

Constructions of Unconditionally Secure Broadcast Encryption from Key Predistribusion Systems with Trade-offs between Communication and Storage

<u>Yohei Watanabe</u> and Junji Shikata

Yokohama National University, Japan

 $f(x) = g^{-}modp$

SC

 $f_{x} = x^{\circ} + ax + b$

Broadcast Encryption (BE) [Ber91, FN93]

Allows a sender to choose a subset of a user set (called a *privileged* set) so that only a user in the privileged set can decrypt a ciphertext.

Unconditionally Secure BESs

There are two types of BESs:

✓ Suppose that *n* is the number of users and ω is the number of colluders.

- $(t, \leq \omega)$ -one-time secure BES [BC94,KYDB98,LS98,PGM04]
 - Number of privileged users: exactly t (|S| = t).
 - Secret-key sizes: smaller.

- $(\leq n, \leq \omega)$ -one-time secure BES [BC94, FN93]
 - Number of privileged users: no limitation $(1 \le |S| \le n)$.
 - Secret-key sizes: *significantly* larger.

There are trade-offs between the secret-key and ciphertext sizes.

- Analysis by deriving lower bounds on sizes of secret keys.
- Analysis by proposing constructions (deriving upper bounds on the secret-key sizes).

Trade-offs in $(t, \le \omega)$ **-one-time Secure BESs**

- Analysis by deriving lower bounds on sizes of secret keys where the ciphertext sizes are ...
 - *i. equal* to the plaintext sizes [BC94,KYDB98]
 - *ii. integer multiple* of plaintext sizes[BMS96]
 - iii. Any sizes[PGM04]
- Tight!
 - Analysis by proposing constructions (deriving upper bounds) where the ciphertext sizes are …
 - a. equal to the plaintext sizes[BSH+93]
 - b. integer multiple of plaintext sizes[BMS96]
 - c. Any sizes[PGM04]
 - d. *t* times larger than the plaintext sizes (trivially constructed from one-time pads).
 - Tight bounds for the case that the ciphertext sizes are larger than the plaintext sizes: Open problem !

Trade-offs in $(\leq n, \leq \omega)$ **-one-time Secure BESs**

- Analysis by deriving lower bounds on sizes of secret keys where the ciphertext sizes are ...
 - i. equal to the plaintext sizes [BC94]
 - ii. integer multiple of plaintext sizes
 - iii. Any sizes

Unknown...

- Tight! ◆ Analysis by proposing constructions (deriving upper bounds) where the ciphertext sizes are ...
 - a. equal to the plaintext sizes[FN93]
 - b. integer multiple of plaintext sizes
 - c. Any sizes

- Unknown...
- d. At most *n* times larger than the plaintext sizes (trivially constructed from one-time pads).
- Tight bounds for the case that the ciphertext sizes are larger than the plaintext sizes: Open problem !

Trade-offs in $(\leq n, \leq \omega)$ **-one-time Secure BESs**

- Analysis by deriving lower bounds on sizes of secret keys where the ciphertext sizes are …
 - *i.* equal to the plaintext sizes [BC94]
 - ii. integer multiple of plaintext sizes
 - iii. Any sizes

Unknown...

This Work !

- Tight! ◆ Analysis by proposing constructions (deriving upper bounds) where the ciphertext sizes are ...
 - a. equal to the plaintext sizes[FN93]
 - b. integer multiple of plaintext sizes
 - c. Any sizes
 - d. At most *n* times larger than the plaintext sizes (trivially constructed from one-time pads).
 - Tight bounds for the case that the ciphertext sizes are larger than the plaintext sizes: **Open problem** !

Our Contribution

We propose a generic construction of $(\leq n, \leq \omega; \delta)$ -one-time secure BESs for the case that the maximum ciphertext size is δ time larger than the plaintext size ($\delta \in [n] \coloneqq \{1, 2, ..., n\}$).

From δ key predistribution systems (KPSs)[BI085,MI88]

However, for fixed n, ω and δ , there are many possible combinations of the KPSs in our construction methodology.

We show which combination is the best one in the sense that the secret-key size can be minimized.

Our We also succeed in improving the practicality of BESs. Result \checkmark Let n = 100 and the plaintext size is 100MB. **Ciphertext size** $\delta = 1$ $\delta = 10$ $\delta = 100$. . . (100MB)(1**G**B) (10GB) $\omega = 3$ 16.2TB 13**GB** 100MB • • • ... 25.8GB 392.6TB 100MB $\omega = 4$ 7.5PB 38.2GB 100MB $\omega = 5$. . . • • •

Why the One-time Model?

In this work, we consider the one-time model, where ...

Sender encrypts a plaintext and broadcasts a ciphertext only once.

Actually, related works[FN93,BC94,KYDB98,PGM04] and the following recent works are dealt with the one-time models.

- Oblivious polynomial evaluation[TND+15]
- Key distribution[SJ11]
- Authentication codes[TSND09, NSS08]

We believe our result will be a basis for analyzing multiple-time BESs.

$(\leq n, \leq \omega)$ -one-time Secure BES: Model

$(\leq n, \leq \omega)$ -one-time Secure BES: Security

> At most ω colluders who are not included in *S* cannot get any information on the plaintext *m* from the ciphertext c_s .

Key Predistribution System: KPS

• Each user U_i can choose arbitrary subset $S \subset U$ s. t. $U_i \in S$ and generate a common key k_S for S without any interaction.

$(\leq n, \leq \omega)$ -KPS: Model

$(\leq n, \leq \omega)$ -KPS: Security

> At most ω colluders who are not included in *S* cannot get any information on the session key k_S from their secret keys.

Existing Constructions of $(\leq n, \leq \omega)$ -one-time Secure BESs

Only two constructions of $(\leq n, \leq \omega)$ -one-time secure BESs are known so far.

- (≤ n, ≤ ω; 1)-one-time secure BES (i.e. δ = 1) [FN93]:
 - > Can be constructed from $(\leq n, \leq \omega)$ -KPS.
- (≤ n, ≤ ω; n)-one-time secure BES (i.e. δ = n):
 - > Can be constructed from $n (\leq 1, \leq 0)$ -KPSs (i.e. n one-time pads).

Our Construction:

- \succ (≤ *n*, ≤ ω; δ)-one-time secure BES for arbitrary δ ∈ {1, ... *n*}.
 - > Constructed from $\delta (\leq n', \leq \omega')$ -KPSs.

- Remark

Our construction includes the above two constructions as special cases. Namely, our construction can be considered as an extension of those.

Our Construction: Basic Idea

Simple Construction from KPSs

Sender's key $uk^{(1)}, \dots, uk^{(\delta)}$

Simple Construction from KPSs

Optimal Parameters for Minimal Keys

$$\begin{array}{c|c} & \mathcal{U}_{1} & \mathcal{U}_{2} \\ |\mathcal{U}_{1}| = \ell_{1} & \mathcal{U}_{2}| = \ell_{2} \\ (\leq \ell_{1}, \leq \omega_{1}) \text{-}\mathsf{KPS} \, \Phi_{1} \ (\leq \ell_{2}, \leq \omega_{2}) \text{-}\mathsf{KPS} \, \Phi_{2} \\ \omega_{1} \coloneqq \min\{\omega, \ell_{1} - 1\} & \omega_{2} \coloneqq \min\{\omega, \ell_{2} - 1\} \\ \end{array} \qquad \begin{array}{c|c} (\leq \ell_{\delta}, \leq \omega_{\delta}) \text{-}\mathsf{KPS} \, \Phi_{\delta} \\ \omega_{\delta} \coloneqq \min\{\omega, \ell_{\delta} - 1\} \\ \hline \text{There are many combination of } \ell_{1}, \ell_{2}, \dots, \ell_{\delta} \text{ s.t. } n = \sum_{i=1}^{\delta} \ell_{i}. \\ \hline \text{Which combination is the best one?} \\ \text{(which one minimizes the secret-key size?)} \end{array}$$

We define the following set:

$$\mathcal{L}(n,\delta) \coloneqq \big\{ L \coloneqq (\ell_1,\ell_2,\ldots,\ell_\delta) \in N^\delta \mid (\ell_1 \geq \cdots \geq \ell_\delta) \land \sum_{i=1}^{\delta} \ell_i = n \big\}.$$

We clarify optimal conditions of $L \in \mathcal{L}(n, \delta)$ for minimizing secret-key sizes

Optimal Parameters for Minimal Keys

Theorem. Suppose that the most efficient construction[FN93] is applied to the underlying ($\leq \ell_i, \leq \omega_i$)-KPS Φ_i in ($\leq n, \leq \omega; \delta$)-one-time secure BES Π . Then, the secret-key sizes are given by

$$(i) \log |\mathcal{E}\mathcal{K}| \coloneqq \sum_{i=1}^{\delta} \log \left| \mathcal{U}\mathcal{K}^{(i)} \right| = \sum_{i=1}^{\delta} \sum_{j=0}^{\omega_i} \binom{\ell_i}{j} \log |\mathcal{M}|,$$

$$(ii) \sum_{i=1}^{n} \log |\mathcal{D}\mathcal{K}_i| \coloneqq \sum_{i=1}^{n} \log |\mathcal{U}\mathcal{K}_i| = \sum_{i=1}^{\delta} \left(\ell_i \sum_{j=0}^{\omega_i} \binom{\ell_i - 1}{j} \right) \log |\mathcal{M}|.$$

 $L \in \mathcal{L}(n, \delta)$ minimizes the encryption-key size if it satisfies the following:

$$\begin{cases} \forall L & \text{if } \omega = 0, \\ L = (n - (\delta - 1), 1, \dots, 1) & \text{if } \omega = 1, \\ \ell_1 - \ell_\delta = 0 & \text{if } \omega \ge 2 \land n/\delta \in \mathbb{N} \\ \ell_1 - \ell_\delta = 1 & \text{otherwise.} \end{cases}$$

 $L \in \mathcal{L}(n, \delta)$ minimizes the decryption-key size if it satisfies the following:

$$\begin{array}{ll} \forall L & \text{if } \boldsymbol{\omega} = \mathbf{0}, \\ \ell_1 - \ell_{\delta} = \mathbf{0} & \text{if } \boldsymbol{\omega} \geq \mathbf{1} \wedge n/\delta \in \mathbf{N}, \\ \ell_1 - \ell_{\delta} = \mathbf{1} & \text{otherwise.} \end{array}$$

Proof of Theorem: Basic Idea

Proof of Theorem: Main Lemmas

 $\sum_{i=1}^{o} \sum_{j=0}^{\omega_i} \binom{\ell_i}{j} = \sum_{i=1}^{\delta} \binom{\ell_j}{0} + \sum_{i=1}^{\kappa_1} \binom{\ell_j}{1} + \cdots + \sum_{i=1}^{\kappa_{\omega-1}} \binom{\ell_j}{\omega-1} + \sum_{i=1}^{\kappa_{\omega}} \binom{\ell_j}{\omega}$ We show which $L \in \mathcal{L}(n, \delta)$ minimizes $\sum_{j=1}^{k_i} \binom{\ell_j}{i}$ $(1 \le i \le \omega)$: Lemma 1 for the case $k_i = \delta$ and Lemma 2 for the case $k_i < \delta$. **Lemma 1.** For any $a, j \in \mathbb{N}$ and any $r \in [a]$, choose any $b_i \in \mathbb{Z}$ $(1 \le i \le j)$ s.t. $b_1 \ge \cdots \ge b_i \ge r - a$ and $\sum_{i=1}^j b_i = 0$. Then, it holds $j\binom{a}{r} \leq \binom{a+b_1}{r} + \binom{a+b_2}{r} + \cdots + \binom{a+b_j}{r}.$ The equality holds if and only if r = 1. **Lemma 2.** For any $a, j \in \mathbb{N}$ and any $r \in \{2, ..., a\}$, choose any $b_i \in \mathbb{Z}$ $(1 \le i \le j)$

Lemma 2. For any $a, j \in \mathbf{N}$ and any $r \in \{2, ..., a\}$, choose any $b_i \in \mathbf{Z}$ $(1 \le i \le j)$ s.t. $b_1 \ge \cdots \ge b_k \ge r - a > b_{k+1} \ge \cdots \ge b_j > -a$ and $\sum_{i=1}^j b_i = 0$. Then, it holds $j \binom{a}{r} < \binom{a+b_1}{r} + \binom{a+b_2}{r} + \cdots + \binom{a+b_k}{r}$.

Concluding Remarks

- We proposed generic constructions of $(\leq n, \leq \omega; \delta)$ -one-time secure BESs for arbitrary $\delta \in \{1, ..., n\}$.
 - From $\delta (\leq \ell_i, \leq \omega_i)$ -KPSs.
 - Natural extension of existing schemes.
- We showed which $L \in \mathcal{L}(n, \delta)$ for KPSs is the best one.
 - Secret-key size is minimized when δ subsets are as equal in size as possible (e.g. $\ell_1 = \cdots = \ell_{\delta}$ if $n/\delta \in N$).
- Tight bounds on the secret-key sizes required for $(\leq n, \leq \omega; \delta)$ -one-time secure BESs for any $\delta \in [n]$ are not known.
 - Existing lower bounds: only for the case $\delta = 1$.
 - Existing upper bounds: only for the case $\delta = 1$ and $\delta = n$.
 - Our results also showed upper bounds for any $\delta \in [n]$.

Next challenge task: deriving lower bounds for any $\delta \in [n]$.