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Abstract

Recently, a method, reducing the elliptic curve discrete logarithm problem(EDLP) to the discrete
logarithm problem(DLP) in a finite field, was proposed. But this reducing is valid only when Weil
pairing can be defined over the m-torsion group which includes the base point of EDLP. If an elliptic
curve is ordinary, there exists EDLP which we cannot apply the reducing to. In this pa{per, we
investigate the condition for which this reducing is invalid. We show the next two main results. (1)
For any elliptic curve E defined over Fy , we can reduce EDLP on E to DLP in an extension
finite field of Fy by extending the above proposed method.  (2) For an drdinary elliptic curve E
defined over F, (p is a large prime), EDLP on E cannot be reduced to DLP in any extension
field of F, by any embedding. Furthermore we show an algorithm that constructs such ordinary
elliptic curves E defined over F, that makes reducing EDLP on E to DLP by embedding
impossible.

1 Introduction implementation of elliptic curve cryptosystems

Koblitz and Miller described how the group
of points on an elliptic curve over a finite field
can be wused to construct public key
cryptosystems([Mil],[Kol]). The security of
these cryptosystems is based on the elliptic

_curve discrete logarithm problem(EDLP). The
“best algorithm that has been known for solving
EDLP . is only the method of Pohlig-
Hellman([Ko2]). Since it doesn't work for the
elliptic curve over a finite field whose order is
divided by a large prime, some works on the

have been done ([Me-Va],[Be-Ca]). Recently

Menezes, Vanstbne and Okamoto([MVO])
proposed a method to reduce EDLP . ‘OIII an
elliptic curve E defined over a finite field F,

to the discrete logarithrh problcfn(DLP) m a
suitable extersion field of F, . Using» ,t_he'ir
H.Shizuya, ~ T.Itoh and
K.Sakurai([SIS]) gave a characterization for thé,
intractability of EDLP from a viewpoint of
computational complexity theory. In this
paper, we call their. mcthod ,v('[MVO]) vtihe
reducing method. |

method,




The reducing method is constructed by a
pairing defined over an m-torsion subgroup of
Itis called the Weil pairing.
If an elliptic curve is supersingular, the Weil

an elliptic curve.

pairing is defined over any m-torsion subgroup
of it. But if an elliptic curve is ordinary (non-
supersingular), there exists an m-torsion
subgroup of it which the Weil pairing can't be
defined over. So we consider to extend the
reducing method to EDLP on such m-torsion
group of an ordinary elliptic curve.

Our result of this paper is following. For
any elliptic curve E defined over Fy , we can
reduce EDLP on E to DLP in a suitable
extension field of Fy (Theorem 1).

ordinary elliptic curve E defined over F (pis

For an

a large prime) , we cannot reduce EDLP on E
to DLP in any extension field of F, by any
embedding (Theorem 2).

Section 2 contains a brief summary of the
elliptic curves that we will need later. Section 3
explains the reducing method.
mentions the case that we cannot apply the
reducing method and includes two subsection
4-1 and 4-2. Subsection 4-1 discusses how we
can extend the reducing method to EDLP on
any ordinary elliptic curve E defined over Fyr.
Subsection 4-2 shows why we cannot reduce
EDLP on an ordinary elliptic curves E
defined over F, to DLP in any extension field
of F, by embedding. Section 5 constructs
ordinary elliptic curves E defined over F,
that makes reducing EDLP on E to DLP by
embedding impossible.

notation
p aprime
r : a positive integer
q : r powers of p
F, : a finite field with q elements

Section 4

K : afield (include a finite field)

ch(K) : the characteristic of a field K
K" ' : the multiplicative group of a field K
K : a fixed algebraic closure of K

E : an elliptic curve

If we remark a field of definition
K of E, we write E/K.

#A : the cardinality of a set A

o(t) : the order of an element t of
a group

Z : the ring of integers

2 Background on Elliptic Curves

We briefly describe some properties of
elliptic curves that we will use. For more
information, see[Sil]. In the following, we

denote a finite field F, by K.

Basic Facts
Let E/K be anelliptic curve given by the

equation, called Weierstrass equation,

E :y+axy +ay=x"+ ax’+ a,+ ag

(@, 2, a, a, 3, €K) .

The j-invariant of E is an element of K
determined by a, a, a, a, and a, It has
important properties as follows.

(-1) Two elliptic curves are isomorphic (over
-I?) if and only if they have the same
Jj-invariant.

(-2) For any element j, € K , there exists an
elliptic curve defined over K  with
Jrinvariant equalto j,. Forexample, if
jo70, 1728, we let

E:y“xy =x" - 36/(, -1728)x - 1/(j, - 1728).

Then j-invariant of E is j,

The Group Law
A group law is defined over the set of

points of an elliptic curve (see Figure), and the
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set of points of an elliptic curve forms an
abelian group. We denote the identity element
oo, After this, for m € Z andP € E, we
let ' :
mP=P+...... +P (m terms) for m >0,
OP=o ,and

mP= (-m)(-P) for m< 0.
The set of K-rational points on the elliptic
curve E , denoted E(K ), is

E(K )={(x,y)€ K* | y *+axy +ay =x"+
ax’+ ax+ajU{o}.

E( K) is a subgroup of E and a finite abelian
group. So we can define the descrete logarithm
problem over it.

Figure: An elliptic curve over R.

Twist of E/K
Atwistof E/K is anelliptic curve E'/K
which is isomorphic to E over K. We
identify two twists if they are isomorphic over
K. _
Example Two elliptic curves E/K and
E,/K given below are twists each other.
E:y?*=x+ax+a,
E:y?=x+ack+ac
(a,a€ K, c is any non-quadratic residue

modulo p).”

The Weil pairing

For an integer m= 0, the m - torsion

subgroup of E, denoted E[m]; is the set of
pointsof orderm in E, i, 6 0o o
E[m]={PEE |mP=},
We fix an integer m=2 , which is prime to
p=ch(K). Let g _ be the subgroup of the mth
roots of unity in K. o
The Weil e_-Pairing is a pairing defined
over E[m] X E [m] 7 |
e, E[m] X E[m] - Yo
For a definition of the Weil e,-pairing, see [Sil].
We list some useful properties of  Weil
e -pairing.
For E[m]> S,T,S ,S,, T, T,
(e-1) Bilinear:
€.(S;+S,T)=¢_(S,, T)e (S, T)
e.(S,T+T)=e (S, T)e.(S,T,) ;
(e-2) Alternating:
e.(S,T)=e(S,T)";
(e-3) Non-degenerate:
If e (S,T)=1forall S€ E[m],
then T=o0 ;
(e-4) Identity
e.(S,S)=1forallS € E[m].

Number of Rational Points
We wish to estimate how many points

there are in E ( K ). The following Hasse's
theorem gives a bound of the number of rational
points of an elliptic curve.
Theorem ([Sil])  Let
elliptic curve . Then
| #E(K )—q—1| =2q¢"2

E/K be an

Let #E(K)=q+1—a, . If K=F, we
further have the next theorem by Deuring.

Theorem ([Deu])  Let a, be any integer
such that | a, | =2p'. Letting k (d) denote
the Kronecker class number of d, there exist




k(a,-4p) elliptic curves over F, with number
of points p+1 —a,, up to isomorphisms.

3 Reducing EDLP -to DLP in a finite
field

In this section, we briefly describe the
reducing method of EDLP via Weil pairing.
For more information, see [MVO].

First we mention about EDLP .
EDLP([K02])

Let E/F, be an elliptic curve and P be a
point of E ( F.). Given apoint RE€E E( F),
EDLP on E to the base P is the problem of
finding an integer x€ Z such that xP=R if
such an integer x exists.

Next we mention about embedding the
subgroup <P > C E(K) generated by a point

P into the multiplicative group of a finite
extension field of K . This embedding is
constructed via Weil pairing. And it is the
essence of the reducing method ((MVO]). In
the following, we denote a finite field F, by K
and fix an elliptic curve E/K , a point
P €E(K). We further assume that o(P) = m
is prime to p=ch( K ).

Embedding
Let Q be another point of order m such

that E[m] is generated by P, Q. Let K be
an extension field of K containing x . We
can define a homomorphism -
f:<P> — K"
by setting
f(nP) = e,(nP,Q).
From the definition of Weil pairing, it follows
easily that f 1is an injective homomorphism
from <P> into K" . Infact,as K° Du,,

the subgroup < P > of E is a group

isomorphism to the subgroup x _ of K".

Summary of the reducing method((IMVO))

We summarize the reducing method of
EDLP , which finds an integer x such that
R= xP for agiven R € E( K), with th
above embedding.

We can check in probablistic polynomia
time whether RE€ < P > or not.
assume that RE< P >,

So we
Since m is prime to
P , Wwe can construct an injective
from <P > into K"
as stated above. Then the problem is equal t
find an integer x suchthat f(R) = x f(P)
foragiven f(R),f(P) € K". In this way,
we can reduce EDLP to DLP in an extension
field K* of K.

Note that this reducing is invalid if m is

homomorphism f

divisible by p= ch( K ) because the above
injective homomorphism cannot be defined in
the case. The next section investigates this

case.

4 Inapplicable case

Definition Let E/F, be an elliptic

curve. If E has the properties
E[p]={o0}) for all integer t=1,

then we say that E  is supersingular.

Otherwise we say that E is ordinary.

Remark let E
elliptic curve. The definition of supersingular
says that o(T) is prime toch( K )=p for all
TEE(K ). |

be a supersingular

In the following, we denote a finite field F,
by K and fix an elliptic curve E/K , a point
P €E(K). We further assume that o(P) = m
is divisible by p=ch( K ). From the above

)




remark, it follows that E is ordinary. We will
describe EDLP on such a point of an ordinary
elliptic curve in the next two subsections.

4-1 Ordinary elliptic curves over Fr

In this subsection, we investigate the case
of q=2". Let m beexpressed by m=2%k (k
is an integer prime to 2, t is a positive integer ).
And EDLP on E tothe base P is finding an
integer x such that R=xP for given
RE€E(K ) (section 2).

As we assume that g.c.d(m,2)¥F 1, we
can't apply the reducing method ([MVO])
directly to this case. So we extend the reducing
method [MVO] as follows.

The extended reducing method

If all of the prime factors of k are small,
then we can solve this problem with
Pohlig-Hellman's method ([Ko2]).
assume that k has a large prime factor.

Let P'= 2P, R'= 2R. Then in
probablistic polynomial time, we can check
whether R' € < P' > or not ([MVQ]). If
R'€F< P'>, then R€F<P >. So we assume
that R'€<P' >. Since o( P') =k is prime

So we

to 2, we can apply the reducing method
(MVOQ])) to this case. Namely, we can work in
a suitable extension field of K and find an
integer x ' such that R'=x"'P'. Then we get
2'(R—x'P)=00 . If we assume that RE <P>,
we get (R—x'P)E< P> . From the group
theory, it follows easily that a finite cyclic group
devides m=#<P >, So we get
(R—xP)€<kP >. Now we can change the
base P of EDLP into’ kP, so we have only to
find an integer “x" such that R—x'P=x"(kP).
Since #< kP > is 2", we can easily find an

S P > has only one subgroup whose order

integer X" with Pohlig-Hellman's method
([Ko2]). So we can find an integer x by setting
x =x"+ x"k (modulo m).

The above extended reducing method is
summarized like this.

Condition : Find an integer x such that R=xP
for given R € E(K ). Let m be
expressed by m=2'k (k is an integer
prime to 2, tis a positive iniegcr ).

Method : (1)Find a non-trivial subgroup
<2'P> C <P> whose order is prime to
p=ch(K ).

(2)Embed <2'P > into the multiplicative
group of a suitable extension field of K
via an injective homorphism constructed
by Weil pairing.

(3)Change EDLP on E to the base P
into EDLP on E to the base kP . (Since
all of the prime factors of #<kP > are
small, we can easily solve.)

The above discussion to add the result of
[MVO] completes the proof of the following.

Theoreml  For any elliptic curve E/Fy
and any point P € E( Fy ), we can solve
EDLP on E (tothe base P) by reducing it to
DLP in a suitable extension field of Fr and (if
into kP
whose order devides only by 2. (For extension
degree, see [MVO], [Be-Sc))

Remark

necessary) changing the base P

We proved Theoreml for a
field Fr. In the same way,'we can prove the
corresponding theorem for a field .Fr if the
prime pis so small that we can make p-1 tables
of the discrete logaﬁmrﬁ. . . |

4-2 Ordinary ellipticcurves overF,
In this subsection, we investigate the case




of q=p. Let p be a large prime and m be

expressed by m=p'k (k is an integér prime to
P, t is a positive integer).” From Hasse's
theorem (section 2), there is a bound of
#E(K). Soan integer m must satlsfy that
(m—p—1)=2p'?,

The next result is easy to prove.
Lemma  Let p be a prime more than 7
and E/F, be an ordinary elliptic curve. We
assume there is a point P € E (K ) whose
order is divisible by p . Then a point P has
Furthermore E ( K') is a

cyclic group generated by P.

exactly order p .

So we try to solve EDLP on the above
ordinary elliptic curve, namely an elliptic curve
generated by a point of order p. In this case,
non-trivial subgroup of E ( K ) is only itself
and p is a large prime. So we cannot apply the
extended reducing method in section 4-1 to it.

We assume that E(K)=<P> canbe
embedding into the multiplicative group of a
suitable extension field K * of K via any way
instead of Weil pairing. At this time we can
reduce EDLP on E (to the base P)to DLP on
K'". But, for any integer r, there is no any
subgroup of K", whose order is p. So we
cannot embed < P > into the multiplicative
group of any extension field of K .

The next result follows the above
discussion.
Theorem2  For an elliptic curve EJF,

such that #E ( F,)=p and any point P#OO
of E (F ), we cannotreduce EDLP on E (to
the base P) to DLP in any extension field of F,
by embedding < P > into the multmhcatlve
group of it.

5 Constructmg elllptlc curves

In this section, we dcscnbe the method
constructng elliptic curve EJF, with
elements. _

In the followmg, let p be a large prlmc
We get the next result by Hasse s theorem ai
Deuring's theorem (section2). ,

Lemma  Let k (d) denote t
Kronecker class number of d. There exist
(1-4p) elliptic curves E/F, with p element
up to isomorphism.

Because of k (1-4p)=1, we get that the;
exists an elliptic curve E/F, withp elements
So we mention how to construct such an ellipt:
curve E/F, . Original work concerning this
was done by Deuring ([La2], [At-Mo], [Mo]).
In the following, we explain the essence of hi
work.

Letd be an integer such that 4p-1=b%d ( |
is an integer ). Then there is a polynomial P,(x
called class polynomial. For a definition of th
class polynomial, see [La2], [At-Mo].

The class polynomial P(x) has the
following properties.

(c-1) Py(x) is a monic polynomial with intege:

coefficients. v
(c-2) The degree of P(x) is the class number of

an order O, of an imaginary quadraﬁc

field. (For a definition of the order, see

[Sil] and for the class number, see [Lal].)
(c-3) Py(x)=0 splits completely modulo p.

Let j, be aroot of P(x)=0 (modulo p)-
Then j, gives the j-invariant of an elliptic curve
E/F, with p elements. So we make an elliptic
curve E/F, with j-invariant j, as we mentioned
in section2, and one of twists of EJF,
elliptic curve with p elements.

is an
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Goodd and goodp - o

For a given large prime p, .
mentioned above. What prime p and integer d
such that 4p-1=b’d (b is an integer) are good
We
will find a prime p and an integer d such that the

weE can

construct an elliptic curve as we

for constructing such an elliptic curve?

order O, has a small class number. Because if

the order O, has a large class number, the
degree of P,(x) is large and it is cumbersome to
construct Py(x).

Procedure for constructing an elliptic curve

We can construct an elliptic curve by the
following algorithm.

Algorithm
(p-1) Choose» an integer d such that the order

O, has a small class number from a list
 ([Ta)).

(p-2) Find a large prime p such that 4p-1=b*d

for an integer b.
(p-3) Calculate a class polynomial P (x) .
(p-4) Let j, €F, be one of the roots of
P (x)=0 ('modulo p).
(p-5) Construct an elliptic curve E/F with
j-invariant j,.

(p-6) Construct all twists of EJF,.

(p-7) For any twist E, of E/F, , fix any point
X, ¥ of E (F,) and calculate pX,.
If pX,= ,then E (F,) has exactly
p elements.

;o Remarks (1) In (p-7), we calculate

"p-multiple point in order to decide which twist
of E/F, has an order p. This follows the
section 4-2, _

(2) For a fixed integer d and any integer

b, how many primes p satisfy the -Co_ndition
such that 4p-1=bd? This is a pr‘ol’a_llevrp‘ to be

solved.
Example  We construct an clﬁpﬁé curve
by the above algorithm.

(p-1) Let d=19 then O,y has aclass number 1.
(p-2) Let p=23520860746468351934891841623
then 4p-1=19*%(1451%48496722383)".
(p-3) Calculate a class polynomial Pg(x) then
we get P g(x)=x+884736.
(p-4) Let j,= - 884736. N
P-5)Llet E:y'=x+a*x + b
a=18569100589317119948598822307,
b= 9903520314302463972586038632.
(p-6) Twist of EJF,
following, E,:y* =x’ +a,* x + b, with
a, = 18569100589317119948598822307
b, = 13617340432165887962305802991 .
(p-)LetE (F,)3 X be
(1, 12834397719522088187599559212) and
E ( F;, )3 X, be (0, 2251799813687456 ).
Calculate pX, pX, and we get pX =0,
pX,¥ . So E/F, has an order p.

with

is E,, where E | is as

Using the above E/F, and X , we
construct EDLP on E to the base X. Then
up to the present, the best algorithms that are
known for solving this problem are only the

method of Pohlig-Hellman.

We end this section by the next
conclusion.

Conclusion ~ With the above algorithm,

we can construct EDLP on E/F, such that we
cannot reduce it to DLP in any extension field.

6 Final remarks
For an ordinary elliptic curve E defined

over F, (pis a large prlme) we showed in
on E

thcorem 2 that there exists EDLP




which cannot be reduced to DLP in any
extension field of F, by any embedding. What
is the relation between such EDLP and DLP? It
is an open problem to be solved. And which of
such elliptic curve cryptosystems is good for the
implementation? It is another problem to be
considered.

7 Acknowledgements
I wish to thank Makoto Tatebayashi of
Matsushita Electric Industrial Corporation for
his helpful advice. I would like to thank
Yoshihiko Yamamoto of Osaka University for
his teaching me about the class polynomial. I
am grateful to Francois Morain for sending me
his paper [At-Mo]. I am also grateful to
Tatsuaki Okamoto for sending me his paper
[MVOQO].
References
[At-Mo] A. O. L. Atkin and F. Morain, "Elliptic
curves and primality proving",
Research Report 1256, INRIA, Juin
1990. Submitted to Math. Comp.
[Be-Ca] A. Bender and G. Castagnoli, "On the
of elliptic
Advances in

implementation curve
cryptosystems",
Cryptology - Proceedings of Crypto
'89, Lecture Notes in Computer
Science, 435 (1990), Springer-Verlag,
417-426.

[Be~Sc] T. Beth and F. Schaefer, "Non
supersingular elliptic curves for public

Abstracts  for

Eurocrypto 91 , Brighton, U.K.

155-159.

M. Deuring, '"Die

key cryptosystems",

[Deu] Typen der
Multiplikatdrenringc elliptischer

Funktionenkorper”, Abh. Math. Sem.

Hamburg 14 (1941), 197-272.
[Kol] N. Koblitz, "Elliptic cur
cryptosystems"”, Math. Comp. 48(198/
203-209. g
N. Koblitz, "A course in Numb
Theory and Cryptography”, GTM11.
Springer-Verlag, New York(1987).
[Lal] S. Lang, "Algebraic Number Theory
GTM110, Springer-Verlag,
New York(1986).
(La2] S. Lang, "Elliptic
Addison-Wesley, 1973.
[Mil] V. S. Miller, "Use of elliptic curves i
cryptography"”, Advances in Cryptology
Proceedings of Crypto'85, Lecture Note
in Computer Science, 218 (1986,
Springer-Verlag, 417-426.
[Me-Va] A. Menezes and S. Vanstone, "Th
implementaion  of

[Ko2]

Functions'

elliptic  curw

cryptosystems", Advances i1
Cryptology - Proceedings o
Auscrypt'90, Lecture Notes i
Computer  Science, 45 3(1990)

Springer-Verlag, 2-13.

[Mo] F. Morain, "Building cyclic elliptic curves
modulo large primes", Abstracts for
Eurocrypto91 , Brighton, U.K. 160-164.

[MVO] A. Menezes, S. Vanstone and T.

Okamoto,  "Reducing elliptic curve
logarithms to logarithms in a finite
field", to appear in Proc. STOC'91.

[Sil] J. H. Silverman, "The Arithmetic of

Elliptic Curves", GTM106,
Springer-Verlag, New York, 1986

[SIS] H. Shizuya, T. Itoh and K. Sakurai, "On
the Complexity of Hyperelliptic Discrete
Logarithm Problem", SCIS91.

[Ta] T. Takagi, "Syotou sc1suuronn kougl"
Kyouritu Syuppan.



