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RSA Scheme & PKCS #1 standard

(Textbook) RSA

• N(= pq), ed ≡ 1 (mod (p− 1)(q − 1))

• Public Key (N, e), Secret Key d

• Encryption C = M e mod N

• Decryption M = Cd mod N

Speeding-up via Chinese Remainder Theorem
• Auxiliary Secret Key: dp = d mod p− 1, dq = d mod q − 1.

• Compute Mp = Cdp mod p and Mq = Cdq mod q.

• Find M s. t. M = Mp mod p and M = Mq mod q via CRT.

• Secret Key tuples (p, q, d, dp, dq, q
−1 mod p)

Secret keys have a redundancy.
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Side Channel Attacks against RSA

Extract related values to secret key (p, q, d, dp, dq) by physical
observation.

Correct Secret Key
Observation−−−−−−→
Leakage

Measured Value

p = 110011011 · · · 1
q = 100100110 · · · 1
d = 1 · · · 00111 · · · 1
dp = 10111110 · · · 10
dq = 11110110 · · · 100

Observation−−−−−−→
Leakage

p̃ = 100111011 · · · 1
q̃ = 100000111 · · · 1
d̃ = 1 · · · 00011 · · · 1
d̃p = 10111110 · · · 10
d̃q = 10010110 · · · 100

Denote by m the number of involved keys in attacks.
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Previous Works for Noisy RSA

Noise Model : Each bit is
• erased with prob. δ. (Heninger–Shacham (CRYPTO2009))

• bit-flipped with prob. ϵ. (Henecka-May–Meurer
(CRYPTO2010))

• bit-flipped with asymmetric prob. (Paterson et al. (AC2012))

• erased with prob. δ and bit-Flipped with prob. ϵ.
(K–Shinohara–Izu (PKC2013)).
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Best Known Results (KSI@PKC2013)

The secret key can be recovered in polynomial time when

1− δ − 2ϵ >

√
2(1− δ) ln 2

m
.

Theoretical Bound (KSI@PKC2013)

We cannot recover the secret key in polynomial time if

(1− δ)

(
1−H

(
ϵ

1− δ

))
<

1

m
.

Open Problem
• KSI pointed out that there is a small gap between the derived
condition and the theoretical bound.

• Closing the gap is an open problem.
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Our Contributions

Contribution 1
We close the gap by employing Chernoff–Hoeffding Bound.

Contribution 2
• We give a practical countermeasure against the secret-key
extraction attack.

• We show the condition so that our countermeasure is valid.

Contribution 3
We give a (provable) bound for asymmetric errors.
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Preliminaries

Definition (Binary Entropy)

The binary entropy function H(x) is defined by
H(x) := −x log x− (1− x) log(1− x).

Definition (Kullback–Leibler Divergence)

The Kullback–Leibler divergence D(p, q) is defined by

D(p, q) := p log
p

q
+ (1− p) log

1− p

1− q
.
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Useful Inequalities about Binomial Distribution

Proposition (Hoeffding Bound)

Suppose that X ∼ Bin(n, p). For all every 0 < γ < 1, we have

Pr[X ≤ n(p− γ)] ≤ exp(−2nγ2) and

Pr[X ≥ n(p+ γ)] ≤ exp(−2nγ2).

Proposition (Chernoff–Hoeffding Bound)

Suppose that X ∼ Bin(n, p). For every 0 < γ < 1, we have

Pr[X ≤ n(p− γ)] ≤ exp(−nD(p− γ, p) ln 2) and

Pr[X ≥ n(p+ γ)] ≤ exp(−nD(p+ γ, p) ln 2).
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Common Framework

We use Tree-Based approach (proposed by Heninger and Shacham).

slice(i) := (p[i], q[i], d[i+ τ(k)], dp[i+ τ(kp)], dq[i+ τ(kq)])

Assume we obtained a partial secret key up to slice(i− 1).

Constraints that each bits satisfies in secret key

p[i] + q[i] = c1 mod 2,

d[i+ τ(k)] + p[i] + q[i] = c2 mod 2,

dp[i+ τ(kp)] + p[i] = c3 mod 2,

dq[i+ τ(kq)] + q[i] = c4 mod 2.

Each bits in slice(i) have four constraints for five variables.
⇒ There are two candidates.
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Tree-based Approach

• Represent slice(i) by binary tree.

• Once the public key is fixed, the whole binary tree is uniquely
determined. The number of leafs in the tree is 2n/2.

• One of leafs corresponds to the correct secret key.

• Determine with an adequate rule whether each node is discarded
or remained by using observed sequence and candidate sequence.
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KSI Algorithm@PKC2013

Expansion Phase
• Parameter T .

• We divide the sequence into a T -bit subsequence skipping
erasure bits in sk.

Rule in Pruning Phase
• Threshold C.

• The Hamming distance between the observed and candidate
sequences is larger than C, discard the candidate.

• KSI chose T and C based on the Hoeffding Bound.

• We use Chernoff–Hoeffding bound for improving the success
condition.
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Success Condition for the Attack

Success Condition
Suppose that we obtain a noisy RSA secret key with error rate (ϵ, δ)
satisfying

(1− δ)

(
1−H

(
ϵ

1− δ
+ ζ

))
≥

(
1 +

1

t

)
1

m
.

Parameter Setting
Suppose that the number of erasure bits is ∆ for each block. We
choose

T =

⌈
log n

D(ϵ+ ζ, ϵ)

⌉
and C = T

(
1

2
+ γ′

)
,

where γ′ is the solution of the equation of x:
(1− δ)

(
1−H

(
1
2
− x

))
=

(
1 + 1

t

)
1
m
.
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Computation Time and Success Probability
Our algorithm recovers the correct secret key in average time

O
(
n2+ 2

mD(ϵ+ζ,ϵ)
+δt ln 2

lnn

)
with success probability at least

1−
(
mD(ϵ+ ζ, ϵ)

log n
+

1

n

)
.

Remark
For sufficiently large n, t goes to the infinity, and the success
probability is close to 1. Ignoring the term “ζ”, we just write the
success condition as

(1− δ)

(
1−H

(
ϵ

1− δ

))
≥ 1

m
.
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Comparison between KSI and our Bounds
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(Practical) Countermeasure

Definition ((ϵ, δ)-Adversary)

Extract the secret key with error rate ϵ and erasure rate δ from the
storage.

Key idea
The legitimate decryptor intentionally adds small random errors to
the original secret key. The error rate is carefully chosen:

• He can performa a fast decryption even if the error is added.

• The attacker cannot reconstruct the correct secret key due to
the added errors and his ability.
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Experimental results in HMM10 and PPS12 show
• The secret key can be reconstructed rather fast (less than one
second) with high prob. if ϵ′ ≤ 0.15.

• It is practical to set ϵ′ = 0.15 for fast decryption.

Countermeasure
• Setup Phase: (done only once)

1 Estimate ϵ and δ, which corresponds to the ability of attackers.
2 Choose ϵ′. Ex.) ϵ′ = 0.15 (moderate setting) or ϵ′ = 0.24

(aggressive setting)
3 Store the degraded secret key: each bit in the original secret key

is intentionally bit-flipped with probability ϵ′.
4 Discard the original secret key.

• Decryption Phase: (done for each actual decryption)

1 Reconstruct the original secret key from the stored secret key.
2 Decrypt the ciphertext by using reconstructed secret key.
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Success Condition for Attack

Total Transition Probability
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Success Condition for Attack

(1− δ)

(
1−H

(
ϵ+ ϵ′ − 2ϵϵ′ − ϵ′δ

1− δ

))
>

1

m
.
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Whole Secret Key is Revealed with Errors: δ = 0

The condition ϵ′ that the countermeasure is valid is given by

0.243− ϵ

1− 2ϵ
< ϵ′ < 0.243.

Secure/Insecure Region for (ϵ, ϵ′)

Observation:
When setting ϵ′ = 0.15, the
countermeasure is valid against
the (ϵ, 0)-adversary with
ϵ > 0.13.
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A Random Fraction is Revealed without any Error

The condition ϵ′ that the countermeasure is valid is given by

(1− δ)(1−H(ϵ′)) >
1

m
.

Secure/Insecure Region for (δ, ϵ′)

Observation:
• When setting ϵ′ = 0.15, the
countermeasure is valid
against the (0, δ)-adversary
with δ > 0.49.

• When setting ϵ′ = 0.24
(aggressive setting), more
than a 0.976 fraction is
necessary for recovering the
secret key.
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Implications to the Heartbleed Bug

Attacking Situation
The attacker steals only one bit at a random position in a storage.

10011100・・・  ｜ secret key ｜  ・・・・	


M bits	


L bits	

The average number of trials for obtaining αL-bit (α ≤ 1) of secret
key is given by

M

L
+

M

L− 1
+ · · ·+ M

L(1− α)
.
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Bounded by

M

(
1

L
+

1

L− 1
+ · · ·+ 1

L(1− α)

)
< M

α

1− α
.

Ex.) If α = 0.2, upper bounded by 0.25M .

It is not so tight if α is close to 1. From the so-called coupon
collectors argument, the (tighter) upper bound is given by

M

(
1

L
+

1

L− 1
+ · · ·+ 1

1

)
< M(lnL+ 0.5772).

• For typical 2048-bit RSA, it is evaluated by 9.12M .

• The attacker needs about 36(= 9.12/0.25) times harder tasks if
our countermeasure with aggressive setting ϵ′ = 0.24 is applied.
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Conclusions

• We close the gap by employing Chernoff–Hoeffding Bound.

(1− δ)

(
1−H

(
ϵ

1− δ

))
>

1

m
.

• We give a practical countermeasure against the secret-key
extraction attack.

• We show the condition so that our countermeasure is valid:

(1− δ)

(
1−H

(
ϵ+ ϵ′ − 2ϵϵ′ − ϵ′δ

1− δ

))
<

1

m
.

• We give a provable bound for asymmetric errors. (The details
are omitted.)
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