Functional Signcryption: Notion, Construction, and Applications

Pratish Datta

joint work with

Ratna Dutta and Sourav Mukhopadhyay

Department of Mathematics Indian Institute of Technology Kharagpur Kharagpur-721302 India

> ProvSec 2015 24–26th November, 2015

- 2 Our FSC Scheme
- Oryptographic Primitives from FSC
- 4 Conclusion

Motivation

- Functional encryption (FE) enables sophisticated control over decryption rights in multi-user environments.
- Functional signature (FS) allows to enforce complex constraints on signing capabilities.
- Functional signcryption (FSC) is a new cryptographic paradigm that aims to provide the functionalities of both FE and FS in an *unified cost-effective primitive*.

The Notion of Functional Signcryption (FSC)

- A trusted authority holds a master secret key and publishes system public parameters.
- Using its master secret key, the authority can provide a signing key SK(f) for some signing function f to a signcrypter while a decryption key DK(g) for some decryption function g to a decrypter.
- SK(f) enables one to signcrypt only messages in the range of f.
- DK(g) can be utilized to unsigncrypt a ciphertext signcrypting some message m to retrieve g(m) only and to verify the authenticity of the ciphertext at the same time.

A Practical Application of FSC

- Suppose the government is collecting complete photographs of individuals and storing the collected data in a large server for future use by other organization.
- The government is using some photo-processing software that edits the photos and encrypts them before storing to the server.
- It is desirable that the software is allowed to perform only some minor touch-ups of the photos.
- Also, any organization accessing the encrypted database should retrieve only legitimate informations.

A Practical Application of FSC

- The government would provide the photo-processing software the signing keys which allows it to signcrypt original photographs with only the allowable modifications.
- The government would give any organization, wishing to access only informations from the database meeting certain criteria, the corresponding decryption key.
- The decryption key would enable the organization to retrieve only authorized photos and to be convinced that the photos obtained were undergone through only minor photo-editing modifications.

Cryptographic Building Blocks

- \mathcal{O} : An indistinguishability obfuscator for P/poly.
- PKE: A CPA-secure public key encryption scheme with message space $\mathbb{M} \subseteq \{0,1\}^{n(\lambda)}$, for some polynomial n.
- SIG: An existentially unforgeable signature scheme with message space $\{0,1\}^{\lambda}.$
- SSS-NIZKPoK: A statistically simulation-sound non-interactive zeroknowledge proof of knowledge system for some NP relation.

Background Indistinguishability Obfuscation (IO)

An indistinguishability obfuscator (IO) \mathcal{O} for a circuit class $\{\mathbb{C}_{\lambda}\}$ is a PPT uniform algorithm satisfying the following conditions:

- For any λ , $\mathcal{O}(1^{\lambda}, C)$ preserves the functionality of the input circuit C, for all $C \in \mathbb{C}_{\lambda}$.
- For any λ and any two circuits $C_0, C_1 \in \mathbb{C}_{\lambda}$ with the same functionality, the circuits $\mathcal{O}(1^{\lambda}, C_0)$ and $\mathcal{O}(1^{\lambda}, C_1)$ are computationally indistinguishable.

Background Statistically Simulation-Sound Non-Interactive Zero-Knowledge Proof of Knowledge (SSS-NIZKPoK)

An SSS-NIZKPoK system for $\mathbb{L} \subset \{0,1\}^*$, which is the language containing statements in some binary relation $R \subset \{0,1\}^* \times \{0,1\}^*$, is defined as follows:

- System Syntax: SSS-NIZKPoK.Setup, SSS-NIZKPoK.Prove, SSS-NIZKPoK.Verify, SSS-NIZKPoK.SimSetup, SSS-NIZKPoK.SimProve, SSS-NIZKPoK.ExtSetup, SSS-NIZKPoK.Extr.
- **Properties**: perfect completeness, statistical soundness, computational zero-knowledge, knowledge extraction, statistical simulation-soundness.

SSS-NIZKPoK System Used in Our FSC Construction

• We use an SSS-NIZKPoK system for the NP relation R, with statements of the form $X = (PK_{PKE}^{(1)}, PK_{PKE}^{(2)}, VK_{SIG}, e_1, e_2) \in \{0, 1\}^*$, witnesses of the form $W = (m, r_1, r_2, f, \sigma, z) \in \{0, 1\}^*$, and

$$\begin{split} (X,W) \in R \iff \Bigl(e_1 = \mathsf{PKE}.\mathsf{Encrypt}(\mathsf{PK}_{\mathsf{PKE}}^{(1)},m;r_1) \land \\ e_2 = \mathsf{PKE}.\mathsf{Encrypt}(\mathsf{PK}_{\mathsf{PKE}}^{(2)},m;r_2) \land \\ \mathsf{SIG}.\mathsf{Verify}(\mathsf{VK}_{\mathsf{SIG}},f,\sigma) = 1 \land m = f(z) \Bigr), \end{split}$$

for a function family $\mathbb{F} = \{f : \mathbb{D}_f \to \mathbb{M}\} \subseteq \mathsf{P}/\mathsf{poly}$ (with representation in $\{0, 1\}^{\lambda}$).

$\underset{\mathsf{FSC}.\mathsf{Setup}(1^{\lambda})}{\mathsf{Construction}}$

- $\ \, (\mathsf{PK}_{\mathsf{PKE}}^{(1)}, \mathsf{SK}_{\mathsf{PKE}}^{(1)}), (\mathsf{PK}_{\mathsf{PKE}}^{(2)}, \mathsf{SK}_{\mathsf{PKE}}^{(2)}) \gets \mathsf{PKE}.\mathsf{KeyGen}(1^{\lambda}).$
- $(VK_{\mathsf{SIG}}, SK_{\mathsf{SIG}}) \leftarrow \mathsf{SIG}.\mathsf{KeyGen}(1^{\lambda}).$
- CRS \leftarrow SSS-NIZKPoK.Setup (1^{λ}) .
- Publish MPK = $(PK_{PKE}^{(1)}, PK_{PKE}^{(2)}, VK_{SIG}, CRS)$. Keep MSK = $(SK_{PKE}^{(1)}, SK_{SIG})$.

Construction FSC.SKeyGen(MPK, MSK, $f \in \mathbb{F}$)

- $\ \, \bullet \quad \mathsf{SIG}.\mathsf{Sign}(\mathsf{SK}_{\mathsf{SIG}},f).$
- **2** Return $SK(f) = (f, \sigma)$ to the legitimate signcrypter.

Construction FSC.Signcrypt(MPK, $SK(f) = (f, \sigma), z \in \mathbb{D}_f$)

- $e_{\ell} = \mathsf{PKE}.\mathsf{Encrypt}(\mathsf{PK}_{\mathsf{PKE}}^{(\ell)}, f(z); r_{\ell})$ for $\ell = 1, 2$, where r_{ℓ} is the randomness selected for encryption.
- **③** π ← SSS-NIZKPoK.Prove(CRS, (X, W)) where $(X = (PK_{PKE}^{(1)}, PK_{PKE}^{(2)}, VK_{SIG}, e_1, e_2), W = (f(z), r_1, r_2, f, \sigma, z)) \in R.$
- **Output** $CT = (e_1, e_2, \pi).$

Construction FSC.DKeyGen(MPK, MSK, $g : \mathbb{M} \to \mathbb{R}_g \in \mathsf{P}/\mathsf{poly})$

Programs $P^{(g,{ m SK}^{(1)}_{\sf PKE},{ m MPK})}$ and $\widetilde{P}^{(g,{ m SK}^{(2)}_{\sf PKE},{ m MPK})}$	
$P^{(g, ext{skpke}^{(1)}, ext{mpk})}(e_1,e_2,\pi)$	$\widetilde{P}^{(g, ext{sk}_{ extsf{pke}}^{(2)}, ext{mpk})}((e_1,e_2,\pi)$
$ \ \ \bullet \ \ \mathbb{PK}^{(1)}_{PKE}, PK^{(2)}_{PKE}, VK_{SIG}, CRS \leftarrow MPK. $	$ \qquad \qquad$
2 Set $X = (PK_{PKE}^{(1)}, PK_{PKE}^{(2)}, VK_{SIG}, e_1, e_2).$	2 Set $X = (PK_{PKE}^{(1)}, PK_{PKE}^{(2)}, VK_{SIG}, e_1, e_2).$
3 If SSS-NIZKPoK.Verify(CRS, X, π) = 0, then output \perp .	3 If SSS-NIZKPoK.Verify(CRS, X, π) = 0, then output \perp .
$ Ise, output g(PKE.Decrypt(SK_{PKE}^{(1)}, e_1)). $	3 Else, output $g(PKE.Decrypt(SK^{(2)}_{PKE}, e_2))$.
• Provide $DK(g) = (g, \mathcal{O}(P^{(g, SK_{PKE}^{(1)}, MPK})))$ (circuit size $\max\{ P^{(g, SK_{PKE}^{(1)}, MPK}) , \tilde{P}^{(g, SK_{PKE}^{(2)}, MPK)} \})$ to the legitimate decrypter.	

Construction FSC.Unsigncrypt(MPK, DK(g) = $(g, \mathcal{O}(P^{(g, \text{SK}_{\mathsf{PKE}}^{(1)}, \text{MPK})})), \text{CT} = (e_1, e_2, \pi))$

9 Run
$$\mathcal{O}(P^{(g, \text{SK}_{\mathsf{PKE}}^{(1)}, \text{MPK})})$$
 with input (e_1, e_2, π) .

Output the result.

Security

Theorem (*Message Confidentiality of FSC*)

Assuming IO O for P/poly, CPA-secure public key encryption PKE, along with the statistical simulation-soundness and zero-knowledge properties of SSS-NIZKPoK system, our FSC scheme is selectively message confidential against CPA.

Theorem (Ciphertext Unforgeability of FSC)

Under the assumption that SIG is existentially unforgeable against CMA and SSS-NIZKPoK is a proof of knowledge, our FSC construction is selectively ciphertext unforgeable against CMA.

Some Cryptographic Primitives Derived from FSC

- Attribute-based signcryption (ABSC) supporting arbitrary polynomialsize circuits
- SSS-NIZKPoK system for NP relations
- IO for all polynomial-size circuits

ABSC for General Circuits from FSC ${}_{\mathsf{ABSC}.\mathsf{Setup}(1^\lambda)}$

- (MPK, MSK) $\leftarrow \mathsf{FSC}.\mathsf{Setup}(1^{\lambda}).$
- **2** Publish MPK_{ABSC} = MPK. Keep $MSK_{ABSC} = MSK$.

 $\begin{array}{l} \textbf{ABSC for General Circuits from FSC} \\ \textbf{ABSC.SKeyGen}(\text{MPK}_{\text{ABSC}} = \text{MPK}, \text{MSK}_{\text{ABSC}} = \text{MSK}, C^{(\text{SIG})} \in \text{P/poly}) \end{array}$

• SK $(f_{C}(\mathsf{SIG})) \leftarrow \mathsf{FSC.SKeyGen}(\mathsf{MPK}, \mathsf{MSK}, f_{C}(\mathsf{SIG}))$, where $f_{C}(\mathsf{SIG}) : \mathbb{D}_f = \{0, 1\}^{n=\nu+\mu+\gamma} \to \mathbb{M} = \{0, 1\}^n \cup \{\bot\}$ is defined as

$$f_{C^{(\mathsf{SIG})}}(y \| \overline{y} \| M) = \begin{cases} y \| \overline{y} \| M, & \text{if } C^{(\mathsf{SIG})}(\overline{y}) = 1 \\ \bot, & \text{otherwise} \end{cases}$$

Here, $y \in \{0,1\}^{\nu}$: decryption attribute string $\overline{y} \in \{0,1\}^{\mu}$: signature attribute string $M \in \{0,1\}^{\gamma}$: message

2 Provide $SK_{ABSC}(C^{(SIG)}) = SK(f_{C^{(SIG)}})$ to the legitimate signcrypter.

ABSC for General Circuits from FSC FSC.DKeyGen($MPK_{ABSC} = MPK, MSK_{ABSC} = MSK, C^{(DEC)} \in P/poly$)

$$g_{C^{(\mathsf{DEC})}}(y\|\overline{y}\|M) = \left\{ \begin{array}{ll} y\|\overline{y}\|M, & \text{if } C^{(\mathsf{DEC})}(y) = 1 \\ \bot, & \text{otherwise} \end{array} \right.$$

ABSC for General Circuits from FSC ABSC.Signcrypt($MPK_{ABSC} = MPK, SK_{ABSC}(C^{(SIG)}) = SK(f_{C^{(SIG)}}), y \in \{0,1\}^{\nu}, \overline{y} \in \{0,1\}^{\mu}, M \in \{0,1\}^{\gamma}$)

- CT $\leftarrow \mathsf{FSC.Signcrypt}(\mathsf{MPK}, \mathsf{SK}(f_{C^{(\mathsf{SIG})}}), z = y \|\overline{y}\|M)$, if $C^{(\mathsf{SIG})}(\overline{y}) = 1$.
- Output $CT_{ABSC}^{(y,\overline{y})} = (y,\overline{y},CT).$

ABSC for General Circuits from FSC ABSC.Unsigncrypt($MPK_{ABSC} = MPK, DK_{ABSC}(C^{(DEC)}) = DK(g_{C^{(DEC)}}), CT_{ABSC}^{(y,\overline{y})} = (y, \overline{y}, CT)$)

- **Q** Run FSC.Unsigncrypt(MPK, DK($g_{C(\text{DEC})}$), CT) to obtain $y' \| \overline{y}' \| M'$ or \bot .
- ② If $y' \|\overline{y}'\|M'$ is obtained and it holds that $y' = y \land \overline{y}' = \overline{y}$, then output M'. Otherwise, output ⊥.

ABSC for General Circuits from FSC _{Security}

Theorem (Message Confidentiality of ABSC)

If the underlying FSC scheme is selectively message confidential against CPA, then the proposed ABSC scheme is also selectively message confidential against CPA.

Theorem (*Ciphertext Unforgeability of ABSC*)

If the underlying FSC scheme is selectively ciphertext unforgeable against CMA, then the proposed ABSC scheme is also selectively ciphertext unforgeable against CMA.

Overview of IO Construction Using FSC

- From any selectively secure FSC scheme we can obtain a selectively secure FE scheme by including a signing key in the public parameters of FE for the *identity function* on the message space.
- Recently, Ananth et al. [AJS15] has shown how to construct IO for P/poly from selectively secure FE.
- Following these, we can design an IO for P/poly from FSC.

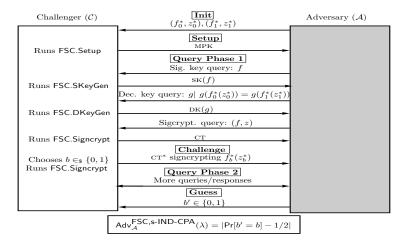
[[]AJS15]: Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. IACR Cryptology ePrint Archive, 2015.

Future Directions

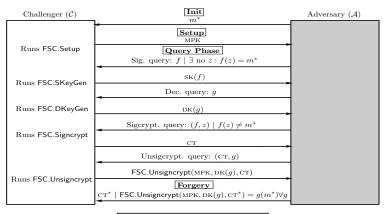
- Constructing FSC, possibly for restricted classes of functions, from weak and efficient primitives.
- Developing adaptively secure FSC scheme.
- Formulating a simulation-based security notion for FSC.
- Discovering the applications of FSC in building numerous fundamental cryptographic primitives.

Thanking Note

Selective CPA Message Confidentiality Model for FSC



Selective CMA Ciphertext Unforgeability Model for FSC



 $\mathsf{Adv}^{\mathsf{FSC},\mathsf{s}\text{-}\mathsf{UF}\text{-}\mathsf{CMA}}_{\mathcal{A}}(\lambda) = \mathsf{Pr}[\mathcal{A} \text{ wins}]$

$\underset{\texttt{SSS-NIZKPoK.Setup}(1^{\lambda})}{\texttt{SSS-NIZKPoK.Setup}(1^{\lambda})}$

- (MPK, MSK) $\leftarrow \mathsf{FSC}.\mathsf{Setup}(1^{\lambda}).$
- **2** Identify some fixed statement $X^* \in \mathbb{L}$.
- SK(f) \leftarrow FSC.SKeyGen(MPK, MSK, f) and DK(g) \leftarrow FSC.DKeyGen(MPK, MSK, g) respectively for $f : \{0, 1\}^{n = \kappa + \rho + 1} \rightarrow \mathbb{M} = \{0, 1\}^n \cup \{\bot\}$ and $g : \mathbb{M} \rightarrow \{0, 1\}^{\kappa} \cup \{\bot\}$ defined as

$$\begin{split} f(X\|W\|\beta) &= \begin{cases} X\|W\|\beta, & \text{if } (X,W) \in R \ \land \ \beta = 1 \\ \bot, & \text{otherwise} \end{cases} \\ g(X\|W\|\beta) &= \begin{cases} X, & \text{if } [(X,W) \in R \ \land \ \beta = 1] \ \lor \\ & [X = X^* \ \land \ W = 0^\rho \ \land \ \beta = 0] \\ \bot, & \text{otherwise} \end{cases} \end{split}$$

Here $\mathbb{L} \subseteq \{0,1\}^{\kappa}$ and $\mathbb{R} \subseteq \{0,1\}^{\kappa} \times \{0,1\}^{\rho}$. Question CRS = (MPK, SK(f), DK(g)). SSS-NIZKPoK from FSC SSS-NIZKPoK.Prove(CRS, (X, W))

• CT $\leftarrow \mathsf{FSC}.\mathsf{Signcrypt}(\mathsf{MPK},\mathsf{SK}(f),X||W||1).$

2 Output $\pi = CT$.

SSS-NIZKPoK from FSC SSS-NIZKPoK.Verify(CRS, $X, \pi = CT$)

• $X' \leftarrow \mathsf{FSC}.\mathsf{Unsigncrypt}(\mathsf{MPK}, \mathsf{DK}(g), \mathsf{CT}).$

2 Output 1 if X' = X. Otherwise, output 0.

$\begin{array}{l} \mathsf{SSS-NIZKPoK} \ \mathrm{from} \ \mathsf{FSC} \\ \mathsf{SSS-NIZKPoK}.\mathsf{SimSetup}(1^\lambda,\widetilde{X}^*) \end{array}$

- (MPK, MSK) $\leftarrow \mathsf{FSC}.\mathsf{Setup}(1^{\lambda}).$
- **2** SK $(f) \leftarrow$ FSC.SKeyGen(MPK, MSK, f) and DK $(g) \leftarrow$ FSC.DKeyGen(MPK, MSK, g) for functions f and g as in the real setup, where \widetilde{X}^* will play the role of X^* .
- $\ \ \, {\rm SK}(\widetilde{f}) \leftarrow {\rm FSC.SKeyGen}({\rm MPK},{\rm MSK},\widetilde{f}) \ \, {\rm for} \ \, \widetilde{f}: \{0,1\}^n \rightarrow \mathbb{M} \ \, {\rm defined} \ \, {\rm as} \ \ \,$

$$\widetilde{f}(X||W||\beta) = \begin{cases} X||W||\beta, & \text{if } [(X,W) \in R \land \beta = 1] \lor \\ & [X = \widetilde{X}^* \land W = 0^{\rho} \land \beta = 0] \\ \bot, & \text{otheriwse} \end{cases}$$

• Output CRS = (MPK, SK(f), DK(g)) and $TR = SK(\tilde{f})$.

SSS-NIZKPoK from FSC SSS-NIZKPoK.SimProve(CRS, TR, \widetilde{X}^*)

$\widetilde{\text{CT}} \leftarrow \mathsf{FSC.Signcrypt}(\text{MPK}, \text{SK}(\widetilde{f}), \widetilde{X}^* \| 0^{\rho} \| 0).$

2 Output $\widetilde{\pi} = \widetilde{CT}$.

$\begin{array}{l} \text{SSS-NIZKPoK} \ from \ \mathsf{FSC} \\ \text{SSS-NIZKPoK}. \texttt{ExtSetup}(1^\lambda) \end{array}$

$$(MPK, MSK) \leftarrow \mathsf{FSC}.\mathsf{Setup}(1^{\lambda}).$$

- **2** Identify some fixed statement $X^* \in \mathbb{L}$ and compute SK(f) and DK(g) respectively for functions f and g as in the real setup.
- ③ DK(g') ← FSC.DKeyGen(MPK, MSK, g'), where $g' : \{0,1\}^n \to \{0,1\}^{\rho+1}$ is defined by

$$g'(X||W||\beta) = W||\beta$$
, for $X||W||\beta \in \{0,1\}^n$.

• Output CRS = (MPK, SK(f), DK(g)) and $\widehat{TR} = DK(g')$.

SSS-NIZKPoK from FSC SSS-NIZKPoK.Extr(CRS, \widehat{TR} , X, $\pi = CT$)

- Run FSC.Unsigncrypt(MPK, DK(g'), CT).
- ② If $W || 1 \in \{0,1\}^{\rho+1}$ is obtained, then output W. Otherwise, output ⊥ indicating failure.

$\underset{\rm Security}{{\sf SSS-NIZKPoK}} \ {\rm from} \ {\sf FSC}$

Theorem

Assuming that the underlying FSC scheme is selective message confidential against CPA and selective ciphertext unforgeable against CMA, the described SSS-NIZKPoK system satisfies all the criteria of SSS-NIZKPoK.