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Broadcast Encryption (BE) [Bero1,FN93]

Allows a sender to choose a subset of a user set (called a privileged
set ) so that only a user in the privileged set can decrypt a ciphertext.
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Unconditionally Secure BESs

There are two types of BESSs:
v' Suppose that n is the number of users and w is the number of colluders.

€ (t,< w)-one-time secure BES [BC94,KYDB98,LS98,PGMO4]

€ Number of privileged users: exactly t (|S| = t). Our
@ Secret-key sizes: smaller. Target

€ (< n, < w)-one-time secure BES [Bc94, FN93]

€ Number of privileged users: no limitation (1 < |S| < n).
€ Secret-key sizes: significantly larger.

There are trade-offs between the secret-key and ciphertext sizes.

» Analysis by deriving lower bounds on sizes of secret keys.

» Analysis by proposing constructions (deriving upper bounds on the
secret-key sizes).

ﬁis Work 3




YNUE,
Trade-offs in (¢, < w)-one-time Secure BESs

€ Analysis by deriving lower bounds on sizes of secret keys where
the ciphertext sizes are ...

I. equal to the plaintext sizes [Bc94,KYDB9g]
ll. integer multiple of plaintext sizes[Bmsgs]

lll. ANy Sizes[PGmo4]
Tight!
€ Analysis by proposing constructions (deriving upper bounds)

where the ciphertext sizes are ...

> a. equal to the plaintext sizes[BsH+93]

b. integer multiple of plaintext sizesemsoe

C. Any sizes[pPgMo4]

d. ttimes larger than the plaintext sizes
(trivially constructed from one-time pads).

I:> Tight bounds for the case that the ciphertext sizes are larger
than the plaintext sizes: Open problem ! A
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Trade-offs in (< n, < w)-one-time Secure BESs

€ Analysis by deriving lower bounds on sizes of secret keys where
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1.
. —Amny Sizes
Tight!
€ Analysis by proposing constructions (deriving upper bounds)
where the ciphertext sizes are ...

» a. equal to the plaintext sizes[Fno3] Unknown...

b : . :
C. ARysizes— g\
{d. At most n times larger than the plaintext sizes}
(trivially constructed from one-time pads).

I:> Tight bounds for the case that the ciphertext sizes are larger
than the plaintext sizes: Open problem ! 5
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Trade-offs in (< n, < w)-one-time Secure BESs
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1.
. —Amny Sizes
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€ Analysis by proposing constructions (deriving upper bounds)
where the ciphertext sizes are ...

> a. equal to the plaintext sizes[FNno3] This Work !
b. integer multiple of plaintext sizes 9

C. ARysizes— \‘R\
d. At mostn times larger than the plaintext sizes
(trivially constructed from one-time pads).

I:> Tight bounds for the case that the ciphertext sizes are larger
than the plaintext sizes: Open problem ! 6
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Our Contribution

We propose a generic construction of (£ n, < w; §)-one-time secure
BESs for the case that the maximum ciphertext size is § time larger
than the plaintext size (6 € [n] == {1, 2, ...,n}).

» From & key predistribution systems (KPSs)[Blos5,mi8g]

However, for fixed n, w and §, there are many possible
combinations of the KPSs in our construction methodology.

We show which combination is the best one in the sense
that the secret-key size can be minimized.

We also succeed in improving the practicality of BESs. Our
v Letn = 100 and the plaintext size is 100MB. Result
(100MB)
w =3 16.2TB 13GB 100MB
w =4 392.6TB | - 25.8GB - 100MB
w=>5 7.5PB 38.2GB 100MB 7




YNUE®

C

Why the One-time Model?

In this work, we consider the one-time model, where ...

» Sender encrypts a plaintext and broadcasts a ciphertext only once.

Q Why are BESs considered in such a restricted model?]

@ Because it makes the analysis more simplified!

Model and security formalization often become
ﬂ complicated in a multiple-time model.

Actually, related works[rFne3,Bco4,kyDB98,PGM0O4] and the following
recent works are dealt with the one-time models.

» Oblivious polynomial evaluation[Tnp+15]
» Key distribution[saiii]

» Authentication codes[TSND09, NSS08]

We believe our result will be a basis for analyzing multiple-time BESs.
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(< n, < w)-one-time Secure BES: Model

3. Dec(dk;,c5,S,U;) >mifU; €S.

1. Setup(n) -
(ek,dk4, ..., dk;)

ﬁ Sender

Dec(dk;, cs,S,U;)) » LifU; &8.

2. Enc(ek,m,S) - cs
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(< n, < w)-one-time Secure BES: Security

» At most w colluders who are not included in § cannot get any
iInformation on the plaintext m from the ciphertext cs.

s 2
\%

At most
w colluders
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Key Predistribution System: KPS

€ Each user U; can choose arbitrary subset S c Us.t. U; € S and
generate a common key kg for $ without any interaction.

Privileged set _
S(Sscu) n Init > (ukq, ..., uky)
Number Secret keys
- of users uk : Master key
Secret key Sessvon key | Trusted (internal randomness)

Authority

=T
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(£ n,< w)-KPS: Model

1. Init(n) —
(ukq, ..., uk,)
2. Der(uk;, S) — kg ﬂ

Trusted Authority

D
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(< n, < w)-KPS: Security

» At most w colluders who are not included in § cannot get any
iInformation on the session key kg from their secret keys.

[

Re

W At most

q w colluders
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Existing Constructions of YNU
(< n, < w)-one-time Secure BESs

Only two constructions of (< n, < w)-one-time secure BESs are
known so far.

» (£n,< w;l)-one-time secure BES (i.e. § = 1) [FN93]:

» Can be constructed from (£ n, < w)-KPS.
» (< n,< w;n)-one-time secure BES (i.e. § = n):

» Can be constructed fromn (< 1, < 0)-KPSs (i.e. n one-time pads).

Our Construction:
> (£n,<w;d)-one-time secure BES for arbitrary é € {1, ...n}.

» Constructed from § (£ n', < w')-KPSs.

Remark

Our construction includes the above two constructions as special cases.
Namely, our construction can be considered as an extension of those.
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Our Construction: Basic Idea

(£ n,< w;d)-one-time secure BES I1

U
U]l =n

v Split into é disjoint sets

(S 31, < a)l)—KPS q)l (S £2; < wz)-KPS (I)Z ............... (S 35, < a)(g)—KPS q’g

w41 = min{w, ¥; — 1} w, = min{w, ¥, — 1} ws = min{w, s — 1}

15
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Simple Construction from KPSs

............... (S 35, < a)g)-KPS q’g

Sender’s key

uk@, ..., uk®
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Simple Construction from KPSs

Sender’s key

uk@, ..., uk®

Enc(ek,m,S).
c; == m @ kg,
c; = m @ ks,

i cs = m @ kg,

(S 35, < a)(g)—KPS (Dg

— At most 6

17
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Optimal Parameters for Minimal Keys

(S flr < a)l)-KPS (1)1 (S €2; < wz)-KPS (I)Z ............... (S fé‘, < Cl)(g)-KPS q)(g

w4 = min{w, ¥, — 1} w, = min{w, ¥, — 1} ws = min{w, s — 1}

There are many combination of £,45, ...,£5 S.t.n =Y . ¢;.
I:> Which combination is the best one?
(which one minimizes the secret-key size?)

We define the following set:

£(n,6) = {L = (31,32, ...,35) S ]V(S | (‘612 e 2 ‘36‘) /\Z?:1£i = n}

We clarify optimal conditions of L € L(n, §)
for minimizing secret-key sizes 18
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Optimal Parameters for Minimal Keys

Theorem. Suppose that the most efficient construction[Fng3] is applied to
the underlying (£ ¥;, < w; )-KPS @; in (£ n, < w; §)-one-time secure BES II.

Then, the secret-key sizes are given by
0 w;
=3 (5)osion.
i=1 j=0
Wi

(ii) ZIOgID.KiI - ZIOgI’U.‘KiI _ Z e,-z (’9 ]‘1) log | M|
i=1 i=1

i=1 j=0

(i) log|EXK] = z log “Uﬂ(m

L e L(n, &) minimizes the encryption-key size if it satisfies the following:
(

VL ifw =0,

<L=(n—(6—1),1,...,1) ifw=1,
1 —45=0 ifw=>=2An/é €N,

\ 1 —Ps=1 otherwise.

L € £(n,6) minimizes the decryption-key size if it satisfies the following:
VL ifw=0,
t1—45=0 ifw>1An/8 €N,
t1—4s=1 otherwise. 19
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Proof of Theorem: Basic Ildea
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Proof of Theorem: Main Lemmas

Y330+ N0+ 3 () +

We show which L € L(n, ) minimizes Z]'.‘:il (ff) (1<i<w):
l
Lemma 1 for the case k; = § and Lemma 2 for the case k; < é.

Lemma 1. For any a,j € Nand any r € [a], choose any b; € Z (1 < i Sj)\
St. by =-->=b;=r—aand}/_,b; =0.Then, it holds

. (A a+b1 a+b2 a+ b;

i) = (57 (F57) + -+ (F17),
\ [ he equality holds if and only if r = 1. )

(Lemma 2. For any a,j € Nand any r € {2, ...,a}, choose any b; € Z (1 < i < j)
St.hy=--=by=r—a>bgy; =+ =b; >—aand Z{zl b; = 0. Then, it holds

)< (5P (S50 s (4 20)

\_
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Concluding Remarks

€ We proposed generic constructions of (€ n, < w; §)-one-time
secure BESs for arbitrary é € {1, ..., n}.
® From§ (< ¢, < w;)-KPSs.
€ Natural extension of existing schemes.
€ We showed which L € L(n,§) for KPSs is the best one.

€ Secret-key size is minimized when § subsets are as equal in size
as possible (e.qg. #{ = --- ="?%5ifn/§ € N).

€ Tight bounds on the secret-key sizes required for (< n, < w; 6)-
one-time secure BESs for any é € [n] are not known.
€ Existing lower bounds: only for the case § = 1.
€ Existing upper bounds: only for the case § = 1 and § = n.
€ Our results also showed upper bounds for any & € [n].

I:> Next challenge task: deriving lower bounds for any & € [n]. >




