Tighter Security for Efficient Lattice Cryptography via the Rényi Divergence of Optimized Orders

Katsuyuki Takashima Mitsubishi Electric <u>Atsushi Takayasu</u> The University of Tokyo

2015, November 26

Background

Lattice Cryptography

- Lattice cryptography has novel properties.
 - Resist quantum attacks
 - Worst-case/Average-case reduction
 - Faster computation and parallelizable

Lattice Cryptography

- Lattice cryptography has novel properties.
 - Resist quantum attacks
 - Worst-case/Average-case reduction
 - Faster computation and parallelizable
- In the security reduction, there are *statistical* steps; to <u>measure the closeness of two probability</u> <u>distributions</u>.

e.g., zero centered and non-zero centered discrete Gaussian distributions.

Lattice Cryptography

- Lattice cryptography has novel properties.
 - Resist quantum attacks
 - Worst-case/Average-case reduction
 - Faster computation and parallelizable
- In the security reduction, there are *statistical* steps; to <u>measure the closeness of two probability</u> <u>distributions</u>.

e.g., zero centered and non-zero centered discrete Gaussian distributions.

The security reduction follows through when the distributions are <u>statistically close</u>.

Statistical Analysis

Statistical Analysis

Statistical Analysis

The larger parameters (e.g. Gaussian deviations),

- two distributions become statistically close e.g. the real schemes become <u>secure</u>,
- the scheme becomes <u>less efficient</u>.
- We want to analyze the appropriate trade-off.

The analyses owe to <u>statistical measures</u>. Which measure should be used? <u>Statistical Distance vs Rényi Divergence</u>

Statistical Measure

Statistical Distance (SD)

• SD is widely used in security reduction.

- SD should be much smaller than the advantage for the reduction.
 inefficient parameters
- Small SD offers tight reduction.

Rényi Divergence (RD)

- RD is recently used in security reduction for lattice crypto. [LPR13,LSS14,LPSS14,BLL+15].
- RD can be independent of the advantage.
 smaller parameters
- Even if RD is small, reductions always lose the tightness.

Statistical Measure

Statistical Distance (SD)

• SD is widely used in security reduction.

Rényi Divergence (RD)

 RD is recently used in security reduction for lattice crypto. [LPR13,LSS14,LPSS14,BLL+15].

SD Can we prove the security with both
 the small parameters and tight reduction?

- Small SD offers tight reduction.
- Even if RD is small, reductions always lose the tightness.

Our Solution

- In the previous RD based analyses, <u>the order</u> is fixed to $\alpha = 2$.
- In this work, we use the <u>optimized order</u>. The optimization offers <u>tighter reduction</u> even if we use the RD.

Our Solution

- In the previous RD based analyses, <u>the order</u> is fixed to $\alpha = 2$.
- In this work, we use the <u>optimized order</u>. The optimization offers <u>tighter reduction</u> even if we use the RD.

Our approach offers

- tighter reduction than the previous RD based analyses,
- with smaller parameters than the SD based analyses.

Precomputed Table Size for BLISS Signature

statistical measure	table bit-size	reduction loss ε/ε'
SD [DDLL13]	6003	≤ 2
KLD [PDG14]	4872	≤ 2
RD, $\alpha = +\infty$ [BLL+15]	2291	≤ 2
RD, $\alpha = 2$ [BLL+15]	1160	$\approx 2^{128}$
RD, <mark>optimized order</mark> Ours	1276	≤ 2

Our Approach

Overview of the Security Reduction

- Problem P: given $X = \{x_i : x_i \leftarrow \Phi\}_{i=1,\dots,k}$ and compute f(X)
- Problem P': given $X' = \{x'_i : x'_i \leftarrow \Phi'\}_{i=1,\dots,k}$ and compute f(X')
- ✓ When two probability distributions Φ and Φ' are <u>statistically close</u>, the adversary for the problem P is also the adversary for the problem P'.

- ε: the advantage for the adversary to solve P
- ε' : the advantage for the adversary to solve P'The SD between Φ and Φ' :

$$\Delta(\Phi, \Phi') = \frac{1}{2} \sum |\Phi(x) - \Phi'(x)|$$

- ε: the advantage for the adversary to solve P
- ε' : the advantage for the adversary to solve P'The SD between Φ and Φ' :

$$\Delta(\Phi, \Phi') = \frac{1}{2} \sum |\Phi(x) - \Phi'(x)|$$
$$\varepsilon \le \varepsilon' + k \Delta(\Phi, \Phi')$$

SD should be *much smaller than* ε/k

The strong requirement leads to inefficient parameters.

- ε: the advantage for the adversary to solve P
- ε' : the advantage for the adversary to solve P'The RD (of order 2) between Φ and Φ' :

$$R_2(\Phi || \Phi') = \sum \frac{\Phi(x)^2}{\Phi'(x)}$$

- ε: the advantage for the adversary to solve P
- ε' : the advantage for the adversary to solve P'The RD (of order 2) between Φ and Φ' :

$$R_{2}(\Phi||\Phi') = \sum \frac{\Phi(x)^{2}}{\Phi'(x)}$$
$$\varepsilon \leq \left(\varepsilon' \cdot R_{2}(\Phi||\Phi')^{k}\right)^{\frac{1}{2}}$$

$$\varepsilon \leq \left(\varepsilon' \cdot R_2(\Phi || \Phi')^k\right)^{\frac{1}{2}}$$

RD are allowed to be larger bounds (small constant).

Significant parameter savings!

 $\varepsilon \leq \left(\varepsilon' \cdot R_2(\Phi || \Phi')^k\right)^{\frac{1}{2}}$

- RD are allowed to be larger bounds (small constant).
- Significant parameter savings!
 - Even if RD is extremely small (almost 1), the RHS is always larger than $\varepsilon'^{1/2}$.
 - The reduction always loses the tightness.

- ε: the advantage for the adversary to solve P
- ε' : the advantage for the adversary to solve P'The RD between Φ and Φ' :

$$R_{\alpha}(\Phi||\Phi') = \left(\sum \frac{\Phi(x)^{\alpha}}{\Phi'(x)^{\alpha-1}}\right)^{\frac{1}{\alpha-1}}$$

- ε: the advantage for the adversary to solve P
- ε' : the advantage for the adversary to solve P'The RD between Φ and Φ' :

$$R_{\alpha}(\Phi||\Phi') = \left(\sum \frac{\Phi(x)^{\alpha}}{\Phi'(x)^{\alpha-1}}\right)^{\frac{1}{\alpha-1}}$$
$$\varepsilon \le \left(\varepsilon' \cdot R_{\alpha}(\Phi||\Phi')^{k}\right)^{\frac{\alpha-1}{\alpha}}$$

 $\varepsilon \leq \left(\varepsilon' \cdot R_{\alpha}(\Phi || \Phi')^{k}\right)^{\frac{\alpha - 1}{\alpha}}$

When the <u>larger α is used</u>, the exponent of $\underline{\varepsilon'}$ becomes close to 1.

 $\varepsilon \leq \left(\varepsilon' \cdot R_{\alpha}(\Phi || \Phi')^{k}\right)^{\frac{\alpha - 1}{\alpha}}$

When the <u>larger α is used</u>, the exponent of $\underline{\varepsilon'}$ becomes close to 1.

Tighter reduction!

✓ Since RD becomes exponential of α , α cannot be <u>infinitely large</u>.

 $\varepsilon \leq \left(\varepsilon' \cdot R_{\alpha}(\Phi || \Phi')^{k}\right)^{\frac{\alpha - 1}{\alpha}}$

When the <u>larger α is used</u>, the exponent of $\underline{\varepsilon'}$ becomes close to 1.

We <u>adaptively optimize the order α </u> for the reduction to become as tight as possible.

✓ Since RD becomes exponential of α , α cannot be <u>infinitely large</u>.

Assume
$$R_{\alpha}(\Phi || \Phi') \leq \exp(\alpha \cdot \gamma)$$
,
 $\varepsilon \leq (\varepsilon' \cdot R_{\alpha}(\Phi || \Phi')^k)^{\frac{\alpha - 1}{\alpha}}$
 $\leq \exp\left(\frac{\alpha - 1}{\alpha} \cdot \ln(\varepsilon') + (\alpha - 1) \cdot k\gamma\right)$.

Assume
$$R_{\alpha}(\Phi || \Phi') \leq \exp(\alpha \cdot \gamma)$$
,
 $\varepsilon \leq (\varepsilon' \cdot R_{\alpha}(\Phi || \Phi')^k)^{\frac{\alpha - 1}{\alpha}}$
 $\leq \exp\left(\frac{\alpha - 1}{\alpha} \cdot \ln(\varepsilon') + (\alpha - 1) \cdot k\gamma\right)$.

The RHS is lower bounded as

$$= \exp\left(\ln(\varepsilon') - k\gamma + \left(\frac{-\ln(\varepsilon')}{\alpha} + \alpha \cdot k\gamma\right)\right)$$

Assume
$$R_{\alpha}(\Phi || \Phi') \leq \exp(\alpha \cdot \gamma)$$
,
 $\varepsilon \leq (\varepsilon' \cdot R_{\alpha}(\Phi || \Phi')^k)^{\frac{\alpha - 1}{\alpha}}$
 $\leq \exp\left(\frac{\alpha - 1}{\alpha} \cdot \ln(\varepsilon') + (\alpha - 1) \cdot k\gamma\right)$.

The RHS is lower bounded as

$$= \exp\left(\ln(\varepsilon') - k\gamma + \left(\frac{-\ln(\varepsilon')}{\alpha} + \alpha \cdot k\gamma\right)\right)$$
$$\geq \exp\left(\ln(\varepsilon') - k\gamma + 2\sqrt{-\ln(\varepsilon') \cdot k\gamma}\right)$$

by the inequality of arithmetic mean and geometric mean.

The equality holds iff

$$\frac{-\ln(\varepsilon')}{\alpha} = \alpha \cdot k\gamma \quad \square \qquad \Rightarrow \quad \alpha = \sqrt{\frac{-\ln(\varepsilon')}{k\gamma}}.$$

Г

The equality holds iff

$$\frac{-\ln(\varepsilon')}{\alpha} = \alpha \cdot k\gamma \quad \square \qquad \Rightarrow \alpha = \sqrt{\frac{-\ln(\varepsilon')}{k\gamma}}$$

We use the order and the inequality becomes

$$\varepsilon \le \exp\left(\ln(\varepsilon') - k\gamma + 2\sqrt{-\ln(\varepsilon') \cdot k\gamma}\right)$$
$$= \exp\left(-\left(\sqrt{-\ln(\varepsilon')} - \sqrt{k\gamma}\right)^2\right).$$

When RD is small ($\gamma \approx 0$), the RHS of the inequality becomes $\approx \varepsilon'$.

Summary of Our Results

- Our approach offers security reduction where
 - $\approx \varepsilon' \leftarrow \approx \varepsilon'^{1/2}$ for computing problems and
 - $\approx \varepsilon'^{1/2} \leftarrow \approx \varepsilon'^{1/3}$ for distinguishing problems.
- Applications of our approaches are
 - Sampling discrete Gaussian over the integers with smaller precomputed tables for BLISS signatures.
 - Tighter LWE to k-LWE reduction.
 - Tighter SIS to k-SIS reduction.

Sampling Discrete Gaussian over the Integers

Bimodal Lattice Signature Scheme

BLISS signatures [DDLL13]

- are secure under the worst case ideal lattice problem (SIS).
- are comparably efficient as RSA and ECDSA
- requires to sample several hundreds of independent samples from one-dimensional *discrete Gaussian distributions over the integers* for a signing.

Sampling Discrete Gaussian over the Integers [DDLL13]

Discrete Gaussian distributions $D_{\mathbb{Z},s}$ can be sampled by using *Bernoulli random variables* with probabilities

$$c_i = \exp\left(-\frac{\pi 2^l}{s^2}\right)$$
 for $i = 0, ..., l - 1$.

Sampling Discrete Gaussian over the Integers [DDLL13]

Discrete Gaussian distributions $D_{\mathbb{Z},s}$ can be sampled by using *Bernoulli random variables* with probabilities

$$c_i = \exp\left(-\frac{\pi 2^l}{s^2}\right)$$
 for $i = 0, ..., l - 1$.

Storing the truncated probabilities \tilde{c}_i with bit precisions p, Bernoulli random variables can be sampled efficiently.

Sampling Discrete Gaussian over the Integers [DDLL13]

Discrete Gaussian distributions $D_{\mathbb{Z},s}$ can be sampled by using *Bernoulli random variables* with probabilities

$$c_i = \exp\left(-\frac{\pi 2^l}{s^2}\right)$$
 for $i = 0, ..., l - 1$.

Storing the truncated probabilities $\tilde{c_i}$ with bit precisions p, Bernoulli random variables can be sampled efficiently.

> Larger p with security vs Smaller p with efficiency

 \checkmark An appropriate trade-off should be analyzed.

Statistical Analyses

The trade-off can be analyzed by estimating the statistical closeness between the *real distributions* (with probabilities $\tilde{c_i}$) and the *ideal distributions* (with probabilities c_i).

Statistical Analyses

The trade-off can be analyzed by estimating the statistical closeness between the *real distributions* (with probabilities $\tilde{c_i}$) and the *ideal distributions* (with probabilities c_i).

Several statistical measures have been used

- SD [DDLL13]
- Kullback-Leibler divergence [PDG14]
- RD of order $\alpha = 2$ and + ∞ [BLL+15]
- ✓ We use the RD of *optimized orders*.

Comparison

statistical measure	table bit-size	reduction loss ε/ε'
SD [DDLL13]	6003	≤ 2
KLD [PDG14]	4872	≤ 2
RD, $\alpha = +\infty$ [BLL+15]	2291	≤ 2
RD, $\alpha = 2$ [BLL+15]	1160	$\approx 2^{128}$
RD, <mark>optimized order</mark> Ours	1276	≤ 2

Our Results

- In the security reduction of lattice cryptography, the closeness of two probability distributions should be measured. To bound the closeness via the *Rényi divergence*, we adaptively optimize the order.
- Applications of our approach are
 - Sampling discrete Gaussian over the integers with smaller precomputed tables
 - Tighter LWE to k-LWE reduction
 - Tighter SIS to k-SIS reduction