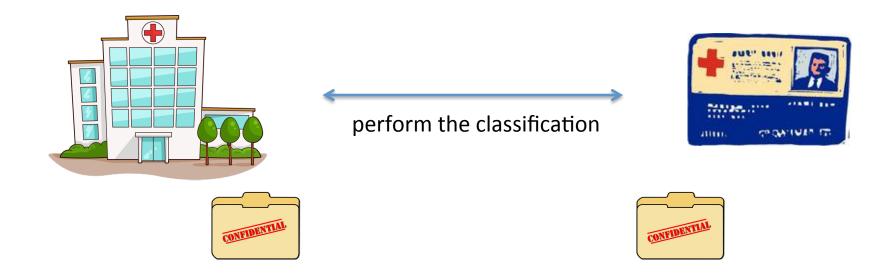
Efficient Unconditionally Secure Comparison and Privacy Preserving Machine Learning Classification Protocols

> Bernardo David Rafael Dowsley Raj Katti Anderson C. A. Nascimento

Problem



Both parties want to guarantee the privacy of their data.

Consider honest-but-curious adversaries.

Classifiers

Hyperplane decision classifier: model w consists of k vectors $w_1, ..., w_k$

C(*w*,*v*)=argmax <*v*,*w*_{*i*}>

Naïve Bayes classifier: classification using maximum a posteriori decision rule and the model consists of the probability that each class happens and the probability that each input element happens in a certain class

C(w,v)=argmax (log Pr($C=c_i$) + Σ log Pr($V_i=V_i | C=c_i$))

Building blocks: argmax (comparison) and inner-product.

Building Blocks

Efficient and unconditionally secure solutions for the building blocks.

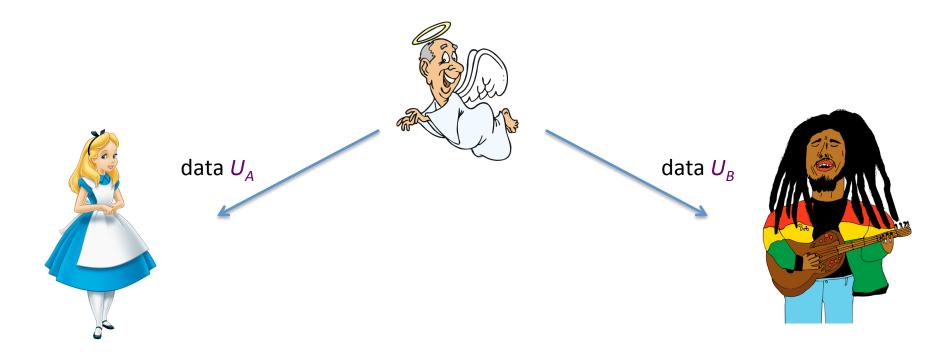
Consider the trusted initializer model.

Unconditionally secure comparisons protocols (and so argmax) can be designed using unconditionally secure multiplication as a building block.

Optimize use of the multiplication protocol.

Efficient inner-product protocol already known [DGMN11].

Trusted Initializer Model



Trusted initializer pre-distributes correlated randomness to the parties.

Trusted initializer does not learn the inputs and does not participate anymore.

Advantage: unconditional security can be achieved with very efficient protocols.

Computing Using Secret Shares

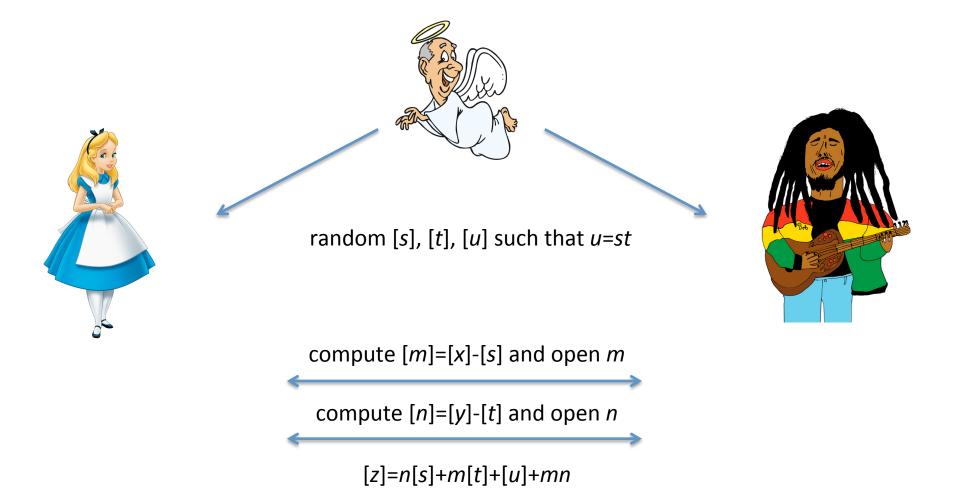
Use additively secret sharing (over some finite field) for performing secure computations.

For a value x, Alice receives a share x_A and Bob a share x_B such that $x=x_A+x_B$. Let [x] denote the secret sharing of x.

Given shares [x], [y] it is easy to compute shares corresponding to z=x+y, z=x-y, or to add a/multiply by a constant.

Not so easy to compute shares for z=xy without revealing additional information.

Multiplication Triples



Due to the blinding factors, no information about x, y or z is leaked.

Secure Comparison

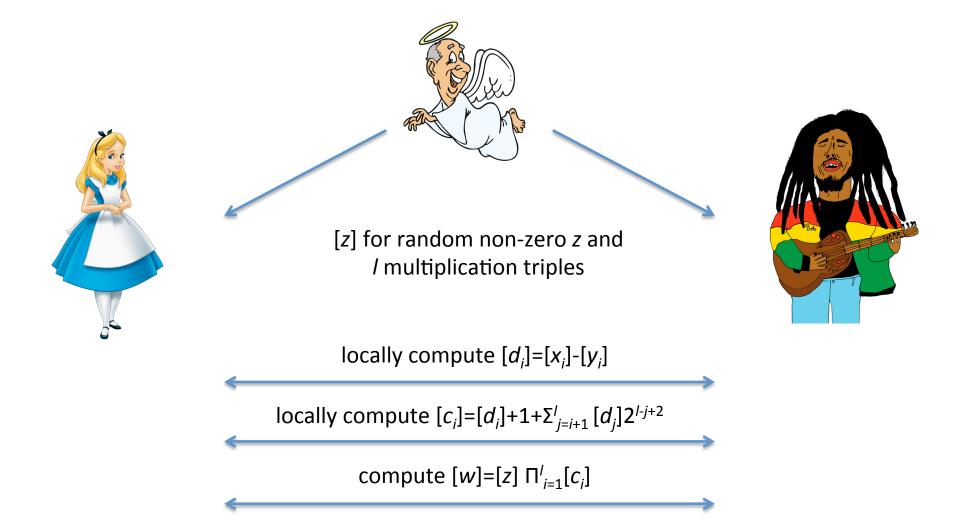
For inputs of *I*-bits, our protocol only uses *I* instances of the secure multiplication.

The inputs are given as bit-wise secret sharings $[x_i]$ and $[y_i]$ in Z_q with $q>2^{l+2}$.

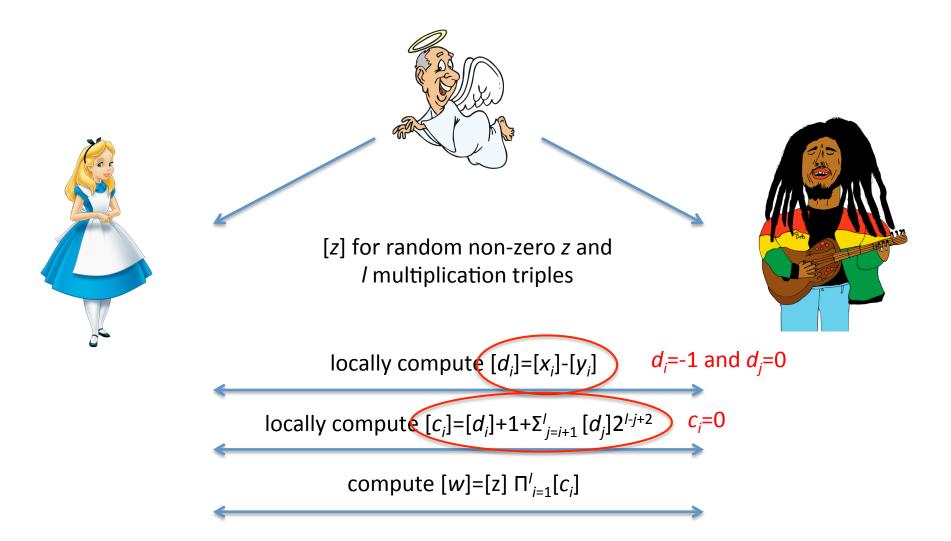
The output is either [0] if y>x or [w] for a random w in Z_q^* if $y \le x$.

This modified form of output is good enough for our applications.

Secure Comparison



Secure Comparison



Correctness: y > x if and only if there is an *i* such that $y_i > x_i$ and $y_i = x_i$ for j = i+1,...,l.

Secure Argmin

Input: bit-wise secret sharings of vectors $v_1, ..., v_k$

correlated data necessary for the underlying building blocks

compare all ordered pairs v_i and v_i to get $[w_{i,j}]$

compute $[p_i] = \prod_{j=1, j \neq i}^k [w_{i,j}]$

open p_i to Alice. If $p_i \neq 0$, she adds *i* to the output

Naïve Bayes Classifier

```
C(w,v)=argmax (log Pr(C=c_i) + \Sigmalog Pr(V_i=V_i | C=c_i))
```

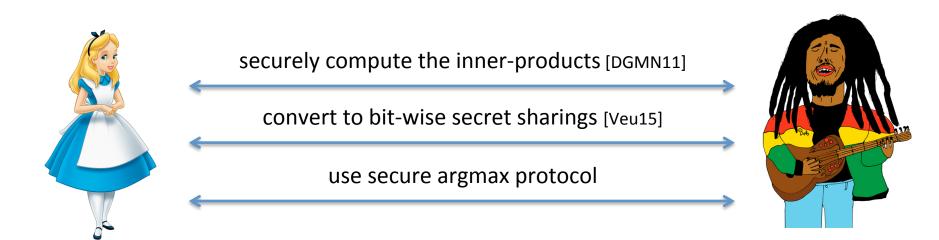
log of the probabilities are converted to field elements

obliviously compute the converted log $Pr(V_j = V_j | C = c_i)$

use secure argmax protocol

Hyperplane Decision Classifier

C(w,v)=argmax <v,w_i>



Recap

♦ Possible to obtain privacy-preserving schemes for important machine learning classifiers using as building blocks comparison, argmax and inner products.

 \diamond Optimized secure comparison protocol that fits our applications.

♦ Possible to eliminate the trusted initializer at the cost of having some precomputation between the parties and losing the unconditional security.

