Constructions of

Unconditionally Secure Broadcast Encryption from Key Predistribusion Systems with Trade-offs between Communication and Storage

Yohei Watanabe and Junji Shikata Yokohama National University, Japan

Broadcast Encryption (BE) [Ber91,FN93]

Allows a sender to choose a subset of a user set (called a privileged set) so that only a user in the privileged set can decrypt a ciphertext.

Unconditionally Secure BESs

There are two types of BESs:
\checkmark Suppose that \boldsymbol{n} is the number of users and ω is the number of colluders.

- $\boldsymbol{t} \boldsymbol{t}, \leq \boldsymbol{\omega})$-one-time secure BES [BC94,Kydb98,LS98,PGM04]
- Number of privileged users: exactly $t(|S|=t)$.
\rightarrow Secret-key sizes: smaller.

Our Target

- ($\leq \boldsymbol{n}, \leq \boldsymbol{\omega}$)-one-time secure BES [BC94, FN93]
- Number of privileged users: no limitation ($1 \leq|S| \leq n$).
- Secret-key sizes: significantly larger.

There are trade-offs between the secret-key and ciphertext sizes.
$>$ Analysis by deriving lower bounds on sizes of secret keys.
$>$ Analysis by proposing constructions (deriving upper bounds on the secret-key sizes).

This Work

Trade-offs in $(t, \leq \omega)$-one-time Secure BESs

- Analysis by deriving lower bounds on sizes of secret keys where the ciphertext sizes are ...
\longrightarrow i. equal to the plaintext sizes [BC94,KYDB98]
ii. integer multiple of plaintext sizes[BMS96]
iii. Any sizes[PGM04]

Tight!

- Analysis by proposing constructions (deriving upper bounds) where the ciphertext sizes are ...
a. equal to the plaintext sizes[BSH+93]
b. integer multiple of plaintext sizes[BмS96]
c. Any sizes[PGM04]
$\binom{$ d. times larger than the plaintext sizes }{ (trivially constructed from one-time pads). }
Tight bounds for the case that the ciphertext sizes are larger than the plaintext sizes: Open problem!

Trade-offs in $(\leq n, \leq \omega)$-one-time Secure BESs

- Analysis by deriving lower bounds on sizes of secret keys where the ciphertext sizes are ...
\longrightarrow i. equal to the plaintext sizes [BC94]
ii. integer mattiple of plaintext sizes
iii. Anlysizes

Tight!

- Analysis by proposing constructions (deriving upper bounds) where the ciphertext sizes are ...
\rightarrow a. equal to the plaintext sizes[FN93]
Unknown...
b. integer multiple of plaintext sizes
c. Any sizesUnknown...

(d. At most n times larger than the plaintext sizes) (trivially constructed from one-time pads).

Tight bounds for the case that the ciphertext sizes are larger than the plaintext sizes: Open problem!

Trade-offs in $(\leq n, \leq \omega)$-one-time Secure BESs

- Analysis by deriving lower bounds on sizes of secret keys where the ciphertext sizes are ...
\longrightarrow i. equal to the plaintext sizes [BC94]
ii. integer mattiple of plaintext sizes
iii. Anlysizes

Tight!

- Analysis by proposing constructions (deriving upper bounds) where the ciphertext sizes are ...
\rightarrow a. equal to the plaintext sizes[FN93]
b. integer multiple of plaintext sizes
c. Any-sizes-

T,his Work!
d. At most n times larger than the plaintext sizes (trivially constructed from one-time pads).

Tight bounds for the case that the ciphertext sizes are larger than the plaintext sizes: Open problem!

Our Contribution

We propose a generic construction of ($\leq n, \leq \omega ; \delta$)-one-time secure BESs for the case that the maximum ciphertext size is δ time larger than the plaintext size $(\delta \in[n]:=\{1,2, \ldots, n\})$.
$>$ From δ key predistribution systems (KPSs)[Blo85,M188]
However, for fixed n, ω and δ, there are many possible combinations of the KPSs in our construction methodology.

We show which combination is the best one in the sense that the secret-key size can be minimized.

We also succeed in improving the practicality of BESs. \checkmark Let $n=100$ and the plaintext size is 100 MB .

Ciphertext size	$\delta=1$ $(100 \mathrm{MB})$	\cdots	$\delta=10$ $(1 \mathrm{~GB})$	\cdots	$\delta=100$ $(10 \mathrm{~GB})$
$\omega=3$	16.2 TB	\cdots	13 GB	\cdots	100 MB
$\omega=4$	392.6 TB	\cdots	25.8 GB	\cdots	100 MB
$\omega=5$	7.5 PB	\cdots	38.2 GB	\cdots	100 MB

Why the One-time Model?

In this work, we consider the one-time model, where ...
$>$ Sender encrypts a plaintext and broadcasts a ciphertext only once.

Why are BESs considered in such a restricted model?

Because it makes the analysis more simplified! Model and security formalization often become complicated in a multiple-time model.

Actually, related works[FN93,BC94,KYDB98,PGM04] and the following recent works are dealt with the one-time models.
> Oblivious polynomial evaluation[TND+15]
$>$ Key distribution[SJ11]
$>$ Authentication codes[TSND09, NSS08]
We believe our result will be a basis for analyzing multiple-time BESs.

($\leq n, \leq \omega$)-one-time Secure BES: Model

1. Setup $(n) \rightarrow$
$\left(e k, d k_{1}, \ldots, d k_{n}\right)$

$\operatorname{Dec}\left(d k_{i}, c_{S}, S, U_{i}\right) \rightarrow \perp$ if $U_{i} \notin S$.

($\leq n, \leq \omega$)-one-time Secure BES: Security

$>$ At most ω colluders who are not included in S cannot get any information on the plaintext \boldsymbol{m} from the ciphertext c_{s}.

Key Predistribution System: KPS

- Each user U_{i} can choose arbitrary subset $S \subset \mathcal{U}$ s. t. $U_{i} \in S$ and generate a common key $\boldsymbol{k}_{\boldsymbol{S}}$ for S without any interaction.

$(\leq n, \leq \omega)-$ KPS: Model

$(\leq n, \leq \omega)$-KPS: Security

$>$ At most ω colluders who are not included in S cannot get any information on the session key $\boldsymbol{k}_{\boldsymbol{S}}$ from their secret keys.

Existing Constructions of ($\leq n, \leq \omega$)-one-time Secure BESs

Only two constructions of $(\leq n, \leq \omega)$-one-time secure BESs are known so far.
$>(\leq n, \leq \omega ; 1)$-onetime secure BES (ie. $\boldsymbol{\delta}=1$) [FN93]:
$>$ Can be constructed from $(\leq n, \leq \omega)$-KPS.
$>(\leq n, \leq \omega ; n)$-one-time secure BES (ie. $\boldsymbol{\delta}=\boldsymbol{n}$):
$>$ Can be constructed from $n(\leq 1, \leq 0)$-KPSs (ie. n one-time pads).

Our Construction:

$>(\leq n, \leq \omega ; \delta)$-onetime secure BES for arbitrary $\boldsymbol{\delta} \in\{\mathbf{1}, \ldots \boldsymbol{n}\}$.
$>$ Constructed from $\delta\left(\leq n^{\prime}, \leq \omega^{\prime}\right)$-KPSs.

Remark

Our construction includes the above two constructions as special cases. Namely, our construction can be considered as an extension of those.

Our Construction: Basic Idea

($\leq n, \leq \omega$; δ)-one-time secure BES Π

Split into δ disjoint sets

Simple Construction from KPSs

$\left(\leq \ell_{1}, \leq \omega_{1}\right)-\mathrm{KPS} \boldsymbol{\Phi}_{\mathbf{1}}\left(\leq \ell_{2}, \leq \omega_{2}\right)-\mathrm{KPS} \boldsymbol{\Phi}_{2}$

$\left(\leq \ell_{\delta}, \leq \omega_{\delta}\right)-\mathrm{KPS} \boldsymbol{\Phi}_{\boldsymbol{\delta}}$

Simple Construction from KPSs

$\left(\leq \ell_{1}, \leq \omega_{1}\right)-$ KPS $\boldsymbol{\Phi}_{\mathbf{1}}\left(\leq \ell_{2}, \leq \omega_{2}\right)-$ KPS $\boldsymbol{\Phi}_{2}$
$\left(\leq \ell_{\delta}, \leq \omega_{\delta}\right)-\mathrm{KPS} \boldsymbol{\Phi}_{\boldsymbol{\delta}}$

Optimal Parameters for Minimal Keys

There are many combination of $\ell_{1}, \ell_{2}, \ldots, \ell_{\delta}$ s.t. $n=\sum_{i=1}^{\delta} \ell_{i}$.
\square Which combination is the best one?
(which one minimizes the secret-key size?)
We define the following set:

$$
\mathcal{L}(n, \delta):=\left\{L:=\left(\ell_{1}, \ell_{2}, \ldots, \ell_{\delta}\right) \in N^{\delta} \mid\left(\ell_{1} \geq \cdots \geq \ell_{\delta}\right) \wedge \sum_{i=1}^{\delta} \ell_{i}=n\right\} .
$$

We clarify optimal conditions of $L \in \mathcal{L}(n, \delta)$ for minimizing secret-key sizes

Optimal Parameters for Minimal Keys

Theorem. Suppose that the most efficient construction[FN93] is applied to the underlying ($\leq \ell_{i}, \leq \omega_{i}$)-KPS Φ_{i} in ($\leq n, \leq \omega ; \delta$)-one-time secure BES Π. Then, the secret-key sizes are given by

$$
\begin{gathered}
\text { (i) } \log |\mathcal{E X}|:=\sum_{i=1}^{\delta} \log \left|\mathcal{U} \mathcal{K}^{(i)}\right|=\sum_{i=1}^{\delta} \sum_{j=0}^{\omega_{i}}\binom{\ell_{i}}{j} \log |\mathcal{M}|, \\
\text { (ii) } \sum_{i=1}^{n} \log \left|\mathcal{D} \mathcal{K}_{i}\right|:=\sum_{i=1}^{n} \log \left|\mathcal{U} \mathcal{K}_{i}\right|=\sum_{i=1}^{\delta}\left(\ell_{i} \sum_{j=0}^{\omega_{i}}\binom{\ell_{i}-\mathbf{1}}{j}\right) \log |\mathcal{M}| .
\end{gathered}
$$

$L \in \mathcal{L}(n, \delta)$ minimizes the encryption-key size if it satisfies the following:

$$
\left\{\begin{array}{cc}
\forall L & \text { if } \omega=0, \\
L=(n-(\delta-1), 1, \ldots, 1) & \text { if } \omega=1, \\
\ell_{1}-\ell_{\delta}=0 & \text { if } \omega \geq 2 \wedge n / \delta \in \mathbf{N}, \\
\ell_{1}-\ell_{\delta}=1 & \text { otherwise. }
\end{array}\right.
$$

$L \in \mathcal{L}(n, \delta)$ minimizes the decryption-key size if it satisfies the following:

$$
\left\{\begin{array}{cc}
\forall L & \text { if } \omega=0, \\
\ell_{1}-\ell_{\delta}=0 & \text { if } \omega \geq 1 \wedge n / \delta \in \mathbf{N}, \\
\ell_{1}-\ell_{\delta}=1 & \text { otherwise }
\end{array}\right.
$$

Proof of Theorem: Basic Idea

$$
\sum_{i=1}^{\delta} \sum_{j=0}^{\omega_{i}}\binom{\ell_{i}}{j}=\sum_{j=1}^{\omega_{1}}\binom{\ell_{1}}{j}+\sum_{j=1}^{\omega_{2}}\binom{\ell_{2}}{j}+\sum_{j=1}^{\omega_{3}}\binom{\ell_{3}}{j}+\cdots+\sum_{j=1}^{\omega_{\delta}}\binom{\ell_{\delta}}{j}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{\delta}\binom{\ell_{j}}{0}+\sum_{j=1}^{k_{1}}\binom{\ell_{j}}{1}+\cdots+\sum_{j=1}^{k_{\omega-1}}\binom{\ell_{j}}{\omega-1}+\sum_{j=1}^{k_{\omega}}\binom{\ell_{j}}{\omega}
\end{aligned}
$$

Proof of Theorem: Main Lemmas

$$
\sum_{i=1}^{\delta} \sum_{j=0}^{\omega_{i}}\binom{\ell_{i}}{j}=\sum_{j=1}^{\delta}\binom{\ell_{j}}{0}+\sum_{j=1}^{k_{1}}\binom{\ell_{j}}{1}+\cdots+\sum_{j=1}^{k_{\omega}-1}\binom{\ell_{j}}{\omega-1}+\sum_{j=1}^{k_{\omega}}\binom{\ell_{j}}{\omega}
$$

We show which $L \in \mathcal{L}(n, \boldsymbol{\delta})$ minimizes $\sum_{j=1}^{k_{i}}\binom{\ell_{j}}{i}(1 \leq i \leq \omega)$: Lemma 1 for the case $\boldsymbol{k}_{i}=\boldsymbol{\delta}$ and Lemma 2 for the case $\boldsymbol{k}_{\boldsymbol{i}}<\boldsymbol{\delta}$.

Lemma 1. For any $a, j \in \mathbf{N}$ and any $r \in[a]$, choose any $b_{i} \in \mathbf{Z}(1 \leq i \leq j)$ s.t. $b_{1} \geq \cdots \geq b_{j} \geq r-a$ and $\sum_{i=1}^{j} b_{i}=0$. Then, it holds

$$
j\binom{a}{r} \leq\binom{ a+b_{1}}{r}+\binom{a+b_{2}}{r}+\cdots+\binom{a+b_{j}}{r}
$$

The equality holds if and only if $r=1$.
Lemma 2. For any $a, j \in \mathbf{N}$ and any $r \in\{2, \ldots, a\}$, choose any $b_{i} \in \mathbf{Z}(1 \leq i \leq j)$ s.t. $b_{1} \geq \cdots \geq b_{k} \geq r-a>b_{k+1} \geq \cdots \geq b_{j}>-a$ and $\sum_{i=1}^{j} b_{i}=0$. Then, it holds

$$
j\binom{a}{r}<\binom{a+b_{1}}{r}+\binom{a+b_{2}}{r}+\cdots+\binom{a+b_{k}}{r} .
$$

Concluding Remarks

- We proposed generic constructions of $(\leq n, \leq \omega ; \delta)$-one-time secure BESs for arbitrary $\delta \in\{1, \ldots, n\}$.
\rightarrow From $\delta\left(\leq \ell_{i}, \leq \omega_{i}\right)$-KPSs.
- Natural extension of existing schemes.
\bullet We showed which $L \in \mathcal{L}(n, \delta)$ for KPSs is the best one.
- Secret-key size is minimized when δ subsets are as equal in size as possible (e.g. $\ell_{1}=\cdots=\ell_{\delta}$ if $\mathrm{n} / \delta \in \mathbf{N}$).
- Tight bounds on the secret-key sizes required for ($\leq \boldsymbol{n}, \leq \boldsymbol{\omega} ; \boldsymbol{\delta}$)-one-time secure BESs for any $\delta \in[n]$ are not known.
- Existing lower bounds: only for the case $\delta=1$.
- Existing upper bounds: only for the case $\delta=1$ and $\delta=n$.
\bullet Our results also showed upper bounds for any $\delta \in[n]$.
Next challenge task: deriving lower bounds for any $\delta \in[n]$.

