From Stateful to Resettable Hardware Using Symmetric Assumptions

Nico Döttling, Daniel Kraschewski, Jörn Müller-Quade & <u>Tobias</u> <u>Nilges</u>

Aarhus University, TNG Technology Consulting GmbH, Karlsruhe Institute of Technology

General Setting

 ${\mathcal F}$ is arbitrary functionality, e.g. OT, Commitment....

Motivation

- UC-secure protocols impossible without setup-assumptions
- [Katz07] introduced tamperproof hardware as a UC setupassumption
- Stateful token: statistically UCsecure OT is possible [DKM11]

What about resettable tokens?

- Still powerful, but most statistically secure protocols impossible [GIMS10]
- Feasibility of NI-2PC for resettable functionalities shown by [DMMN13]
- Open question: relation between stateful and resettable token protocols wrt feasibility?

Our Results

- All protocols based on stateful tokens can be transformed to use resettable tokens
- General compiler for UC-secure protocols
 - Requires interaction
 - Requires computational assumptions (only OWF!) or additional setup

Basic Idea

- Shift state from token to Alice:
 - Alice authenticates inputs
 - Bob sends authenticated value to token
- Problem: Alice must not learn Bob's inputs
- Solution:
 - Alice authenticates encoding of input
 - Bob provides authentication and decoding information

Two Solutions

- Using resettably-sound zero-knowledge
 Non-black-box, but necessary [DMMN13, CKS+14]
- OT-hybrid model
 - Allows only a fixed number of messages
 - Inf.-th. transformation

Solution Based on resettably-sound ZK

Proof Idea

- Every adversary against $\Pi_{\mathcal{F}}^{res}$ can be transformed into adversary against $\Pi_{\mathcal{F}}^{sf}$
- $\Pi_{\mathcal{F}}^{sf}$ is UC-secure by assumption
- Corrupted Receiver:
 - Simulator has joint view of sender and token
 - Locally performs all checks that the token would perform
 - If checks are OK, proceed like in $\Pi_{\mathcal{F}}^{sf}$
- Corrupted Sender:
 - Simulator has to input token code of $\Pi_{\mathcal{F}}^{res}$ into stateful token
 - Simulator first constructs \hat{T} :
 - Use source code of T^{res} to create V^*
 - Use non-black-box simulator on V^* to generate fake proof
 - Upon input, fake proof and proceed with execution of T^{res}

Efficiency

- ZK proof for each token input, but
 - Typically constant round protocols...
 - Some protocols allow non-adaptive inputs
- Non-adaptive inputs: create hash-tree of queries and authenticate root
 - CRHF > OWF!
 - Use Sig-Com Trees [CPS13], based on OWF

Implications

- Apply compiler to [DKM11] to obtain most efficient UC-secure OT-protocol from OWF
 - Token sent in one direction only
 - Constant round
 - Very efficient ([DKM11] provides inf-th. security)
- In OT-hybrid model, even inf-th. protocols can be realized

Thank You!