BetterTimes

Privacy-assured Outsourced Multiplications for Additively

Homomorphic Encryption on Finite Fields

> Per Hallgren ${ }^{1}$
> Martín Ochoa ${ }^{2,3}$
> Andrei Sabelfeld

1. Chalmers University of Technology
2. Technische Universität München
3. Singapore University of Technology and Design

November 20, 2015

The problem of honest-but-curious adversaries

- Using a too weak attacker model can have serious consequences

The problem of honest-but-curious adversaries

- Using a too weak attacker model can have serious consequences

Honest

The problem of honest-but-curious adversaries

- Using a too weak attacker model can have serious consequences

Honest

Arithmetic formulas

- Many privacy-preserving solutions use arithmetic formulas
- Privacy-preserving face recognition
- Privacy-preserving location proximity
- Privacy-preserving auctioning and bartering systems
- Privacy-preserving voting

Arithmetic formulas

- Many privacy-preserving solutions use arithmetic formulas
- Privacy-preserving face recognition
- Privacy-preserving location proximity
- Privacy-preserving auctioning and bartering systems
- Privacy-preserving voting
- Common assumption is honest-but-curious

Arithmetic formulas

- Many privacy-preserving solutions use arithmetic formulas
- Privacy-preserving face recognition
- Privacy-preserving location proximity
- Privacy-preserving auctioning and bartering systems
- Privacy-preserving voting
- Common assumption is honest-but-curious
- Many current solutions suffer
- Face recognition: Sadeghi et al. 2009, Erkin et al. 2009
- Location proximity: Zhong et al. 2007, Sedenka and Gasti 2014, Hallgren et al. 2015

General Problem

- Privacy-assurances when computing arithmetic formulas in the malicious model

General Problem

- Privacy-assurances when computing arithmetic formulas in the malicious model
- Privacy against malicious adversaries
- Can lie about their inputs
- Can potentially give false outputs to the other party
- Can not learn anything about the other parties outputs

General Problem

- Privacy-assurances when computing arithmetic formulas in the malicious model
- Privacy against malicious adversaries
- Can lie about their inputs
- Can potentially give false outputs to the other party
- Can not learn anything about the other parties outputs
- Two-party setting
- Two principals Alice (A) and Bob (B)
- Alice is the initiating party, and Alice receives the output

General Problem

- Privacy-assurances when computing arithmetic formulas in the malicious model
- Privacy against malicious adversaries
- Can lie about their inputs
- Can potentially give false outputs to the other party
- Can not learn anything about the other parties outputs
- Two-party setting
- Two principals Alice (A) and Bob (B)
- Alice is the initiating party, and Alice receives the output
- Goal
- Bob learns nothing
- Alice learns at most the intended output

The solution is based upon Homomorphic Encryption

- k, K private and public key.
- Private key held by Alice
- Public key globally known

The solution is based upon Homomorphic Encryption

- k, K private and public key.
- Private key held by Alice
- Public key globally known
- The encryption of a plaintext p using K is denoted as $\llbracket p \rrbracket$

The solution is based upon Homomorphic Encryption

- k, K private and public key.
- Private key held by Alice
- Public key globally known
- The encryption of a plaintext p using K is denoted as $\llbracket p \rrbracket$
- plaintext space \mathcal{M} isomorphic to the field $\left(\mathbb{Z}_{p}, \cdot,+\right)$

The solution is based upon Homomorphic Encryption

- k, K private and public key.
- Private key held by Alice
- Public key globally known
- The encryption of a plaintext p using K is denoted as $\llbracket p \rrbracket$
- plaintext space \mathcal{M} isomorphic to the field $\left(\mathbb{Z}_{p}, \cdot,+\right)$
- Key properties we will use
- Addition: $\llbracket m_{1}+m_{2} \rrbracket=\llbracket m_{1} \rrbracket \oplus \llbracket m_{2} \rrbracket$

The solution is based upon Homomorphic Encryption

- k, K private and public key.
- Private key held by Alice
- Public key globally known
- The encryption of a plaintext p using K is denoted as $\llbracket p \rrbracket$
- plaintext space \mathcal{M} isomorphic to the field $\left(\mathbb{Z}_{p}, \cdot,+\right)$
- Key properties we will use
- Addition: $\llbracket m_{1}+m_{2} \rrbracket=\llbracket m_{1} \rrbracket \oplus \llbracket m_{2} \rrbracket$
- Subtraction: $\llbracket m_{1}-m_{2} \rrbracket=\llbracket m_{1} \rrbracket \ominus \llbracket m_{2} \rrbracket$

The solution is based upon Homomorphic Encryption

- k, K private and public key.
- Private key held by Alice
- Public key globally known
- The encryption of a plaintext p using K is denoted as $\llbracket p \rrbracket$
- plaintext space \mathcal{M} isomorphic to the field $\left(\mathbb{Z}_{p}, \cdot,+\right)$
- Key properties we will use
- Addition: $\llbracket m_{1}+m_{2} \rrbracket=\llbracket m_{1} \rrbracket \oplus \llbracket m_{2} \rrbracket$
- Subtraction: $\llbracket m_{1}-m_{2} \rrbracket=\llbracket m_{1} \rrbracket \ominus \llbracket m_{2} \rrbracket$
- Multiplication: $\llbracket m_{1} \cdot m_{2} \rrbracket=\llbracket m_{1} \rrbracket \odot m_{2}$

The solution is based upon Homomorphic Encryption

- k, K private and public key.
- Private key held by Alice
- Public key globally known
- The encryption of a plaintext p using K is denoted as $\llbracket p \rrbracket$
- plaintext space \mathcal{M} isomorphic to the field $\left(\mathbb{Z}_{p}, \cdot,+\right)$
- Key properties we will use
- Addition: $\llbracket m_{1}+m_{2} \rrbracket=\llbracket m_{1} \rrbracket \oplus \llbracket m_{2} \rrbracket$
- Subtraction: $\llbracket m_{1}-m_{2} \rrbracket=\llbracket m_{1} \rrbracket \ominus \llbracket m_{2} \rrbracket$
- Multiplication: $\llbracket m_{1} \cdot m_{2} \rrbracket=\llbracket m_{1} \rrbracket \odot m_{2}$
- Blinding: given $\mathcal{M}^{\mathcal{U}}$ uniformly random distribution in $\mathcal{M} \backslash\{0\}$
- $\llbracket m \rrbracket \oplus \llbracket b \rrbracket=\llbracket r \rrbracket$, with $b, r \in \mathcal{M}^{\mathcal{U}}$
- $\llbracket m \rrbracket \odot \llbracket b \rrbracket=\llbracket r \rrbracket$, with $b, r \in \mathcal{M}^{\mathcal{U}}$

Extension to additively homomorphic encryption

- Since an additively homomorphic encryption system has

Extension to additively homomorphic encryption

- Since an additively homomorphic encryption system has
- Addition
- Subtraction

Extension to additively homomorphic encryption

- Since an additively homomorphic encryption system has
- Addition
- Subtraction
- Multiplication with one known plaintext

Extension to additively homomorphic encryption

- Since an additively homomorphic encryption system has
- Addition
- Subtraction
- Multiplication with one known plaintext
- The only thing we need to add is $\llbracket m_{1} \rrbracket \odot \llbracket m_{2} \rrbracket=\llbracket m_{1} \cdot m_{2} \rrbracket$

Extension to additively homomorphic encryption

- Since an additively homomorphic encryption system has
- Addition
- Subtraction
- Multiplication with one known plaintext
- The only thing we need to add is $\llbracket m_{1} \rrbracket \odot \llbracket m_{2} \rrbracket=\llbracket m_{1} \cdot m_{2} \rrbracket$
- We solve this using outsourcing these multiplications through a novel protocol called BetterTimes.

Communication Overview

- In our setting, protocols follow the form
- Alice initiates the protocol
- Bob sees only encrypted data (he can't decrypt)
- Possibly there are more round trips to finish the computation
- Bob responds with the final result

BetterTimes

The protocol is outlined as follows:
(1) BetterTimes is run when Bob wants to multiply $\llbracket x \rrbracket$ and $\llbracket y \rrbracket$

BetterTimes

The protocol is outlined as follows:
(1) BetterTimes is run when Bob wants to multiply $\llbracket x \rrbracket$ and $\llbracket y \rrbracket$
(2) He sends the blinded $\llbracket x^{\prime} \rrbracket$, $\llbracket y^{\prime} \rrbracket$, challenge $\llbracket c \rrbracket$ to Alice

BetterTimes

The protocol is outlined as follows:
(1) BetterTimes is run when Bob wants to multiply $\llbracket x \rrbracket$ and $\llbracket y \rrbracket$
(2) He sends the blinded $\llbracket x^{\prime} \rrbracket$, $\llbracket y^{\prime} \rrbracket$, challenge $\llbracket c \rrbracket$ to Alice
(3) Alice replies with $\llbracket z^{\prime} \rrbracket\left(=\llbracket x^{\prime} \cdot y^{\prime} \rrbracket\right)$ and assurance $\llbracket a^{\prime} \rrbracket$

BetterTimes

The protocol is outlined as follows:
(1) BetterTimes is run when Bob wants to multiply $\llbracket x \rrbracket$ and $\llbracket y \rrbracket$
(2) He sends the blinded $\llbracket x^{\prime} \rrbracket$, $\llbracket y^{\prime} \rrbracket$, challenge $\llbracket c \rrbracket$ to Alice
(3) Alice replies with $\llbracket z^{\prime} \rrbracket\left(=\llbracket x^{\prime} \cdot y^{\prime} \rrbracket\right)$ and assurance $\llbracket a^{\prime} \rrbracket$
(4) Bob removes the blinding from $\llbracket z^{\prime} \rrbracket$ to arrive at $\llbracket z \rrbracket$

BetterTimes

The protocol is outlined as follows:
(1) BetterTimes is run when Bob wants to multiply $\llbracket x \rrbracket$ and $\llbracket y \rrbracket$
(2) He sends the blinded $\llbracket x^{\prime} \rrbracket$, $\llbracket y^{\prime} \rrbracket$, challenge $\llbracket c \rrbracket$ to Alice
(3) Alice replies with $\llbracket z^{\prime} \rrbracket\left(=\llbracket x^{\prime} \cdot y^{\prime} \rrbracket\right)$ and assurance $\llbracket a^{\prime} \rrbracket$
(4) Bob removes the blinding from $\llbracket z^{\prime} \rrbracket$ to arrive at $\llbracket z \rrbracket$
(5) Bob computes $\llbracket a \rrbracket$ using all of $\llbracket x^{\prime} \rrbracket, \llbracket y^{\prime} \rrbracket, \llbracket z^{\prime} \rrbracket$ and $\llbracket a^{\prime} \rrbracket$

BetterTimes communication

Alice

Bob

Figure: Visualization of the attested multiplication protocol

Using BetterTimes in a formula

- Bettertimes assures that $\llbracket a \rrbracket$ is zero if and only if $\llbracket z \rrbracket=\llbracket x \cdot y \rrbracket$, and a uniformly random value otherwise.

Using BetterTimes in a formula

- Bettertimes assures that $\llbracket a \rrbracket$ is zero if and only if $\llbracket z \rrbracket=\llbracket x \cdot y \rrbracket$, and a uniformly random value otherwise.
- When Bob has computed the final result $\llbracket r e s u l t \rrbracket$, he sends $\llbracket r e s u l t \rrbracket+\sum a_{i}$ to Alice, where a_{i} is the assurance value corresponding to each outsourced multiplication.

Using BetterTimes in a formula

- Bettertimes assures that $\llbracket a \rrbracket$ is zero if and only if $\llbracket z \rrbracket=\llbracket x \cdot y \rrbracket$, and a uniformly random value otherwise.
- When Bob has computed the final result $\llbracket r e s u l t \rrbracket$, he sends $\llbracket r e s u l t \rrbracket+\sum a_{i}$ to Alice, where a_{i} is the assurance value corresponding to each outsourced multiplication.
- Alice receives the correct output if and only if she computed all outsourced multiplications honestly, and a uniformly random value otherwise

Private Evaluation of Arithmetic Formula

Alice 10

Bob

Proof Outline for Privacy of Arbitrary Formula

Our Privacy definition follows the standard framework for secure multi-part computation (Lindell and Pinkas 2008)

Theorem

For a fixed but arbitrary arithmetic formula $g(\vec{x}, \vec{y})$ represented by a recursive instruction $\iota \in$ Ins, for every adversary \mathcal{A} against the protocol π resulting from evaluate(ι), there exist a simulator \mathcal{S} such that:

$$
\left\{\operatorname{IDEAL}_{g, \mathcal{S}(s)}(\vec{x}, \vec{y})\right\} \xlongequal{\equiv}\left\{\operatorname{REAL}_{\pi, \mathcal{A}(s)}(\vec{x}, \vec{y})\right\}
$$

where $\xlongequal[\equiv]{c}$ denotes computational indistinguishability of distributions.

Proof Outline for Privacy of Arbitrary Formula

Our Privacy definition follows the standard framework for secure multi-part computation (Lindell and Pinkas 2008)

Theorem

For a fixed but arbitrary arithmetic formula $g(\vec{x}, \vec{y})$ represented by a recursive instruction $\iota \in$ Ins, for every adversary \mathcal{A} against the protocol π resulting from evaluate(ι), there exist a simulator \mathcal{S} such that:

$$
\left\{\operatorname{IDEAL}_{g, \mathcal{S}(s)}(\vec{x}, \vec{y})\right\} \xlongequal{\equiv}\left\{\operatorname{REAL}_{\pi, \mathcal{A}(s)}(\vec{x}, \vec{y})\right\}
$$

where $\xlongequal[\equiv]{c}$ denotes computational indistinguishability of distributions.

- The full proof is given in the paper

Proof Outline for Privacy of Arbitrary Formula

Our Privacy definition follows the standard framework for secure multi-part computation (Lindell and Pinkas 2008)

Theorem

For a fixed but arbitrary arithmetic formula $g(\vec{x}, \vec{y})$ represented by a recursive instruction $\iota \in$ Ins, for every adversary \mathcal{A} against the protocol π resulting from evaluate(ι), there exist a simulator \mathcal{S} such that:

$$
\left\{\operatorname{IDEAL}_{g, \mathcal{S}(s)}(\vec{x}, \vec{y})\right\} \stackrel{c}{\equiv}\left\{\operatorname{REAL}_{\pi, \mathcal{A}(s)}(\vec{x}, \vec{y})\right\}
$$

where $\xlongequal[\equiv]{c}$ denotes computational indistinguishability of distributions.

- The full proof is given in the paper
- The theorem implicates that any protocol evaluating arithmetic formulas as defined in the paper can be evaluated in the presence of a malicious adversary while preserving privacy

Benchmarks

- Performed benchmarks on prototype implementation in python
- Comparing to outsourced multiplications secure only against honest adversaries

Table: Times (in milliseconds) for outsourced multiplication

Plaintext space	Time (in milliseconds)					
	This approach	1024 bits Naive approach	Extra work	This approach	2048 bits Naive approach	Extra work
2^{2}	6.286	4.016	56.52\%	29.686	19.458	52.56\%
2^{8}	6.400	4.017	59.32\%	30.052	19.484	54.24\%
2^{16}	6.432	4.148	55.06\%	30.188	19.574	54.22\%
2^{24}	6.538	4.100	59.46\%	30.578	19.801	54.43\%

- Benchmarks show that our more secure approach costs about 53-60\% extra work for a multiplication

Protocols that can be secured with BetterTimes

- Several existing works can use the proposed approach to increase protection against malicious attackers
- Privacy-preserving face recognition: Sadeghi et al. 2009, Erkin et al. 2009
- Privacy-preserving location proximity: Zhong et al. 2007, Sedenka and Gasti 2014, Hallgren et al. 2015

Conclusions

- Presented BetterTimes
- Using BetterTimes one can compute any arithmetic formula in the presence of a malicious Alice
- The overhead, compared to protection against honest adversaries, is about 55%
- Of each multiplication, not of the formula as a whole
- Usually the number of multiplications is minimized, as additions are cheap with additively homomorphic encryption

Thank you for your attention!

Questions?

