Tighter Security for Efficient Lattice Cryptography via the Rényi Divergence of Optimized Orders

Katsuyuki Takashima Mitsubishi Electric

Atsushi Takayasu
The University of Tokyo

2015, November 26

Background

Lattice Cryptography

- Lattice cryptography has novel properties.
- Resist quantum attacks
- Worst-case/Average-case reduction
- Faster computation and parallelizable

Lattice Cryptography

- Lattice cryptography has novel properties.
- Resist quantum attacks
- Worst-case/Average-case reduction
- Faster computation and parallelizable
- In the security reduction, there are statistical steps; to measure the closeness of two probability distributions.
e.g., zero centered and non-zero centered discrete Gaussian distributions.

Lattice Cryptography

- Lattice cryptography has novel properties.
- Resist quantum attacks
- Worst-case/Average-case reduction
- Faster computation and parallelizable
- In the security reduction, there are statistical steps; to measure the closeness of two probability distributions.
e.g., zero centered and non-zero centered discrete Gaussian distributions.
The security reduction follows through when the distributions are statistically close.

Statistical Analysis

Statistical Analysis

Ideal Distribution

Ideal distributions and real distributions are statistically close

Simulated cryptographic scheme and real scheme are statistically indistinguishable.

Statistical Analysis

The larger parameters (e.g. Gaussian deviations),

- two distributions become statistically close e.g. the real schemes become secure,
- the scheme becomes less efficient.
\checkmark We want to analyze the appropriate trade-off.
The analyses owe to statistical measures.
Which measure should be used?
Statistical Distance vs Rényi Divergence

Statistical Measure

Statistical Distance (SD)

- SD is widely used in security reduction.
- SD should be much smaller than the advantage for the reduction. inefficient parameters
- Small SD offers tight reduction.

Rényi Divergence (RD)

- RD is recently used in security reduction for lattice crypto. [LPR13,LSS14,LPSS14,BLL+15].
- RD can be independent of the advantage. smaller parameters
- Even if RD is small, reductions always lose the tightness.

Statistical Measure

Statistical Distance (SD)

- SD is widely used in security reduction.

Rényi Divergence (RD)

- RD is recently used in security reduction for lattice crypto. [LPR13,LSS14,LPSS14,BLL+15].
- sD Can we prove the security with both the ind small parameters and tight reduction?
- Small SD offers tight reduction.
- Even if RD is small, reductions always lose the tightness.

Our Solution

- In the previous RD based analyses, the order is fixed to $\alpha=2$.
- In this work, we use the optimized order. The optimization offers tighter reduction even if we use the RD.

Our Solution

- In the previous RD based analyses, the order is fixed to $\alpha=2$.
- In this work, we use the optimized order. The optimization offers tighter reduction even if we use the RD.

Our approach offers

- tighter reduction than the previous RD based analyses,
- with smaller parameters than the SD based analyses.

Precomputed Table Size for BLISS Signature

statistical measure	table bit-size	reduction loss $\varepsilon / \varepsilon^{\prime}$
SD [DDLL13]	6003	≤ 2
KLD [PDG14]	4872	≤ 2
RD, $\alpha=+\infty$ $[B L L+15]$	2291	≤ 2
RD, $\alpha=2$ $[B L L+15]$	1160	$\approx 2^{128}$
RD,	1276	≤ 2
optimized order Ours		
$8 / / 0$		

Our Approach

Overview of the Security Reduction

- Problem P: given $X=\left\{x_{i}: x_{i} \leftarrow \Phi\right\}_{i=1, \ldots, k}$ and compute $f(X)$
- Problem P^{\prime} : given $X^{\prime}=\left\{x_{i}^{\prime}: x_{i}^{\prime} \leftarrow \Phi^{\prime}\right\}_{i=1, \ldots, k}$ and compute $f\left(X^{\prime}\right)$
\checkmark When two probability distributions Φ and Φ^{\prime} are statistically close, the adversary for the problem P is also the adversary for the problem P^{\prime}.

SD Based Analysis

- ε : the advantage for the adversary to solve P
- ε^{\prime} : the advantage for the adversary to solve P^{\prime}

The SD between Φ and Φ^{\prime} :

$$
\Delta\left(\Phi, \Phi^{\prime}\right)=\frac{1}{2} \sum\left|\Phi(x)-\Phi^{\prime}(x)\right|
$$

SD Based Analysis

SD Based Analysis

SD Based Analysis

- ε : the advantage for the adversary to solve P
- ε^{\prime} : the advantage for the adversary to solve P^{\prime}

The SD between Φ and Φ^{\prime} :

SD should be much smaller than ε / k
The strong requirement leads to inefficient parameters.

Previous RD Based Analysis

- ε : the advantage for the adversary to solve P
- ε^{\prime} : the advantage for the adversary to solve P^{\prime}

The RD (of order 2) between Φ and Φ^{\prime} :

$$
R_{2}\left(\Phi \| \Phi^{\prime}\right)=\sum \frac{\Phi(x)^{2}}{\Phi^{\prime}(x)}
$$

Previous RD Based Analysis

Previous RD Based Analysis

- ε : the advantage for the adversary to solve P
- ε^{\prime} : the advantage for the adversary to solve P^{\prime}

The RD (of order 2) between Φ and Φ^{\prime} :

$$
\begin{aligned}
& R_{2}\left(\Phi \| \Phi^{\prime}\right)=\sum \frac{\Phi(x)^{2}}{\Phi^{\prime}(x)} \\
& \varepsilon \leq\left(\varepsilon^{\prime} \cdot R_{2}\left(\Phi \| \Phi^{\prime}\right)^{k}\right)^{\frac{1}{2}}
\end{aligned}
$$

Previous RD Based Analysis

$$
\left.\varepsilon \leq\left(\varepsilon^{\prime} R_{2}\left(\Phi \| \Phi^{\prime}\right)\right)^{k}\right)^{\frac{1}{2}}
$$

- RD are allowed to be larger bounds (small constant).

Significant parameter savings!

Previous RD Based Analysis

$$
\varepsilon \leq\left(\varepsilon^{\prime} \cdot R_{2}\left(\Phi \| \Phi^{\prime}\right){ }^{\prime}\right\}^{\frac{1}{2}}
$$

- RD are allowed to be larger bounds (small constant).

Significant parameter savings!

- Even if RD is extremely small (almost 1), the RHS is always larger than $\varepsilon^{\prime 1 / 2}$.
The reduction always loses the tightness.

Our RD Based Analysis

- ε : the advantage for the adversary to solve P
- ε^{\prime} : the advantage for the adversary to solve P^{\prime}

The RD between Φ and Φ^{\prime} :

$$
R_{\alpha}\left(\Phi \| \Phi^{\prime}\right)=\left(\sum \frac{\Phi(x)^{\alpha}}{\Phi^{\prime}(x)^{\alpha-1}}\right)^{\frac{1}{\alpha-1}}
$$

Our RD Based Analysis

Our RD Based Analysis

- ε : the advantage for the adversary to solve P
- ε^{\prime} : the advantage for the adversary to solve P^{\prime}

The RD between Φ and Φ^{\prime} :

$$
\begin{aligned}
& R_{\alpha}\left(\Phi \| \Phi^{\prime}\right)=\left(\sum \frac{\Phi(x)^{\alpha}}{\Phi^{\prime}(x)^{\alpha-1}}\right)^{\frac{1}{\alpha-1}} \\
& \Rightarrow \varepsilon \leq\left(\varepsilon^{\prime} \cdot R_{\alpha}\left(\Phi \| \Phi^{\prime}\right)^{k}\right)^{\frac{\alpha-1}{\alpha}}
\end{aligned}
$$

Our RD Based Analysis

$$
\varepsilon \leq\left(\varepsilon^{\prime} \cdot R_{\alpha}\left(\Phi \| \Phi^{\prime}\right)^{k}\right)^{\frac{\alpha-1}{\alpha}}
$$

When the larger α is used, the exponent of $\underline{\varepsilon}^{\prime}$ becomes close to 1 .

Tighter reduction!

Our RD Based Analysis

$$
\varepsilon \leq\left(\varepsilon^{\prime} \cdot R_{\alpha}\left(\Phi \| \Phi^{\prime}\right){ }^{k} \frac{\alpha-1}{\alpha}\right.
$$

When the larger α is used, the exponent of $\underline{\varepsilon}^{\prime}$ becomes close to 1 .

Tighter reduction!

\checkmark Since RD becomes exponential of α, α cannot be infinitely large.

Our RD Based Analysis

$$
\varepsilon \leq\left(\varepsilon^{\prime} \cdot R_{\alpha}\left(\Phi \| \Phi^{\prime}\right){ }^{k} \frac{\alpha-1}{\alpha}\right.
$$

When the larger α is used, the exponent of $\underline{\varepsilon}^{\prime}$ becomes close to 1 .

We adaptively optimize the order α for the reduction to become as tight as possible.
\checkmark Since RD becomes exponential of α, α cannot be infinitely large.

Adaptive Optimization of the Order

Assume $R_{\alpha}\left(\Phi \| \Phi^{\prime}\right) \leq \exp (\alpha \cdot \gamma)$,

$$
\begin{gathered}
\varepsilon \leq\left(\varepsilon^{\prime} \cdot R_{\alpha}\left(\Phi \| \Phi^{\prime}\right)^{k}\right)^{\frac{\alpha-1}{\alpha}} \\
\leq \exp \left(\frac{\alpha-1}{\alpha} \cdot \ln \left(\varepsilon^{\prime}\right)+(\alpha-1) \cdot k \gamma\right)
\end{gathered}
$$

Adaptive Optimization of the Order

Assume $R_{\alpha}\left(\Phi \| \Phi^{\prime}\right) \leq \exp (\alpha \cdot \gamma)$,

$$
\begin{gathered}
\varepsilon \leq\left(\varepsilon^{\prime} \cdot R_{\alpha}\left(\Phi \| \Phi^{\prime}\right)^{k}\right)^{\frac{\alpha-1}{\alpha}} \\
\leq \exp \left(\frac{\alpha-1}{\alpha} \cdot \ln \left(\varepsilon^{\prime}\right)+(\alpha-1) \cdot k \gamma\right)
\end{gathered}
$$

The RHS is lower bounded as

$$
=\exp \left(\ln \left(\varepsilon^{\prime}\right)-k \gamma+\left(\frac{-\ln \left(\varepsilon^{\prime}\right)}{\alpha}+\alpha \cdot k \gamma\right)\right)
$$

Adaptive Optimization of the Order

Assume $R_{\alpha}\left(\Phi \| \Phi^{\prime}\right) \leq \exp (\alpha \cdot \gamma)$,

$$
\begin{gathered}
\varepsilon \leq\left(\varepsilon^{\prime} \cdot R_{\alpha}\left(\Phi \| \Phi^{\prime}\right)^{k}\right)^{\frac{\alpha-1}{\alpha}} \\
\leq \exp \left(\frac{\alpha-1}{\alpha} \cdot \ln \left(\varepsilon^{\prime}\right)+(\alpha-1) \cdot k \gamma\right)
\end{gathered}
$$

The RHS is lower bounded as

$$
\begin{aligned}
= & \exp \left(\ln \left(\varepsilon^{\prime}\right)-k \gamma+\left(\frac{-\ln \left(\varepsilon^{\prime}\right)}{\alpha}+\alpha \cdot k \gamma\right)\right) \\
& \geq \exp \left(\ln \left(\varepsilon^{\prime}\right)-k \gamma+2 \sqrt{-\ln \left(\varepsilon^{\prime}\right) \cdot k \gamma}\right)
\end{aligned}
$$

by the inequality of arithmetic mean and geometric mean.

Adaptive Optimization of the Order

The equality holds iff

$$
\frac{-\ln \left(\varepsilon^{\prime}\right)}{\alpha}=\alpha \cdot k \gamma \quad \alpha \alpha=\sqrt{\frac{-\ln \left(\varepsilon^{\prime}\right)}{k \gamma}} .
$$

Adaptive Optimization of the Order

The equality holds iff

$$
\frac{-\ln \left(\varepsilon^{\prime}\right)}{\alpha}=\alpha \cdot k \gamma \quad \alpha=\sqrt{\frac{-\ln \left(\varepsilon^{\prime}\right)}{k \gamma}} .
$$

We use the order and the inequality becomes

$$
\begin{aligned}
\varepsilon \leq & \exp \left(\ln \left(\varepsilon^{\prime}\right)-k \gamma+2 \sqrt{-\ln \left(\varepsilon^{\prime}\right) \cdot k \gamma}\right) \\
& =\exp \left(-\left(\sqrt{-\ln \left(\varepsilon^{\prime}\right)}-\sqrt{k \gamma}\right)^{2}\right)
\end{aligned}
$$

When RD is small ($\gamma \approx 0$), the RHS of the inequality becomes $\approx \varepsilon^{\prime}$.

Summary of Our Results

- Our approach offers security reduction where
$-\approx \varepsilon^{\prime} \leftarrow \approx \varepsilon^{\prime 1 / 2}$ for computing problems and
$-\approx \varepsilon^{\prime 1 / 2} \leftarrow \approx \varepsilon^{\prime 1 / 3}$ for distinguishing problems.
- Applications of our approaches are
- Sampling discrete Gaussian over the integers with smaller precomputed tables for BLISS signatures.
- Tighter LWE to k-LWE reduction.
- Tighter SIS to k-SIS reduction.

Sampling Discrete Gaussian over the Integers

Bimodal Lattice Signature Scheme

BLISS signatures [DDLL13]

- are secure under the worst case ideal lattice problem (SIS).
- are comparably efficient as RSA and ECDSA
- requires to sample several hundreds of independent samples from one-dimensional discrete Gaussian distributions over the integers for a signing.

Sampling Discrete Gaussian over the Integers [DDLL13]

Discrete Gaussian distributions $D_{\mathbb{Z}, s}$ can be sampled by using Bernoulli random variables with probabilities

$$
c_{i}=\exp \left(-\frac{\pi 2^{i}}{s^{2}}\right) \text { for } i=0, \ldots, l-1
$$

Sampling Discrete Gaussian over the Integers [DDLL13]

Discrete Gaussian distributions $D_{\mathbb{Z}, s}$ can be sampled by using Bernoulli random variables with probabilities

$$
c_{i}=\exp \left(-\frac{\pi 2^{i}}{s^{2}}\right) \text { for } i=0, \ldots, l-1
$$

Storing the truncated probabilities $\widetilde{c_{i}}$ with bit precisions p, Bernoulli random variables can be sampled efficiently.

Sampling Discrete Gaussian over the Integers [DDLL13]

Discrete Gaussian distributions $D_{\mathbb{Z}, s}$ can be sampled by using Bernoulli random variables with probabilities
$c_{i}=\exp \left(-\frac{\pi 2^{i}}{s^{2}}\right)$ for $i=0, \ldots, l-1$.
Storing the truncated probabilities $\widetilde{c_{i}}$ with bit precisions p, Bernoulli random variables can be sampled efficiently.

> Larger p with security
> vs
> Smaller p with efficiency
\checkmark An appropriate trade-off should be analyzed.

Statistical Analyses

The trade-off can be analyzed by estimating the statistical closeness between the real distributions (with probabilities $\widetilde{c_{i}}$) and the ideal distributions (with probabilities c_{i}).

Statistical Analyses

The trade-off can be analyzed by estimating the statistical closeness between the real distributions (with probabilities $\widetilde{c_{i}}$) and the ideal distributions (with probabilities c_{i}).
Several statistical measures have been used

- SD [DDLL13]
- Kullback-Leibler divergence [PDG14]
- RD of order $\alpha=2$ and $+\infty[B L L+15]$
\checkmark We use the RD of optimized orders.

Comparison

statistical measure	table bit-size	reduction loss $\varepsilon / \varepsilon^{\prime}$
SD [DDLL13]	6003	≤ 2
KLD [PDG14]	4872	≤ 2
$\begin{gathered} \mathrm{RD}, \alpha=+\infty \\ {[\mathrm{BLL}+15]} \end{gathered}$	2291	≤ 2
$\begin{gathered} \mathrm{RD}, \alpha=2 \\ {[\mathrm{BLL}+15]} \end{gathered}$	1160	$\approx 2^{128}$
RD, optimized order Ours	1276	≤ 2

Our Results

- In the security reduction of lattice cryptography, the closeness of two probability distributions should be measured. To bound the closeness via the Rényi divergence, we adaptively optimize the order.
- Applications of our approach are
- Sampling discrete Gaussian over the integers with smaller precomputed tables
- Tighter LWE to k-LWE reduction
- Tighter SIS to k-SIS reduction

