Attribute-based Encryption Resilient to Auxiliary Input

Outline

- * Problem Statement
- * Attribute-Based Encryption with Auxiliary
- * Our Techniques

Side-Channel Attack

- The central notion of modern cryptography relies on the secrecy of the secret key.
- In practice, this paradigm is subject to the immanent threat of side-channel attacks.

Leakage-Resilient Cryptography

- Formal security guarantees even when the secret (key/randomness) leaks
- * Here we only consider memory leakage.
- * The adversary is allowed to specify an efficiently computable leakage function *f*
 - * Obtain the output of *f* applied to the secret
 - * Aims to model the possible leakage in practice

A Major Open Problem

- * [Goldwasser @ Eurocrypt '09 Invited Talk]
- * allowing for continuous unbounded leakage
- * without additionally restricting its type
- * [AGV09, NS09, ADNSWW10, BKKV10, CDRW10, DGKPV10, DHLW10, LLW11, LRW11...]

Bounded Retrieval Model

- * Allowed bits of leakage is *l*
- * *l* is also a system parameter
- * Size of the secret key increases with I
- But I does not affect public key size, communication and computation efficiency
- * e.g., [ADNSWW10, CDRW10]
- Hope the attack is detected and stopped before the whole secret is leaked

Auxiliary Inputs

- * Any *f* that no poly. time adversary can invert
- * E.g., One-way permutation (OWP)
- * OWP is not allowed in the relative model
- * [DGKPV10] proposed public-key encryption (PKE) schemes with auxiliary inputs
- * [YSY12] proposed ABE schemes with auxiliary inputs
- * All these bound the leakage throughout the entire lifetime of the secret key

Continual Leakage Model

- Allows for continuous memory leakage (CML)
- Continually updates / refreshes the secret key
- * Leakage between updates are still bounded
- * [DHLW10]: signature and identification
- * [BKKV10]: signature, PKE, and selective-ID IBE
- * [LLW11]: signature and PKE
- * [Zhang13]: ABE

ABE with Auxiliary Inputs

- * ABE found many applications
- * Resilience => composition of Attribute-based systems
- * A "clean" security definition
 - * Free from numeric bounds

Continual-Leakage-Resilient ABE

- Current CML models for ABE consider leakage of the current secret key for a given time only
 - * [Zhang13]
- * The old secret key should be securely erased.
- * Less disastrous leakage => Less benefits

Problem Statement

- We tackle the problem of "allowing ABE for continuous unbounded leakage, without additionally restricting the type of leakage".
- * [DGKPV10]: PKE, no continual leakage
- * [BKKV10]: IBE, selective-ID, no leakage from *msk*
- * [LRW11]: IBE, adaptive-ID, leakage size bounded
- * [YSY12]: IBE, adaptive-ID

Our Contributions

- We propose the first CP-ABE scheme that is secure in the presence of auxiliary inputs
 - * Adaptive security in the Standard Model
 - * Based on Static Assumptions
 - * Moderate costs (ctxt. size, comp. complexity)
- We propose the first KP-ABE scheme resilience to auxiliary inputs
- We impove our ABE schemes secure in the presence of continual auxiliary model

Goldreich-Levin Theorem

- * The key technique in [DGKPV10] is the modified Goldreich-Levin (GL) theorem.
- * The original GL theorem is over GF(2)
 - * For an uninvertible function h: GF(2)^m -> {0, 1}*,
 - * $\langle e, y \rangle \in GF(2)$ is pseudorandom
 - * given h(e) and uniformly random y

Modified GL Theorem

- * Let q be a prime
- * H be a poly(m)-sized subset of GF (q)
- * $h: H^m \rightarrow \{0,1\}$ * be any (randomized) function
- If there is a PPT algorithm D that distinguishes between <*e*, *y*> and the uniform distribution over GF(q) given h(*e*) and *y* ← GF(q)^m
- * then there is a PPT algorithm A that inverts h with probability $1/(q^2 \cdot poly(m))$

Aux-PKE -> Aux-ABE

* Attribute-based secret key has "structure"

- * Not a λ -bit number
- * Secret random factors from a small domain
- The size of attribute-based secret key is according to the number of attributes

Aux-PKE + LR-ABE -> Aux-ABE?

- * Even worse, many many secret keys in ABE...
- * Leak "semi-functional" (SF) keys in simulation
- * SF-key is perturbed from a real key by *m* blinding factors from Z_p where *p* is of size 2^{λ} .
- Inefficient invertor if we followed
- * Countermeasure for leakage just appears in the security proof but not the actual scheme.

Our Auxiliary Input Model

Usual secure against chosen-plaintext attack (CPA)

- Leakage oracle (LO) in additional to Key Extraction oracle (KEO)
- * LO takes an input of $f \in \mathbf{F}$ and S returns $f(msk, sk_s, mpk, S)$
- * No LO query after challenge phase
- * **F**: Given mpk, S*, {*f*_i(msk, sk_{Si}, mpk, S_i)}, and a set of secret

Here are the parameters, I will keep *msk* from you

I want fo(msk), f1(sk_{s1}), sk_{s4}, sk_{s1} and f3(msk, sk_{s4})

Sure, just make your adaptive choices

I want to be challenged with these 2 messages: m_{o} ,

Now I encrypt a random 1 of them, make your guess

Roadmap of Our Construction

Leakage via Dual System

We know how to "fake" everything!

- * We can leak them too.
- * Caution: leaking can't spoil faking.
- Correlation regarding SF objects is information-theoretically (IT) hidden

Our Design Constraints

Small blinding factors are used in SF key

- * When the key is leaked, uninvertible function of key can be created from uninv.-func. of factors
- * Inner product = 0 => Exponent in \mathbf{G}_q = 0
- Use modified GL theorem to ensure the indistinguishability of 2 types of SF keys.

Our Contributions (2)

* For the security poof, we propose three improved statics assumptions, and prove them in appendix.

Function Family

- Basic: Given mpk, S*, {f_i(msk, sk_{si}, mpk, S_i)}, and a set of secret keys w/o sk_{si}, no PPT algo. can output a secret key sk_{s*} of S*
- CAL: Given mpk, S*, {f_i(L_{msk}, L_S, msk, sk_{Si}, mpk, S_i)}, and a set of secret keys w/o any valid sk_{Si}, no PPT algo. can output sk_{S*} of S*
- * The lists L's include all keys ever produced
- * Additionally, may give leakage during setup

*Thank! Any questions?