Sound Proof of Proximity of Knowledge

Serge Vaudenay

http://lasec.epfl.ch/

LASEC

2 Formalism for Proofs of Proximity of Knowledge

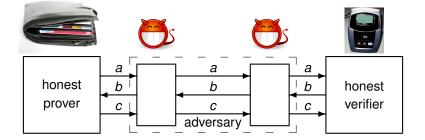
1 Relay Attacks

2 Formalism for Proofs of Proximity of Knowledge

3 ProProx

Carl And

Relay Attacks



Relay Attacks in Real

- opening cars and ignition (key with no button)
- RFID access to buildings or hotel room
- toll payment system
- NFC credit card (for payment with no PIN)
- access to public transport

• ...

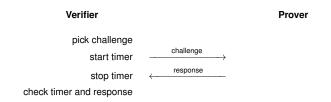
Using Round-Trip Time

 Identification Tokens, or: Solving the Chess Grandmaster Problem
 Beth-Desmedt CRYPTO 1990

Distance-Bounding Protocols

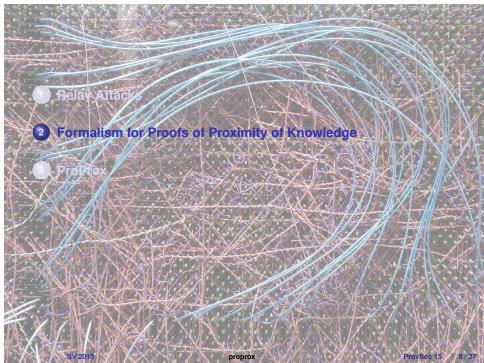
Brands-Chaum EUROCRYPT 1993

Basic Idea



Running at the speed of light: $10ns = round-trip of 2 \times 1.5m...$

- ightarrow challenge and response are single bits
- \rightarrow we iterate many rounds



DB Protocol

Definition

A distance-bounding protocol is a tuple (Kgen, P, V, B), made of:

- a PPT algorithm Kgen \mapsto (pk, sk);
- a PPT protocol (P(sk), V(pk)), where
 P is the proving algorithm,
 V is the verifying algorithm;
- a distance bound *B*.

At the end, V(pk) sends $Out_V = 1$ (accept) or $Out_V = 0$ (reject).

Completeness: if *P* and *V* are at distance < B and there is no malicious behavior, then $Pr[Out_V = 1] = 1$.

(could add variants allowing noise)

Experiments

- instances of participants with location
- messages are sent over an insecure broadcast channel and include a destinator
- a message sent at time t_{send} at loc_A is visible at loc_B at time t_{receive} ≥ t_{send} + d(loc_A, loc_B)
- honest instances run a single P or a single V
- one **distinguished** instance of *V*; instances within a distance $\leq B$ are **close-by**; others are **far-away**
- honest instances only read messages sent to them
- a honest prover has non-concurrent instances
- a **malicious** instance at loc_M could act at time t_{act} to **block** messages from loc_A to loc_B received at time $t_{receive} \ge t_{act} + d(loc_M, loc_B)$

Security (for the Honest Prover)

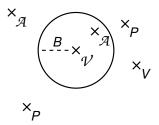
Optimal Proximity Proofs [Boureanu-Vaudenay Inscrypt 2014]

```
Definition (HP-security)
```

We say that a DB protocol is **HP-secure** if we have $Pr[\mathcal{V} \text{ accepts}] = negl \text{ for any experiment } exp(\mathcal{V})$ where

- the prover is honest,
- $\bullet\,$ the prover instances are all far-away from ${\cal V},$

captures man-in-the-middle, impersonation, relay attack, mafia fraud



DF-Resistance

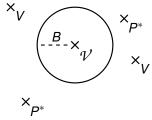
Optimal Proximity Proofs [Boureanu-Vaudenay Inscrypt 2014]

Definition

We say that a DB protocol **resists to distance fraud** if for any distinguished experiment $\exp(\mathcal{V})$ where

 $\bullet\,$ there is no participant close to $\mathcal V,$

we have $\Pr[\mathcal{V} \text{ accepts}] = \text{negl.}$



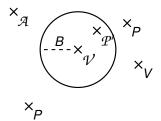
DH-Security (Distance Hijacking)

Private and Secure Public-Key Distance Bounding: Application to NFC Payment [Vaudenay FC 2015]

Definition (DH-security)

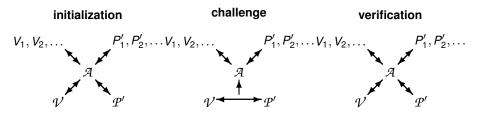
A DB protocol with initialization, challenge, and verification phases is **DH-secure** if for any $exp(\mathcal{V})$ we have $Pr[\mathcal{V} \text{ accepts } P'] = negl$ where

- there are two provers P and P' (with their own keys)
- P' is honest with a distinguished instance \mathcal{P}'
- $\mathcal V$ and $\mathcal P'$ run their challenge phase with matching conversations



DH-Security

the definition boils down to the following scenario with a regular communication model



Soundness

Definition (Soundness)

We say that a DB protocol is *p*-sound if for any distinguished experiment $\exp(\mathcal{V})$ in which $\Pr[\mathcal{V} | \operatorname{accepts}] > p$, there exists a PPT algorithm \mathcal{E} called **extractor**, with the following property. By \mathcal{E} running experiment $\exp(\mathcal{V})$ several times, in some executions denoted $\exp_i(\mathcal{V})$, we have that $\mathcal{E}(\operatorname{View}_1, \ldots) = s$ such that (pk, s) is a possible output of Kgen with expected complexity $\operatorname{poly}/(\Pr[\mathcal{V} | \operatorname{accepts}] - p)$. View_i denotes in $\exp_i(\mathcal{V})$

- the view of all close-by participants (except \mathcal{V})
- ullet the transcript seen by ${\mathcal V}$

captures terrorist fraud

State of Affair

protocol	Secure	DF	DH	Sound	Privacy	Strong p.	Efficient
Brands-Chaum	\odot	\odot	\odot	\odot	\odot	\odot	\odot
DBPK-Log		! <u>©</u> !		! <u>©</u> !	\odot	\odot	\odot
HPO	\odot	\odot	\odot	\odot	\odot	\odot	\odot
GOR	\odot	\odot	\odot	\odot	!©!	! © !	\odot
privDB	\odot	\odot	\odot	\odot	\odot	\odot	\odot
ProProx	\odot	\odot	\odot	\odot	\odot	\odot	\odot
eProProx	\odot	\odot	\odot	\odot	\odot	\odot	\odot
Eff-pkDB	\odot	\odot	\odot	\odot	\odot	\odot	\odot
Eff-pkDB ^p	\odot	\odot	\odot	\odot	\odot	\odot	\odot

Fromelin o for Proofs of Proxinity of Knowledge

R

ProProx (Variant I, Noiseless)

Verifier public: pk	$pk = Com_{H}(sk)$ $(pk_{j} = Com(sk_{j}; H(sk, j)))$	Prover secret: sk
(<i>b</i> : a vector of weight $\frac{n}{2}$)	initialization phase for $i = 1$ to n and $j = 1$ to s $\leftarrow \qquad \qquad$	pick $\pmb{a}_{i,j} \in \pmb{Z}_2, \pmb{\rho}_{i,j}$ $\pmb{A}_{i,j} = Com(\pmb{a}_{i,j}; \pmb{\rho}_{i,j})$
	challenge phase for $i = 1$ to n and $j = 1$ to s	
pick $c_{i,j} \in Z_2$ start timer _{i,j}	$\xrightarrow{c_{i,j}}$	receive $c'_{i,j}$
receive $r_{i,j}$, stop timer _{i,j}	$\longleftarrow \qquad r_{i,j}'$	$r_{i,j}' = a_{i,j} + c_{i,j}' b_i + c_{i,j}' \mathbf{s} \mathbf{k}_j$
check timer _{<i>i</i>,<i>i</i>} \leq 2 <i>B</i>	verification phase	
$z_{i,j} = A_{i,j} \left(\theta^{b_i} pk_j \right)^{c_{i,j}} \theta^{-r_{i,j}}$	$\longleftrightarrow ZKP_{\kappa}(z_{i,j};\zeta_{i,j};i,j)$	$\zeta_{i,j} = \rho_{i,j} H(sk,j)^{c'_{i,j}}$
	\longrightarrow Out _V \longrightarrow	

Security of ProProx Variant I

Theorem

If $n = \Omega(\lambda)$ and

- Com is a perfectly binding, computationally hiding, and homomorphic bit commitment,
- Com_H is one-way,
- ZKP_κ is a complete κ-sound computationally zero-knowledge proof of membership for κ = negl(λ),

then the protocol is a **sound** and **secure** PoPoK. Furthermore, the protocol is **DF-** and **DH-resistant**.

Proof Technique

- sk is uniquely defined by pk
- given a constant *w*, we construct a straightline extractor which takes the view of the experiment and returns *s* such that

$$\Pr[\operatorname{Out}_V = 1, d_H(\operatorname{sk}, s) > w] \le \left(\frac{1}{2}\right)^{(w+1)\left\lceil \frac{n}{2} \right\rceil} + \kappa$$

if ZKP is κ -sound. So, if an experiment succeeds with a higher probability, we extract a secret *w*-close to sk

- we prove the protocol is zero-knowledge
- soundness comes from the extractor (+ enumerate all w-close strings)
- for HP-security, we use the extractor then apply the ZK simulator to show that we can invert Com_H
- DF- and DH-resistance are proven directly

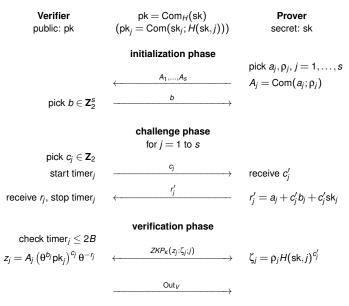
Parameters (Variant I, noiseless)

-	bound		s	п	W	p_{DF}	$p_{ m Sec}$	p_{Sound}	<i>p</i> _{DH}
-	proven		81	2	41	2 ⁻²²	2 ⁻²²	2 ⁻²²	2 ⁻²²
-	empirical		80	2		2 ⁻⁸⁰	2^{-160}	2 ⁻⁸⁰	2 ⁻¹⁶⁰
	pr	oven	bou	nds		empirical bounds			
	=	· · /						$p_{DF} =$	$\left(\frac{1}{2}\right)^{s\left\lfloor\frac{n}{2}\right\rfloor}$
		· · ·				+ negl		o _{Sec} =	(-)
<i>p</i> _{Sound}	=	$\left(\frac{1}{2}\right)$	(w+ ⁻	1)[<u>7</u>]	$+\kappa$		$p_{ m S}$	ound =	$\left(\frac{1}{2}\right)^{s\left\lfloor\frac{n}{2}\right\rfloor}$
р _{DH}	=	$\left(\frac{1}{2}\right)$	wn +	- κ				<i>р</i> _{DH} =	$\left(\frac{1}{2}\right)^{sn}$

Observation (Waste)

- we need $s \ge \lambda$ (otherwise, exhaustive search within less than 2^{λ})
- our results need $n = \Omega(\lambda)$
- \bigcirc so $\Omega(\lambda^2)$ rounds?!?
- \bigcirc when it comes concrete, n = 2 is enough
 - we need *n* even (to select a string of weight $\frac{n}{2}$)
- 🙁 so, 160 rounds for an 80-bit security...
 - let's try variants when we do not need a string of weight $\frac{n}{2}$

ProProx (Variant II, Noiseless, with n = 1**)**



Security of ProProx Variant II

Theorem

If $n = \Omega(\lambda)$ and

- Com is a perfectly binding, computationally hiding, and homomorphic bit commitment,
- Com_H is one-way,
- ZKP_κ is a complete κ-sound computationally zero-knowledge proof of membership for κ = negl(λ),

then the protocol is a **sound** and **secure** PoPoK. Furthermore, the protocol is **DF-** and **DH-resistant**.

bad news: does not work with n = 1

Exact Security with n = 1

1 use instead $s = \Omega(\lambda)$ (we have $s \ge \lambda$ anyway)

use an exact w (non-constant)

• take any *w* such that $\sum_{i=0}^{w} {s \choose i} < 2^{\lambda}$

• string extraction with
$$p_{\text{Sound}} = \left(\frac{1}{2}\right)^{w+1} + \kappa$$

•
$$w = \frac{\lambda}{\log s}$$
 is ok

polynomial vs non-polynomial -style security does not work but we can allow the extractor to run in complexity 2^λ

Parameters (Variant II, noiseless, with n = 1)

-	bound		s	n	W	p_{DF}	$p_{ m Sec}$	p_{Sound}	$p_{\rm DH}$
-	proven		81	1	41	2 ⁻²²	2 ⁻²²	2 ⁻²²	2 ⁻²²
	empirical		80	1		2^{-33}	2^{-80}	2^{-80}	2^{-80}
proven bounds								empirica	l bounds
	- =		,					<i>р</i> _{DF} =	$= \left(\frac{3}{4}\right)^s$
	c =	~ /				gl		p _{Sec} =	$= \left(\frac{1}{2}\right)^s$
<i>p</i> _{Sound}	d =	$\left(\frac{1}{2}\right)$) ^{w+1}	$+\kappa$			ļ	9 _{Sound} =	$=\left(\frac{1}{2}\right)^{s}$
<i>p</i> _D	ı =	$\left(\frac{1}{2}\right)$)"+	κ				<i>р</i> _{DH} =	$=\left(\frac{1}{2}\right)^{s}$

Conclusion

- soundness fills the gap between TF and interactive proofs
- first public-key DB protocol which is sound
- also DH-resistant
- onot really efficient
- no privacy (but stay tuned...)