Efficient Private Set Intersection Cardinality in the Presence of Malicious Adversaries

Sumit Kumar Debnath and Ratna Dutta
Department of Mathematics
Indian Institute of Technology Kharagpur
Kharagpur-721302, India

Outline

(1) Introduction
(2) Preliminaries
(3) Protocol
(4) Security
(5) Efficiency
(6) Conclusion

Private Set Intersection (PSI) Protocol

- At the end of the protocol, either one of them gets the intersection, yielding-one-way PSI, or both of them get the intersection yielding-mutual PSI (mPSI)

Private Set Intersection Cardinality(PSI-CA)

This is a variant of PSI, where the participants wish to learn the cardinality of the intersection rather than the content.

Private Set Intersection (PSI) Protocol

The applications of PSI and PSI-CA protocols are as follows:

- Two real estate companies would like to identify customers (e.g., home owners) who are double-dealing, i.e., have signed exclusive contracts with both companies to assist them in selling their properties.
- Two different health organizations want to know the number of common villagers who are suffering from a particular disease in a village. None of the organizations will reveal their list of suspects but they may learn the number of common suspects by running an PSI-CA.

Cryptographic Building Blocks

- Bloom Filter of [1]
- Homomorphic Encryption of [2]
[1]: B. H. Bloom, Communications of the ACM 1970.
[2]: T. ElGamal, In Advances in Cryptology, Springer, 1985.

Bloom Filter (BF)

Bloom filter (BF) is a data structure that represents a set $X=\left\{x_{1}, \ldots, x_{v}\right\}$ of v elements by an array of m bits and uses k independent hash functions $H=\left\{h_{0}, h_{1}, \ldots, h_{k-1}\right\}$ with $h_{i}:\{0,1\}^{*} \rightarrow\{0,1, \ldots, m-1\}$ for $i=0,1, \ldots, k-1$. Bloom filter of X is denoted by BF_{X}.

Bloom Filter (BF)

Choose $m=12$ and $k=3$.
Initialization:

0	0	0	0	0	0	0	0	0	0	0	0

Add step: Suppose ($\left.h_{0}\left(x_{1}\right)=5, h_{1}\left(x_{1}\right)=1, h_{2}\left(x_{1}\right)=3\right)$, $\left(h_{0}\left(x_{2}\right)=9, h_{1}\left(x_{2}\right)=6, h_{2}\left(x_{2}\right)=5\right) \ldots \ldots$

Check step: Suppose $\left(h_{0}\left(y_{1}\right)=0, h_{1}\left(y_{1}\right)=3, h_{2}\left(y_{1}\right)=1\right)$, $\left(h_{0}\left(y_{2}\right)=9, h_{1}\left(y_{2}\right)=6, h_{2}\left(y_{2}\right)=5\right) \ldots \ldots$

ElGamal encryption

This is a homomorphic encryption under the modulo multiplication and consists the algorithms ($\mathcal{E L}$.Setup, $\mathcal{E L}$.KGen, $\mathcal{E L}$.Enc, $\mathcal{E L}$. Dec):

- $\operatorname{par}=(\mathbf{p}, \mathbf{q}, \mathbf{g}) \leftarrow \mathcal{E} \mathcal{L} . \operatorname{Setup}\left(\mathbf{1}^{\kappa}\right)$, where p, q are primes such that q divides $p-1$ and g is a generator of the unique cyclic subgroup \mathbb{G} of \mathbb{Z}_{p}^{*} of order q.
- $\left(\mathbf{p k}_{\mathbf{u}}=\mathbf{h}, \mathbf{s k}_{\mathbf{u}}=\mathbf{x}\right) \leftarrow \mathcal{E} \mathcal{L}$. KGen(par), where $x \longleftarrow \mathbb{Z}_{q}$ and $y=g^{x}$.
- $\mathbf{c} \leftarrow \mathcal{E} \mathcal{L}$.Enc $\left(\mathbf{m}, \mathbf{p k}_{\mathbf{u}}\right.$, par, $\left.\mathbf{r}\right)$, where $c=E_{p k_{u}}(m)=(\alpha, \beta)=\left(g^{r}, m h^{r}\right)$ and $r \longleftarrow \mathbb{Z}_{q}$.
- $\mathbf{m} \leftarrow \mathcal{E} \mathcal{L} . \operatorname{Dec}\left(\mathbf{E}_{\mathbf{p k}_{\mathrm{u}}}(\mathbf{m}), \mathbf{s k}_{\mathbf{u}}\right)$, where m can be computed as $\frac{\beta}{\alpha^{x}}=\frac{m\left(g^{\star}\right)^{r}}{\left(g^{r}\right)^{x}}=m$.

Decisional Diffie-Hellman (DDH) Assumption

Let the algorithm $(n, g) \leftarrow g G e n\left(1^{\kappa}\right)$, where g is a generator of a multiplicative group \mathbb{G} of order n. Suppose $a, b, c \longleftarrow \mathbb{Z}_{n}$. Then the DDH assumption states that no PPT algorithm \mathcal{A} can distinguish between the two distributions $\left\langle g^{a}, g^{b}, g^{a b}\right\rangle$ and $\left\langle g^{a}, g^{b}, g^{c}\right\rangle$ i.e., $\left|\operatorname{Prob}\left[\mathcal{A}\left(g, g^{a}, g^{b}, g^{a b}\right)=1\right]-\operatorname{Prob}\left[\mathcal{A}\left(g, g^{a}, g^{b}, g^{c}\right)=1\right]\right|$ is negligible function of κ.

Zero-Knowledge Proof of Knowledge $\operatorname{PoK}\left\{\alpha \mid X=g^{\alpha}\right\}$

- The prover chooses $v \longleftarrow \mathbb{Z}_{q}$ and sends the commitments $\bar{X}=g^{v}$ to the verifier.
- The verifier chooses $c \longleftarrow \mathbb{Z}_{q}$ and gives c as challenge to the prover.
- The prover sets $r=v+c \alpha$ and sends the response r to the verifier.
- The verifier checks whether the relations $g^{r}=\bar{X} X^{c}$ hold. If this holds, then the verifier accepts it, otherwise rejects it.

PSI-CA-I

C 's private input $X=\left\{x_{1}, \ldots, x_{v}\right\}$
$\left(p k_{C}, s k_{C}\right) \leftarrow \mathcal{E} \mathcal{L} . \mathrm{KGen}($ par $)$
for $i=1, \ldots, v$,

$$
\begin{aligned}
& r_{x_{i}} \leftarrow \mathbb{Z}_{q}, \\
& E_{p k_{C}}\left(x_{i}\right)=\left(c_{x_{i}}=g^{r_{x_{i}}}, d_{x_{i}}=x_{i} h^{r_{x_{i}}}\right) \\
& \leftarrow \mathcal{E} \mathcal{L} . \operatorname{Enc}\left(x_{i}, p k_{C}, \text { par, } r_{x_{i}}\right) ; \\
& \pi_{1}=\operatorname{PoK}\left\{\left(r_{x_{1}}, \ldots, r_{x_{v}}\right) \mid \wedge_{i=1}^{v}\left(c_{x_{i}}=g^{r_{x_{i}}}\right)\right\} \\
& R_{1}=\left\langle\left\{E_{p k_{C}}\left(x_{1}\right), \ldots, E_{p k_{C}}\left(x_{v}\right)\right\}, p k_{C}, \pi_{1}\right\rangle
\end{aligned}
$$

checks the validity of π_{2} by interacting with S as discussed in the previous slide

$$
\begin{aligned}
& \text { for } i=1, \ldots, v, \\
& s_{i}=\left(\bar{x}_{i}\right)^{r} \leftarrow \mathcal{E} \mathcal{L} . \operatorname{Dec}\left(\left(E_{p k_{C}}\left(\bar{x}_{i}\right)\right)^{r}, s k_{C}\right) ; \\
& \text { sets }|X \cap Y|=\left|\left\{s_{1}, \ldots, s_{v}\right\} \cap\left\{t_{1}, \ldots, t_{w}\right\}\right|
\end{aligned}
$$

Common input: $\quad S$'s private input $Y=\left\{y_{1}, \ldots, y_{w}\right\}$
verifies the validity of π_{1} by interacting with C as discussed in the previous slide $r \hookleftarrow \mathbb{Z}_{q} ;$
$\widehat{Y}=\left\{t_{1}=\left(y_{1}\right)^{r}, \ldots, t_{w}=\left(y_{w}\right)^{r}\right\} ;$ for $i=1, \ldots, v$,
$\left(E_{p k_{C}}\left(x_{i}\right)\right)^{r}=\left(\hat{c}_{x_{i}}=\left(c_{x_{i}}\right)^{r}, \hat{d}_{x_{i}}=\left(d_{x_{i}}\right)^{r}\right.$ $\operatorname{Perm}\left\{\left(E_{p k_{C}}\left(x_{1}\right)\right)^{r}, \ldots,\left(E_{p k_{C}}\left(x_{v}\right)\right)^{r}\right\}$
$=\left\{\left(E_{p k_{C}}\left(\bar{x}_{1}\right)\right)^{r}, \ldots,\left(E_{p k_{C}}\left(\bar{x}_{v}\right)\right)^{r}\right\}=\bar{X}$;
$\pi_{2}=\operatorname{IPoK}\left\{(r) \mid\left(\Pi_{i=1}^{v} \hat{c}_{\bar{x}_{i}}=\left(\Pi_{i=1}^{v} c_{x_{i}}\right)^{r}\right)\right.$
$\left.\wedge\left(\Pi_{i=1}^{v} \hat{d}_{\bar{x}_{i}}=\left(\Pi_{i=1}^{v} d_{x_{i}}\right)^{r}\right)\right\}$
$R_{2}=\left\langle\widehat{Y}=\left\{t_{1}, \ldots, t_{w}\right\}, \bar{X}, \pi_{2}\right\rangle$.

IT Kharagpur

PSI-CA-I contd...

Correctness: As the set $\left\{\bar{x}_{1}, \ldots, \bar{x}_{v}\right\}$ is same as $\left\{x_{1}, \ldots, x_{v}\right\}$ in some order, the set $\left\{\bar{x}_{1}^{r}, \ldots, \bar{x}_{v}^{r}\right\}$ is same as $\left\{x_{1}^{r}, \ldots, x_{v}^{r}\right\}$ in that order. Thus we have the following:

$$
\begin{aligned}
\left|\left\{s_{1}, \ldots, s_{v}\right\} \cap\left\{t_{1}, \ldots, t_{w}\right\}\right| & =\left|\left\{\bar{x}_{1}^{r}, \ldots, \bar{x}_{v}^{r}\right\} \cap\left\{y_{1}^{r}, \ldots, y_{w}^{r}\right\}\right| \\
& =\left|\left\{x_{1}^{r}, \ldots, x_{v}^{r}\right\} \cap\left\{y_{1}^{r}, \ldots, y_{w}^{r}\right\}\right| \\
& =\left|\left\{x_{1}, \ldots, x_{v}\right\} \cap\left\{y_{1}, \ldots, y_{w}\right\}\right| \\
& =|X \cap Y|
\end{aligned}
$$

PSI-CA-II

C 's private input $X=\left\{x_{1}, \ldots, x_{v}\right\}$

$$
\begin{aligned}
& \left(p k_{C}, s k_{C}\right) \leftarrow \mathcal{E} \mathcal{L} . \mathrm{KGen}(\mathrm{par}) ; \\
& \text { for } i=1, \ldots, v, \\
& r_{x_{i}} \leftarrow \mathbb{Z}_{q} \\
& E_{p k_{i}}\left(x_{i}\right)=\left(c_{x_{i}}=g^{r_{x_{i}}}, d_{x_{i}}=x_{i} h^{r_{x_{i}}}\right) \\
& \leftarrow \mathcal{E} \mathcal{L} . \operatorname{Enc}\left(x_{i}, p k_{C}, \operatorname{par}, r_{x_{i}}\right) ; \\
& \pi_{1}=\operatorname{PoK}\left\{\left(r_{x_{1}}, \ldots, r_{x_{v}}\right) \mid \wedge \wedge_{i=1}^{v}\left(c_{x_{i}}=g^{r_{x_{i}}}\right)\right\} \\
& R_{1}=\left\langle\left\{E_{p k_{C}}\left(x_{1}\right), \ldots, E_{p k_{C}}\left(x_{v}\right)\right\}, p k_{C}, \pi_{1}\right\rangle
\end{aligned}
$$

verifies the non-interactive proof π_{2}
sets card $=0$;

```
for \(i=1, \ldots, v\),
    \(s_{i}=\left(\bar{x}_{i}\right)^{r} \leftarrow \mathcal{E} \mathcal{L} . \operatorname{Dec}\left(\left(E_{p k_{C}}\left(\bar{x}_{i}\right)\right)^{r}, s k_{C}\right)\),
    if \(\mathrm{BF}_{\widehat{Y}}\left[h_{j}\left(s_{i}\right)\right]=1 \forall j=0, \ldots, k-1\)
    then card \(=\) card +1 ;
outputs card as \(|X \cap Y|\)
```

Common input: $\quad S$'s private input $Y=\left\{y_{1}, \ldots, y_{w}\right\}$

$$
\mathrm{par}=(p, q, g)
$$

verifies the non-interactive proof π_{1}
$r \longleftarrow \mathbb{Z}_{q} ;$
$\widehat{Y}=\left\{t_{1}=\left(y_{1}\right)^{r}, \ldots, t_{w}=\left(y_{w}\right)^{r}\right\} ;$
for $i=1, \ldots, v$,
$\left(E_{p k_{C}}\left(x_{i}\right)\right)^{r}=\left(\hat{c}_{x_{i}}=\left(c_{x_{i}}\right)^{r}, \hat{d}_{x_{i}}=\left(d_{x_{i}}\right)^{r}\right.$ $\operatorname{Perm}\left\{\left(E_{p k_{C}}\left(x_{1}\right)\right)^{r}, \ldots,\left(E_{p k_{C}}\left(x_{v}\right)\right)^{r}\right\}$
$=\left\{\left(E_{p k_{C}}\left(\bar{x}_{1}\right)\right)^{r}, \ldots,\left(E_{p k_{C}}\left(\bar{x}_{v}\right)\right)^{r}\right\}=\bar{X}$;
constructs $\mathrm{BF}_{\widehat{Y}}$;
$\pi_{2}=\operatorname{PoK}\left\{(r) \mid\left(\Pi_{i=1}^{v} \hat{c}_{\bar{x}_{i}}=\left(\Pi_{i=1}^{v} c_{x_{i}}\right)^{r}\right)\right.$

$$
\left.\wedge\left(\Pi_{i=1}^{v} \hat{d}_{\bar{x}_{i}}=\left(\Pi_{i=1}^{v} d_{x_{i}}\right)^{r}\right)\right\}
$$

$$
R_{2}=\left\langle\mathrm{BF}_{\widehat{Y}}, \bar{X}, \pi_{2}\right\rangle .
$$

Security

The security definition is based on a comparison between the ideal model and real model.

Security Requirements

- Privacy: Each party should learn whatever prescribed in the protocol, not more than that.
- Correctness: At the end of interaction, each party should receive correct output.

Theorems

Theorem

If the encryption scheme $\mathcal{E} \mathcal{L}$ is semantically secure, the associated proof protocols are zero knowledge proof and the associated permutation is random, then our PSI-CA-I is a secure computation protocol for the functionality $\mathcal{F}_{\text {card }}:(X, Y) \rightarrow(|X \cap Y|, \perp)$ against malicious adversaries in standard model.

Theorems contd...

Theorem

If the encryption scheme $\mathcal{E} \mathcal{L}$ is semantically secure, the associated proof protocols are zero knowledge proof and the associated permutation is random, then our PSI-CA-II is a secure computation protocol for the functionality $\mathcal{F}_{\text {card }}:(X, Y) \rightarrow(|X \cap Y|, \perp)$ against malicious adversaries in ROM except with negligible probability $\frac{1}{2^{k}}$.

Efficiency

Table: : Comparison of PSI-CA protocols

Protocol	Security model	Adv. model	Security assumption	Comm.	Comp.	Based on
$[1]$	Std	Mal	HE	$O\left(t^{2} v\right)$	$O\left(v^{2}\right)$	OPE
$[2]$	Std	SH	SD and SC	$O(w+v)$	$O(w \log \log v)$	OPE
Sch. 1 of [3]	ROM	SH	DDH and GOMDH	$O(w+v)$	$O(w+v)$	
Sch. 2 of [3]	ROM	MS, SHC	GOMDH	$O(w+v)$	$O(w+v)$	
PSI-CA-I	Std	Mal	DDH	$O(w+v)$	$O(w+v)$	
PSI-CA-II	ROM	Mal	DDH	$O(w+v)$	$O(w+v)$	BF

[1] L. Kissner and D. Song. Privacy-preserving set operations. In Advances in Cryptology 2005.
[2] S. Hohenberger and S. A. Weis, In Privacy Enhancing Technologies 2006.
[3] E. De Cristofaro, P. Gasti, and G. Tsudik, In Cryptology and Network Security 2012.

Conclusion

- This paper consists of two flavors of PSI-CA, one is secure in standard model and the other one is secure in ROM. Both are secure against malicious parties with linear computation complexity under DDH assumption.
- In contrast to PSI-CA-I, PSI-CA-II requires at most $5 v+4$ group elements instead of $6 v+w+4$.
- Our PSI-CA constructions are the first to achieve linear complexity in the presence of malicious adversaries.
- Furthermore, each of our PSI-CA construction can be converted to efficient PSI protocol by removing the associated permutation.

Kumar Debnath and Ratna Dutta

For any query mail at sd.iitkgp@gmail.com

