)$ times harder tasks if our countermeasure with aggressive setting $\epsilon^{\prime}=0.24$ is applied.

Conclusions

- We close the gap by employing Chernoff-Hoeffding Bound.

$$
(1-\delta)\left(1-H\left(\frac{\epsilon}{1-\delta}\right)\right)>\frac{1}{m}
$$

- We give a practical countermeasure against the secret-key extraction attack.
- We show the condition so that our countermeasure is valid:

$$
(1-\delta)\left(1-H\left(\frac{\epsilon+\epsilon^{\prime}-2 \epsilon \epsilon^{\prime}-\epsilon^{\prime} \delta}{1-\delta}\right)\right)<\frac{1}{m}
$$

- We give a provable bound for asymmetric errors. (The details are omitted.)

