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Abstract

Koblitz ([6]) and Miller ([8]) described how the group of points on an elliptic curve
over a finite field can be used to construct public key cryptosystems. In this paper,
we show how to construct elliptic curves for secure cryptosystems. The elliptic curve
analog of the ElGamal signature scheme is also analyzed.

1 Introduction

To construct elliptic curves for secure cryptosystems, there are two ways to construct the
elliptic curves. One way, by Beth, Schaefer([1]) and Koblitz([7]), is to construct E/F,- where
the extension degree of a finite field, in which EDLP is reduced to DLP by the MOV reduction
([11]), is sufficiently large. The other way, by the author, is to construct E/F, (p is a large
prime) which makes any embedding to DLP, including the MOV reduction inapplicable
([9, 10]). The purpose of this paper is to show the construction time and application of such
elliptic curves for cryptosystems.
The results of this paper are following.

e We show what determines the running time of the algorithm to construct an elliptic
curve E/F, and give an approximate formula of the running time.

o Implementation of the algorithm on a 32 bit personal computer shows that we can
construct elliptic curves with 30 digits ~ 70 digits prime elements in a practical time.

e The elliptic curve analog of the ElGamal signature scheme shows that the elliptic curve
cryptosystems is more efficient than finite field cryptosystems.



Section 2 summarizes how to construct such an elliptic curve ([10]). Section 3 shows the
experimental results for constructing elliptic curves. Section 4 studies the elliptic curve
analog of the ElGamal signature scheme.

Notation
P : a prime
T . a positive integer

q : a power of p

#A : the cardinality of a set A

o(t) : the order of an element ¢ of a group
F, . a finite field with ¢ elements

K . a field ( including a finite field)
ch(K) : the characteristic of a field I¥

E . an elliptic curve v
If we remark a field of definition K of E , we write E/K.
(@] . the identity element of E

E(K) : the set of K -rational points on the elliptic curve L

2 Construction of elliptic curves

This section summarizes how to construct the elliptic curves that make the embedding to
DLP, including the MOV reduction, inapplicable ([10]). Such an elliptic curve is given as
E/F, with p elements. There are two phases for the construction of E/F, with p elements.

The first phase is, for a given d, to find a prime p such that dp =1+ b%d (b is an integer).
It is equivalent to find a prime p such that p = db® + db+ "—“:]— (b is an integer). We use only
d € {11,19,43,67,163}. Given an integer d, the j-invariant of E|F, with p elements, where
p satisfies p = db® + db + i}l—, is uniquely determined. It doesnot depend on p. Table 1 lists
integers d and the j-invariant.

In the case of d = 11, an algorithm to find p more than N(> 10%) is as follows.
Algorithm 1 .
1. Let b be the minimal integer satisfying the next two conditions:

Conditionl: b> [(—1+/*=%=1)/2];
Condition2: b=4,7,10 (mod 15).

Then goto 2.

2. Test the primality of p = 1182+ 116+ 3. If p is prime, then stop. If p isn’t prime, then
take the next smallest b satisfying the condition 2 and repeat 2.



This algorithm tests the primality of p one by one not for all b but for b that satisfies condition
9. We denote the reduction ratio of the number of the primality tests by e4. The condition2
differs for each integer d. Table 1 shows the condition of b to test and ¢4 for each d.
The second phase is, for a given prime p and j-invariant, to make E/F, with p elements.
Here we denote (?) as following:
oy _ J 1 ifcis a quadratic residue  (mod p)
() —1 if ¢ is a non-quadratic residue  (mod p) .

An algorithm to make E/F, with p elements is following.

Algorithm 2 .

1. Find zo € F, such that yo = xy + 3172%_].1'0 + ‘2172§_j is a quadratic residue. Then
Xyo = (yO-TO,:‘/g) € Ey(f).

2. Calculate pX,,. If pXy, = O, then Ey(F,) has exactly p elements. If not, choose t
such that (ﬁ) = —1 and find z; € F, such that y, = a3 + 3t2m1873:c1 + 2t3i7—2]8_:7 is a
quadratic residue. Then Ey(Fp) 3 (121,y3) and Ey,(F}) has just p elements.

With calculation of the Jacobi symbols we can easily determine whether an element is a
quadratic residue or not. For the Jacobi symbol, see [5]. So we can construct E/F, only by
4 calculations of the Jacobi symbol on the average plus a calculation of a p-fold element of
E/F,. Therefore the running time of this algorithm is insignificant compared to the time of
Algorithm 1.

3 The running time of Algorithm 1

First we define the density Dens(d,z) of primes represented by db* + db + 414’—1 for a given
integer d,

Dens(d,z) = 1“—(—2’)—;&(1—'), where

ra(x) = #{b < z|p = db* + db + &1 is prime }.

Algorithm 1 reduces the number of tests with a factor of ¢4 effectively. We define the effective
density Dens'(d, z),

Dens'(d,2) = Dens(d,z)/eq .

We further define Ti(z) as the average time to judge that an integer t = z? is prime and
Ty(z) as the average time to judge that an integer t ~ x? isn’t prime. Ti(z) and T,(z)
depend on a machine and the type of the primality test, deterministic or probabilistic. Now



we can write the approximate time Aptime 1(z) to find a prime p = db? + db+ “1(b > z)
with Algorithm 1 approximately as

1

Aptime 1(2) = (m

- 1)T(2) + Ti(2). (1)
The experimental results in section 4 will show this is a good approximation. The approx-
imate formula ( 1) shows the running time of Algorithm 1 depends on the density and the
time for primality test. It also shows how the reduction ratio £4 contributes to reduce the
time to find p.

There is a conjecture that there are infinitely many primes p = db* + db + 43:—1 ([4])-
If there is a density function of primes p = db® + db + ‘{‘i, we will be able to calculate
Aptime 1(z) with the density function in the same way. v

As we mentioned in Section 2, the time to construct elliptic curves mainly consists of the
time to implement the Algorithm 1. So the above results show it depends on the density
Dens'(d,z) and the time for primality test. Section 4 gives concrete examples of the running
time.

4 Implementation of Algorithm 1 and 2

We implemented Algorithm 1 and 2 to construct E/F, with p elements where p is a prime
from 30 digits to 70 digits. Then up to the present, EDLP on such an elliptic curve is secure
for all considerable attacks. We wrote a program in UBASIC that runs on a 32bit personal
computer (20MHz). We used the deterministic primality test. The experimental results will
show that such condition is enough practical for the construction of such elliptic curves.

4.1 Approximate time and running time

Let us construct elliptic curves over 30 digits prime fields one by one from the smallest. In
the following, let d be an integer of {11,19,43,67,163} and N = 10%°. First we show the
result of implementation Algorithm 1. We use Cohen-Lenstra method([2], [3]) which is a
deterministic primality test. The values Ti(V/N) and T5(V/'N) to represent the performance
of the primality test on the machine are obtained experimentally as,

Ty (V'N) = 29.26sec and Ty(VN) = 2.92sec.
4

We check the primality of the numbers p = db? + db + “£L for each d . The integer b is
chosen out of the following three intervals

Iini = [van,van + L)

3 3
Iang2 = [31174,/\1, SN+ L) (2)
lans = [Rxagn —L,2x% y.N|



where L = 5% 10% is a condition to stop and x4,y is set to [(—1 + /428=1)/2]. The column
(b) of Table 2 shows the average execution time to find a prime for the b in three range of
(2).

Next we investigate the relation between Aptime 1(z) and the actual execution time. The
density Dens'(d,z4n) is shown in the column (a) of Table 2. It is obtained approximately
as the average of each density that p = db? + db + E‘—j—l is prime for b of the above three
intervals of (2). Each density of the three intervals are found to be nearly equal. The
column (e) of Table 2 shows the approximate time Aptime 1(z4n) obtained by the above
Dens'(d,zqn),T1(N) and To(N). We see that the column (e) of Table 2 is nearly equal to
the execution time of the column (b) of Table 2.

Next we construct E/F,, E(F,) 3 X for all primes p given by the previous experiment
with Algorithm 2. The column (c) of Table 2 presents the running time for the Algorithm 2.
We see the running time for the Algorithm 2 is insignificant compared to the Algorithm 1.
As we described in section 2, we can construct E/F, only by 4 calculations of the Jacobi
symbol on the average plus a calculation of a p-fold element of E/F, for a given p. This
means the running time depends only on the order of p. So the running time for each d is
nearly equal (the column (¢) of Table 2). We list the total average time for Algorithm 1 and 2
in the column (d) of Table 2. We see the running time to make £/F, with p elements nearly
equals Aptime 1(24,y). We also see we can make an elliptic curve for secure cryptosystem,
where p is 30 digits prime, in 59.9 ~ 83.2 seconds on a 32bit personal computer(20 MHz).

Finally we list the experimental results for 40 ~ 70 digits. They were done in the same
way as the above case of 30 digits. Table 3 shows the experimental results of 40 digits. Table 4
shows the experimental results of 50 digits. Table 5 shows the experimental results of 60
digits. Table 6 shows the experimental results of 70 digits. Table 7 shows the values Ty(v/N)
and Ty(v/N) obtained experimentally for each N. In these cases, we see that Aptime 1(z)
is also a good approximation of Algorithm 1 and the running time for the Algorithm 2 is
insignificant compared to the Algorithm 1.

4.2 Comparison between the ordinary p and p = db® + db + i}—l-

Finding a prime p of the form of p = db® +db+ d% is more difficult than finding an ordinary
prime p? We know that the more primes exist in a fixed search range, the less the necessary
search time is. So we compare the number of the primes p = db* + db+ ‘—i—'f—l and the ordinary

p for the first 5+ 10° range in 30 digits ~ 70 digits. The search range is as following,

Ly, for p = db® + db + d%
/:‘\/‘1 = [/\J)]\I + L] for Ol'C“I'lé’Ll‘y P

where L = 5% 103, N = 10%,10%,10%9,10%,10%. Table 8 shows the results. We see the
number of prime p = db* + db + -‘I—T—l for d = 19,43,67,163 is always more than an ordinary
prime in the same digit. Practically we don’t test the primality of number divisible by 2
to find an ordinary prime. So we can’t compare the necessary search time from Table 8



immediately. If we search an ordinary prime except the number divisible by 2,3 and 5 and
a prime p = db® + db + -‘“’l—l for Vb € Iy n1, then we can compare {‘é times of the number of
ordinary prime in Table 8 with the number of prime p = db* + db + “Tl In such condition,
we see that searching a prime p of p = 16302 +163b+41 is faster than searching the ordinary
prime p.

4.3 Further discussion

We have seen the running time to find p nearly equals Aptime 1(z4n). This fact leads two
things. One is that the higher the density Dens'(d, z) is, the faster the time to find p is. The
column (a) and (b) of Table 2 show this. The other is that Dens’(d,z) and the primality
test determine the running time to find p, where p is nearly equal to z?. Figure 1 shows the
graph of change of Dens'(d,zq,n). We see that the order of Dens'(d,zqn) doesn’t change
in all digits. We can make F/F, with p elements fastest in the case of d = 163.

5 FElGamal signature scheme

We discribe one application of elliptic curve cryptosystems. Let E/F, be an elliptic curve,
and let P € E(F,) be a publicly known point. We denote o(P) by [. User A randomly
chooses an integer a , a secret key, and make public the point P, = aP as a public key. We
assume a message m € {m|0 < m < l}. User A sends the messeage m to a user B with her
or his signature of m. The procedure for A to make a signature (R, s) is as follows.

Procedure for signature generation ‘
1 Pick a random number & € {1,...,1} and compute
R=kP = (rgry). (3)
Here 7, is a 2 —coordinate of R and 7, is a y—coordinate of R.

2 Compute s satisfying that
sxk=(m—axr,) (mod!l) (4)

and output signature (R, s) to B.
The procedure for B to verify a signature (12, s) is as follows.
Procedure for signature verificatoin

1 Compute mP and r,P, + sR and check that they are equal as an element of elliptic curve

E.

2 A signature (R, s) is considered to be valid if it withstands the signature.



A signature generated according to the protocol is always valid since

1*rPa+s*R=rrPa+s*kP
=r P+ (m—axry)P
=mP.

The security of the ElGamal signature scheme depends on EDLP on E/F,. Suppose an
intruder tries to get « or k with the knowledge of R,m, s, P, and P. Then from the equation 4,
he gets k if and only if he gets a. So he must solve EDLP on E/Fj.

Using E/F, of section 2, where p is more than 30 digit (97 bit) and

E;y2=x3+a$+b (CL,beFP)a

as the above elliptic curve, we have next advantages.
e The length of signatures

Given the z—coordinate ry of R € E(Fp), we can determine the y—coordinate ry of R
except the sign as following,

So we transmit only (74, s, sign(ry)) instead of (R,s). The calculation of square root is easy.
o user B can restore R easily. The length of signature is about 195 bit, that is about %
times as long as the length of signature (R,s). This idea is used only when we construct an
elliptic curve over F, (p =5 ). If we construct E over Fyr ([1, 7)), we cannot determine the
y-coordinate from the a-coordinate of an element easily.
¢ The computation complexity of generating the signature

The elliptic curve that we've constructed in Section 4 has a good property that the order
I of P equals to p. So both the euation 3 and 4 require computation in the residue of p.
If we use a pre-computation table for the necessary residue computation, the computation
will be more quickly done. By the good property, we need only the residue computation of
one prime p. So we have only Lo use a remainder table of p, the computation of generating
signature will be more quickly done.

6 Conclusion

e We have shown that the density Dens'(d,zqn) and the time for primality test deter-
mines the running time of the algorithm to construct an elliptic curve E/F,. We have
also given an approximate formula of the running time.

e We have shown that we can construct E/F, with p elements in a practical time with
the deterministic primality test on a 32 bit personal computer.

o We have shown the elliptic curve analog of the ElGamal signature scheme.



d |j condition of b €d
11 [ (=2°)° b=4,7,10 (mod 15) 1/5
19 [(=2°%3 b=1,2,3 (mod 5) 3/5
43 | (=2° %3 )3 b=1,2,3,4,5,6,7,8,9 (mod 11) | 9/11
67 | (- 25*3*5*11) all b
163 | (—25 % 3 % 5 * 23 % 29)° all b
Table 1: Integers d and j-invariant and the condition of b
(a) (b) (c) (d) (e)
Dens'(d,zq4n) Average Average Total average Approximate
d time of time of time of time
algorithm 1 | algorithm 2 | algorithm 1 and 2 | Tvmel(zan)
11 0.0820 62.4 2.81 65.21 61.9
19 0.0538 80.16 3.03 83.19 80.6
43 0.0613 73.56 2.99 76.55 74.0
67 0.0645 72.06 2.85 74.91 71.6
163 0.0981 56.94 2.99 59.93 56.1
Table 2: Running time and density for 30 dgits (in seconds,
(a) (b) (c) (d) (e)
Dens'(d, x4 n) Average Average Total average Approximate
d time of time of time of time
algorithm 1 | algorithm 2 | algorithm 1 and 2 | Timel(zq4n)
11 0.064 105.72 4.97 110.69 105.24
19 0.037 137.28 5.43 142.71 138.97
43 0.0449 124.44 5.44 129.88 124.90
67 0.0452 124.08 5.13 129.21 124.46
163 0.0737 100.2 5.33 105.33 99.16

Table 3: Running time and density for 40 dgits (in seconds)




@) ®) © @ ©
Dens'(d,zan) | Average Average Total average Approximate
d time of time of time of time
algorithm 1 | algorithm 2 | algorithm 1 and 2 | Timel(zqn)
11 0.0533 163.40 7.90 171.3 163.38
19 0.0257 220.18 8.23 228.41 224.43
43 0.0361 188.92 8.43 197.35 190.46
67 0.0373 186.20 7.93 194.13 187.76
163 0.0592 158.99 8.61 167.6 157.71
Table 4: Running time and density for 50 dgits (in seconds)
(a) (b) () (d) (e)
Dens'(d,zqn) | Average Average Total average Approximate
d time of time of time of time
algorithm 1 | algorithm 2 | algorithm 1 and 2 | Temel(zq4n)
11 0.0397 "258.76 . 11.57 270.33 259.29
19 0.025 298.96 12.04 311 304.79
43 0.0299 281.21 11.83 293.04 284.65
67 0.0301 281.29 12.02 293.31 283.97
163 0.0499 243.70 11.97 255.67 243.47
Table 5: Running time and density for 60 dgits (in seconds)
@ b) © @ )
Dens'(d,zqn) | Average Average Total average Approximate
d time of time of time of time
algorithm 1 | algorithm 2 | algorithm 1 and 2 | Timel(zqn)
11 0.036 349.10 16.8 365.9 351.17
19 0.02 409.39 17.04 426.43 421.17
43 0.0249 381.9 16.57 398.47 390.18
67 0.0266 373.83 16.64 390.47 382.09
163 0.0431 333.76 17.39 351.15 336.76

Table 6: Running time and density for 70 dgits (in seconds)




digit | Ti(V'N) | To(VN)
30 29.26 2.92
40 61.98 2.96
50 109.56 3.03
60 184.98 3.07
70 2066.82 3.15

Table 7: Ty(v/N) and Ty(V'N) (in seconds)

digit prime prime prime prime prime ordinary
for d=11|for d =19 | for d = 43 | for d = §7 for d = 167 || prime
30 91 166 246 323 512 89
40 75 103 179 230 377 65
50 53 75 126 188 319 40
60 35 73 122 133 233 36
70 35 57 100 140 220 40

Table 8: Comparison of the number of primes

: Dcvw'(d-zd,N )

0,/ d=163
0,09
d:.l]
d=47
d:43
h DL:I?\\
|
| |
0.01
C e
° 3o ) 70 R d'(qIL
F,‘gutr’. [
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