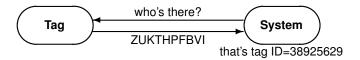
On Privacy for RFID

Serge Vaudenay


http://lasec.epfl.ch/

LASEC

- 2 The OV12 Extension
- 3 The HPVP11 Model
- 4 Strong Privacy in Distance Bounding

Our Problem

- one system (may include several readers), many tags
- tags: passive (no battery), limited capabilities, not tamper-proof
- primary concern (industry driven): security if System identifies tag ID, it must be tag ID
- secondary concern (user driven): privacy tags could only be identified/traced/linked by System
- problem: formal model

Evolution of Privacy Models

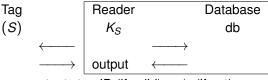
- early models: distinguish between two honest tags
- OSK03: allow corruption at the end of the attack (forward privacy)
- ADO06: earlier corruption considered
- JW06: result channel considered
- V07: complete simulation-based definition + impossibility result
- NSMS08: "wise adversary"
- HPVP11 model: complete left-or-right game
- OV12 extension: the simulator can read the adversary's thoughts

possible extensions: mutual authentication, with distance bounding, ...

- 2 The OV12 Extension
- 3 The HPVP11 Model
- Strong Privacy in Distance Bounding

Reference

On Privacy Models for RFID


Serge Vaudenay Asiacrypt 2007

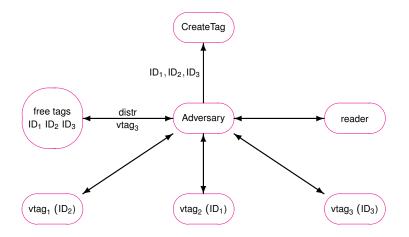
- security and privacy models for single-system RFID
- feasibility and infeasibility results

RFID Scheme

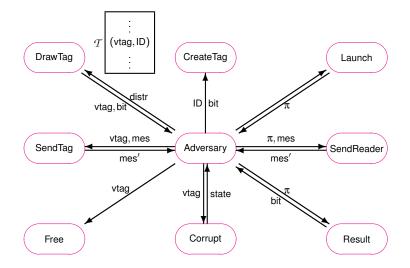
Components:

- System = (stateless) Reader securely connected (stateful) Database
- SetupReader → (K_S, K_P): generate keys (K_S, K_P), store in Reader, and empty database
- SetupTag_{KP}(ID) → (data, S):
 S is an initial state for tag ID (ID, data) is to be inserted in database
- Protocols:

output: tag ID (if valid) or \perp (if not)


Functionality:

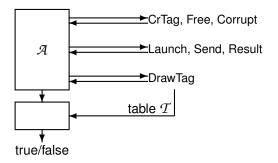
• correctness: identification under normal execution


SV 2015

privacy in rfid

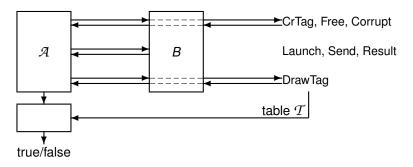
Adversarial Model

Oracle Accesses


Security

Wining condition: one reader-protocol instance π identified ID, tag ID was not corrupted and did not have any matching conversation (i.e. same transcript and well interleaved messages).

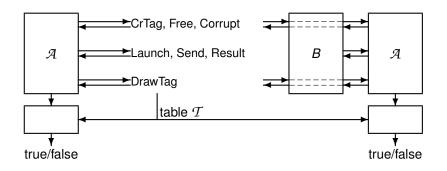
Definition


An RFID scheme is secure if for any polynomially bounded adversary the probability of success is negligible.

Privacy Adversary

- Wining condition: the adversary outputs true
- **Problem:** there are trivial wining adversaries (e.g. an adversary who always answers true)

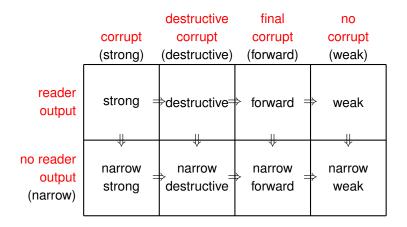
Blinders



Definition

A blinder is an interface between the adversary and the oracles that

- passively looks at communications to CreateTag, DrawTag, Free, and Corrupt queries
- simulates the oracles Launch, SendReader, SendTag, and Result


Privacy


Definition

An RFID scheme protects privacy if for any polynomially bounded \mathcal{A} there exists a polynomially bounded blinder *B* such that $\Pr[\mathcal{A} \text{ wins}] - \Pr[\mathcal{A}^B \text{ wins}]$ is negligible.

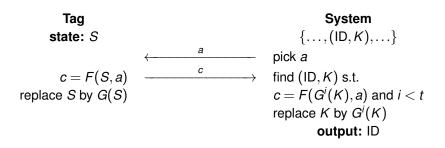
Privacy Models

Challenge-Response RFID Scheme

Theorem

Assuming that F is a pseudorandom function, this RFID scheme is

- correct
- secure
- weak V07-private


no forward privacy: trace tag by corrupting it in the future

∜

Caveat: Not Even Narrow-Forward Private

1: CreateTag(0), CreateTag(1) create two tags, draw 2: vtag \leftarrow DrawTag(0 or 1) one at random, and run 3: $(a, b, c) \leftarrow \text{Execute}(\text{vtag})$ the protocol to get a, b, c 4: Free(vtag) 5: $vtag_0 \leftarrow DrawTag(0)$ corrupt tag 0 to get K 6: $K \leftarrow \text{Corrupt}(\text{vtag}_0)$ 7: if $F_{\kappa}(a,b) = c$ then 8: $x \leftarrow 0$ 9: else test if $F_{\mathcal{K}}(a,b) = c$ 10: $x \leftarrow 1$ 11: end if 12: output $\mathbf{1}_{T(\text{vtag})=x}$ We have $\Pr[\mathcal{A} \text{ wins}] \approx 1$. For any blinder $B, \Pr[\mathcal{A}^B \text{ wins}] = \frac{1}{2}$. Therefore $\Pr[\mathcal{A} \text{ wins}] - \Pr[\mathcal{A}^B \text{ wins}] \approx \frac{1}{2}$.

Modified OSK

Theorem

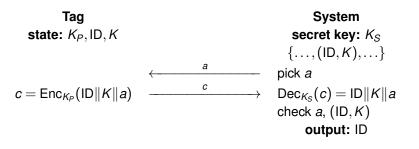
Assuming that F and G are random oracles, this RFID scheme is

- correct
- secure

 $\downarrow \boxed{ }$

• narrow-destructive V07-private

no privacy with a side channel: DoS [JW 2006]


SV 2015

privacy in rfid

Caveat: Not Even Weak Private

(Juels-Weis [JW 2006] attack): 1: CreateTag(0), CreateTag(1)	
2: $vtag_0 \leftarrow DrawTag(0)$	
3: for <i>i</i> = 1 to <i>t</i> + 1 do	
4: pick a random x	play $t + 1$ times with
5: SendTag(vtag ₀ , x)	tag 0 to desynchronize
6: end for	с ,
7: Free(vtag ₀)	
8: vtag \leftarrow DrawTag(0 or 1)	
9: $\pi \leftarrow Execute(vtag)$	draw a tag at ran-
10: $x \leftarrow \text{Result}(\pi)$	dom, execute, and
11: output $1_{\mathcal{T}(\text{vtag})=x}$	see if it is accepted
We have $\Pr[\mathcal{A} \text{ wins}] \approx 1$. For any blinder B , $\Pr[\mathcal{A}^B \text{ wins}] = \frac{1}{2}$.	
Therefore $\Pr[\mathcal{A} \text{ wins}] - \Pr[\mathcal{A}^B \text{ wins}] \approx \frac{1}{2}$.	

Public-Key-Based RFID Scheme

Theorem

Assuming that Enc/Dec is an IND-CCA public-key cryptosystem, this RFID scheme is

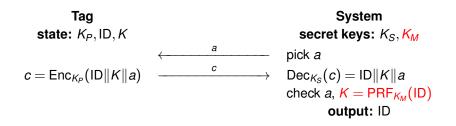
- correct
- secure
- narrow-strong and forward V07-private

Caveat: Not Destructive Private

- 1: CreateTag(0)
- 2: $vtag_0 \leftarrow DrawTag(0)$
- 3: $S_0 \leftarrow Corrupt(vtag_0)$
- 4: $(\cdot, S_1) \leftarrow \text{SetupTag}_{K_P}(1)$
- 5: flip a coin $b \in \{0, 1\}$
- 6: $\pi \leftarrow Launch$
- 7: simulate a tag of state ${\it S}_{\it b}$ with reader instance π
- 8: $x \leftarrow \mathsf{Result}(\pi)$
- 9: if x = b then
- 10: output true
- 11: else
- 12: output false
- 13: end if

check that reader guessed b

create two tags


with known keys,

one being genuine

We have $\Pr[\mathcal{A} \text{ wins}] \approx 1$.

A blinder who computes *x* translates into an IND-CPA adversary against the public-key cryptosystem, thus $\Pr[\mathcal{A}^B \text{ wins}] \approx \frac{1}{2}$ for any *B*. Therefore $\Pr[\mathcal{A} \text{ wins}] - \Pr[\mathcal{A}^B \text{ wins}] \approx \frac{1}{2}$.

Scheme with No Database

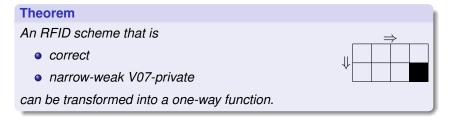
- SetupTag must now use a secret key K_M
- all the theory remains valid if SetupTag produces keys which are indistinguishable from simulated ones

Narrow-Strong Privacy Implies Public-Key Cryptography

Theorem

An RFID scheme that is

- correct
- narrow-strong V07-private


can be transformed into a secure key agreement protocol.

no narrow-strong privacy without public-key crypto!

Proof idea:

- Alice creates two legitimate tags 0 and 1, sends their states to Bob, and simulate the system for Bob
- Bob flips a bit b and simulate tag b to Alice
- Alice identifies b which is an agreed key bit

Narrow-Weak Privacy Implies One-Way Function

no privacy without any crypto!

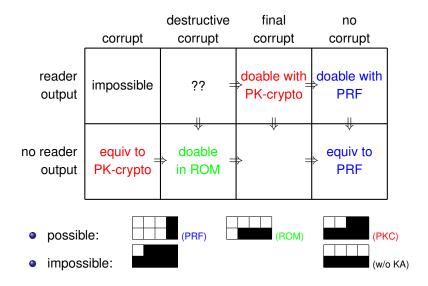
Proof idea:

the function mapping the initial states and random coins to the protocol transcript must be one-way (otherwise compute new states and identify in future sessions)

Strong Privacy is Infeasible

Theorem

An RFID scheme cannot be


- correct
- narrow-strong and destructive V07-private

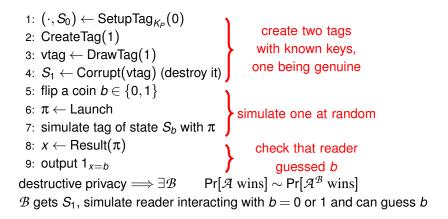
at the same time.

no strong privacy!

Privacy in RFID (V07 Model)

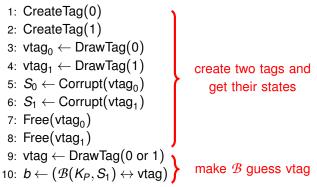
- 3 The HPVP11 Model
- Strong Privacy in Distance Bounding

Reference


Strong Privacy for RFID Systems from Plaintext-Aware Encryption

Khaled Ouafi and Serge Vaudenay CANS 2012

- new definition of a blinder
- wide-strong privacy using a PA cryptosystem


Impossibility Proof — i

take the following adversary (for destructive privacy)

Impossibility Proof — ii

take the following adversary (for narrow-strong privacy) defined from ${\mathcal B}$

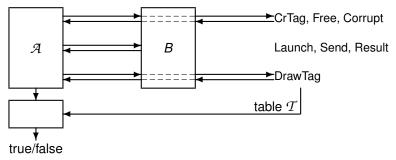
11: output $\mathbf{1}_{\mathcal{T}(vtag)=x}$

We have $\Pr[\mathcal{A} \text{ wins}] \approx 1$.

Any blinder *B'* must simulate vtag without knowing which one it is, so $\Pr[\mathcal{A}^{B'} \text{ wins}] = \frac{1}{2}$.

Therefore $\Pr[\mathcal{A} \text{ wins}] - \Pr[\mathcal{A}^{\mathcal{B}'} \text{ wins}] \approx \frac{1}{2}$.

SV 2015

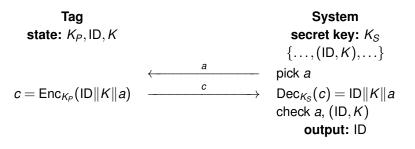

Ng-Susilo-Mu-Safavi-Naini 2008

- not strong private because the adversary asks questions for which he knows the answer but the blinder cannot guess it
- notion of "wise" adversary (cannot ask question for which he knows the answer)

we take a different approach:

we let the blinder be able to read the adversary's thoughts

New Blinders



Definition

A blinder is an interface between the adversary and the oracles that

- passively looks at communications to CreateTag, DrawTag, Free, and Corrupt queries
- simulates the oracles Launch, SendReader, SendTag, and Result
- see the adversary's random coins

Public-Key-Based RFID Scheme

Theorem

Assuming that Enc/Dec is a PA2+IND-CPA public-key cryptosystem, this RFID scheme is

- correct
- secure
- strong OV12-private

11

PA2 Trick

- PA2 means for all valid ciphertexts form the adversary, either it is reused or the adversary must know the plaintext (Bellare-Palacio 2004)
- know the plaintext

 blinder can get it be reading his thoughts
- PA2 needed because the blinder must simulate Result by decrypting ciphertexts forged by the adversary (they could be based on corrupted states)

Other Tricky Updates in OV12

- the input distribution for DrawTag is specified by a sampling algorithm Samp
- it must be *inverse-samplable*: there must exist Samp⁻¹ such that

 $(\rho, \operatorname{Samp}(\rho)) \sim (\operatorname{Samp}^{-1}(x), x)$

• the table T must be simulatable: there must exist *S* such that

$$(\mathsf{View}_{\mathcal{A}}, \mathcal{T}) \sim (\mathsf{View}_{\mathcal{A}}, \mathcal{S}(\mathsf{View}_{\mathcal{A}}))$$

IND-CCA is Insufficient?? for OV12 — i

- take (G^0, E^0, D^0) an IND-CCA cryptosystem
- take (G¹, E¹, D¹) a homomorphic IND-CPA cryptosystem over bits [GM84]

define

$$\begin{split} \text{Gen} &\to ((\mathsf{sk}_0,\mathsf{sk}_1),(\mathsf{pk}_0,\mathsf{pk}_1,z)) \quad \text{for} \quad \begin{cases} & G^0 \to (\mathsf{sk}_0,\mathsf{pk}_0) \\ & G^1 \to (\mathsf{sk}_1,\mathsf{pk}_1) \\ & \xi \in_U \{0,1\} \\ & z = E_{\mathsf{pk}_1}^1(\xi) \end{cases} \\ & \text{Enc}_{(\mathsf{pk}_0,\mathsf{pk}_1),z}(m_1 \cdots m_n) = E_{\mathsf{pk}_0}^0(E_{\mathsf{pk}_1}^1(m_1) \| \cdots \| E_{\mathsf{pk}_1}^1(m_n)) \end{split}$$

 $\mathsf{Enc}'_{(\mathsf{pk}_0,\mathsf{pk}_1),z}(m_1\cdots m_n) = E^0_{\mathsf{pk}_0}(z\cdot E^1_{\mathsf{pk}_1}(m_1)\|\cdots\|z\cdot E^1_{\mathsf{pk}_1}(m_n))$

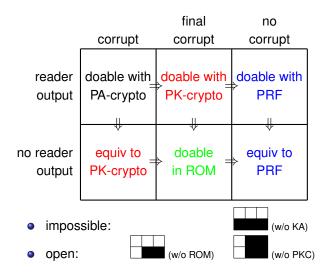
where the m_i are bits (note that ξ is only used in z)

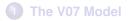
- (Gen, Enc, Dec) is an IND-CCA cryptosystem
- for $e = {\sf Enc}'_{\sf pk}(m),$ we have ${\sf Dec}_{\sf sk}(e) = m \oplus (\xi \cdots \xi)$
- not PA: knowing Dec_{sk}(e) is equivalent to breaking (G¹, E¹, D¹)

SV 2015

IND-CCA is Insufficient?? for OV12 — ii

a wide-destructive adversary:

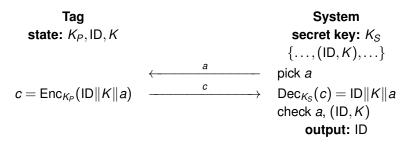

- 1: CreateTag(0)
- 2: $vtag_0 \leftarrow DrawTag(0)$
- 3: $S_0 \leftarrow Corrupt(vtag_0)$
- 4: $\pi \leftarrow Launch$
- 5: simulate tag 0 to π with Enc^{\prime}
- 6: output $\text{Result}(\pi)$


Result(π) = 1 – ξ due to (G^1, E^1, D^1) security no blinder can make the same output

But a blinder could make the result have the same distribution !?!

Privacy in RFID (OV12 Model)

Privacy with respect to adversarial capabilities:



- 2 The OV12 Extension
- 3 The HPVP11 Model
- Strong Privacy in Distance Bounding

Modifications

- all tags are genuine
- corruption is done on tag ID (not vtag)
- DrawTag has two tag ID as input (left and right)
- all DrawTag draw the left tag or all DrawTag draw the right tag
- the adversary must guess if it is all-left or all-right
- not allowed to use as input an ID which was used before without releasing the vtag

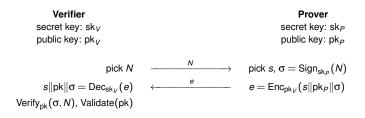
Public-Key-Based RFID Scheme

Theorem

Assuming that Enc/Dec is a IND-CCA public-key cryptosystem, this RFID scheme is

- correct
- secure
- strong HPVP11-private

╢


1 The V07 Model

- 2 The OV12 Extension
- 3 The HPVP11 Model
- 4 Strong Privacy in Distance Bounding

Identifying vs Authenticating DB

- in previous definition of DB protocols, the verifier has as input the ID of the prover symmetric: he has the secret of the prover public-key: he has the public key of the prover
- to address privacy, we must consider the identification process together with the authentication one
- so, we now assume that the verifier does not have the ID of the prover as input but rather produce it as an output
- verifier needs a key pair

privDB

symDB(s)

Out_V

private output: pk

privDB with OTDB

Verifier Prover secret key: sk_V secret key: sk_P public key: pk_V public key: pkp Ν pick N pick s, $\sigma = \text{Sign}_{sk_P}(N)$ е $s \| pk \| \sigma = \text{Dec}_{skv}(e)$ $e = \operatorname{Enc}_{\mathsf{pk}_{V}}(s \| \mathsf{pk}_{P} \| \sigma)$ Verify_{pk}(σ , N), Validate(pk) т pick $m \in \{0, 1\}^{2n}$ $a = s \oplus m$ $a = s \oplus m$ challenge phase for i = 1 to npick $c_i \in \{0, 1\}$ ci start timer; ri stop timer_i $r_i = a_{2i+c_i-1}$ verification phase Out_V check timer_i \leq 2*B*, $r_i = a_{2i+c_i-1}$ private output: pk

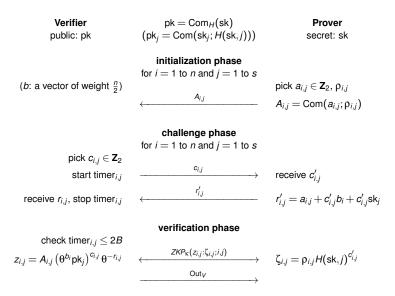
Security of privDB with OTDB

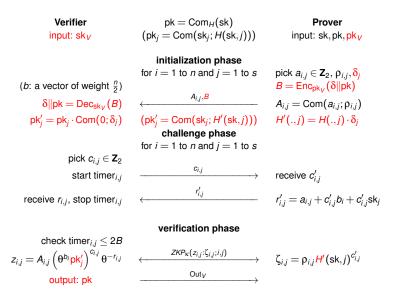
Theorem

lf

- we cannot make a key and a valid signature for two different N
- the signature is UF-CMA-secure and
- the cryptosystem is IND-CCA-secure,

then the protocol is


- DF-secure
- 2 MF-secure
- 3 DH-secure
- Wide-strong HPVP11-private


State of Affair

protocol	Secure	DF	DH	Sound	Privacy	Strong p.	Efficient
Brands-Chaum	\odot	\odot	\odot	\odot	\odot	\odot	\odot
DBPK-Log		! <u>©</u> !		! <u>©</u> !	\odot	\odot	\odot
HPO	\odot	\odot	\odot	\odot	\odot	\odot	\odot
GOR	\odot	\odot	\odot	\odot	!©!	! © !	\odot
privDB	\odot	\odot	\odot	\odot	\odot	\odot	\odot
ProProx	\odot	\odot	\odot	\odot	\odot	\odot	\odot
eProProx	\odot	\odot	\odot	\odot	\odot	\odot	\odot
Eff-pkDB	\odot	\odot	\odot	\odot	\odot	\odot	\odot
Eff-pkDB ^p	\odot	\odot	\odot	\odot	\odot	\odot	\odot

ProProx (Variant I, Noiseless)

eProProx (Variant I, Noiseless)

Privacy in eProProx

Theorem If • Com is a computationally hiding and homomorphic bit commitment, • End/Denice

- Enc/Dec *is an IND-CCA-secure cryptosystem,*
- ZKP_κ is a computationally zero-knowledge proof of membership,

then eProProx is wide-strong HPVP11-private.

Conclusion

- complete privacy models with return channel and/or corruption
- simulation-based or left-or-right definition
- wide-strong privacy is possible with PKC
- wide-weak privacy is possible with PRF
- can be added to distance bounding