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Abstract The security of elliptic curve érypfosystéms does not depend on the definition'field but on the group structure.
.. . ofan elliptic curve. So we can construct elliptic curve cryptosystems over a finite field in which we can compute modular
¥ multiplication fast. It is a great advantage over finite field discrete logarithm cryptosystems.. In this paper, we study

' the feasibility of constructing an elliptic curve cryptosystem defined over such F,. Another advantage of elliptic curve

** cryptosystems is also investigated. S " ' o B

\
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1 Introductic_)n

Koblitz ([6]) and Miller ([12]) proposed a method by which a public key cryptosystem can be constructed on thé igrou;
of points on an elliptic curve over a finite field instead of a finite field. If elliptic curve cryptosystems avoid the Menezes-
Okamoto-Vanstone reduction ([16]), then the only known attacks are the Pollard p—method ([18]) and the Pohlig-Hellman
method ([17]). Then the condition for secure cryptosystems is only to construct E[F, with #E(F,) divisible by a large
prime. In other words, the security does not depend on the group structure of the definition field F, but only on the group
structure of E(F,). Since the running time of elliptic curve cryptosystems depends deeply on the definition field, it is a
benefit for us to be able to select a definition field that enables fast modular multiplication.

On the other hand, for a finite field discrete logarithm problem (DLP), there are some attacks ([2, 9]) which depend
on the definition field. So if we construct cryptosystems based on DLP on such a field, we are compelled to enlarge the
definition field. S o

Therefore elliptic curve cryptosystems have a great advantage over Cryptosystems based on DLP, which are called finite
field cryptosystems in this paper. Using the merit that a kind of definition field of £ brings fast modular multiplication
without causing a critical attack, some works on implementation of elliptic curve cryptosystems over F,- have been done
(5, 8]). On the other hand, for elliptic curve cryptosystems over Fp, there have been no such works. Only works on secure
construction or devices have been done ([15, 13, 14]). The purpose of this paper is to investigate an elliptic curve over F,
from the point that we can select F, which gives fast modular multiplication. e o P

This paper is organized as follows. Section 2 summarizes elliptic curve crypto.systems.. Section 3 investigé.tes the
advantage of elliptic curve cryptosystems, that is we can construct elliptic curves E over F, in which we can compute
modular multiplication fast, while maintaining the security. In Section 4, we show an algorithm to construct E over such
F, and discuss the expected running time of the algorithm. The examples constructed by the algorithm are shown in
Section 5. Section 6 discusses another advantage of elliptic curve cryptosystems.

2 Elliptic curve cryptosystems

We will summarize cryptosystems using an elliptic curve over F,, where p > 5. An ellipfic curve over F, is giv'en ‘as
follows,

E:y*=2*+ Az + B (A,B € F,,44° + 2782 # 0).

Then the set of F-rational points on E (with a special element @ at infinity), denoted E(F,), is a finite abelian group,
where E(F,) = {(z,y) € FZ|y* =2 + Az + B} U {0}. _

The security of cryptosystems on E/F, chosén' appropriately depends on the size of a large prime ! with | |#E(F,).
Therefore only the condition that I is 30 digits or more is required. Here we discuss briefly how to chose E | F,, appropriately.
An elliptic curve E/F, is supersingular if and onlyifa=0 (mod p), wherea = p+1 — #E(Fp). On the other hand,
from Hasse’s theorem ([22]), the number of rational points #E(F,) satisfies that

-2p< a< 2\/13u a =P+.1 - #E(Fp)-
Therefore we can say that, for a large prime p,
E/F, is supersingular <= a = 0.

Cryptosystems on supersingular E/F, is attacked by the method of (16]. Thus we choose E/F, with a # 0. Then select
E/F, satisfying the condition that a large prime | with [ |#E(F,) does not divide p* — 1 for all small ¢. After this, we use
only such elliptic curves chosen appropriately. ., . . , o . R s :. L L L

The running time of cryptosystems on E/F, depends on the computation of kP for P GE(F,) It is _éi;@fd;nplished
by repeating doubling and adding. For the formulae, see [22]. The formulae say that one operation :(i.el,,é.ddi_tvion and
doubling) on elliptic curves requires only the arithmetic in definition field but so many-(about more than 10 multiplications).
Therefore, if we can select a definition field in which we can calculate modular multiplication fast, the running time for
computing kP will be so reduced.

3 Definition Field Analysis

If we construct elliptic curve or finite field cryptosystems over Fyr, we can select such definition field that there exists
a basis which enables fast multiplication over Fy-, for example optimal normal basis. To construct elliptic curve or finite
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field cryptosystems over F,, we had better select the definition field F, with p = 2‘ —'s (s is a small %-bit mteger)([20])
Multiplications over F, can be done by replacing.2¢ = s (mod p) without computmg a residue modulo p. Thus we can
compute multiplications over F, by repea.tmg the followmg ( 1). Do :

Let a,b € F,.

‘2e-1 .
axb = Y 22 -

e-1 e+t
= E(z. + 5Zi4e)2'  (mod p) = i:yi?' ()
i=0 i=0

This means that the smaller s is, the faster modular multiplication is. Especially when s is ‘enough small; modular
multiplication (over F,) can be accomplished by computation amount of only one multiplication of two e-bit integers. .

If we construct a finite field cryptosystem over F, with p = 2° — s, there exists an attack of the number field sieve ([9]).
The attack especially will be applied to primes p = r¢ — s for a small positive integer 7 and a nonzero integer s of small
absolute value. Since the above p = 2¢ < s is the case of r = 2, we are forced to enlarge s or e in order to avoid the attack.
To the contrary, the definition field F, with p = 2° — 5 does not bring a critical attack for the elliptic curve cryptosystems.
Since the attack is a generalization of the Gaussian integer method ([3]) to a general number field, the dlscussmn of [12]
that the index-calculus attacks do not extend to elhptlc curve cryptosystems still holds. ..

We have seen that, for elliptic curve cryptosystems, there exists a definition field F that brings fast modular multlphca.tlon
without causing a eritical attack. Therefore if we can construct E/F,(p=2¢~s, sis small) easxly, then it-is a great
a.dvanta,ge : :

4 Construction of Elliptic Curves

An elliptic curve E /F,, where pis a prlme represented by p = 2¢—s for a small s, can offer fast cryptosystems mamta.mmg
the security, as we have described above. Here we show an a.lgonthm to construct an elhptlc curve E over such F We
a.lso discuss the expected runnmg time of the algonthm

4.1 _Cdﬁstfuétion Mei;hod 1

Let p be a prime represented by p = 2¢ — s for a small integer s. For a given Fp, a natural a.lgonthm to construct an
elhptlc curve whose the number of rational points is d1v151ble by & large pnme is g'xven as follows. :

Algonthml

1. Choose A,B € F, such that 4A3 + 27B2 #0. 5 ; :

2. Let E: y* = 2° + Az + B and calculate N = #E(F,) by Schoof’s algorithm ([21]).
3. If N is divisible by a large prime then stop. If not, then goto 1.

The expected running time is given as a product of two factors, the expected time needed to test one element (i.e. A
and B) and the expected number of repetition to find a good E/F,. Obviously, the latter is almost equal to the expected
number of repetition of step 3. It is determined by the proba.bxhty that #E’( ) ofa randomly chosen E / F is dmsxble by
a large prime. As for the probability, we have the next theorem. : - ': : "

Theorem 1 ([11]) If S is a set of integers s with |s—(p+1)| < VP then the pmhability of‘#E/‘Fp EIS, pfob(#E/F,, € S)

o,
"  d#S-2)
. \/‘logp_‘ s R
From the theorem, the probablhty is roughly equa.l to the chance that a randomly chosen mteger of size a.pproxlma.tely P
is divisible by a la.rge prime. It occurs rather frequently. Actually, the probability itself is not 80 1mportant for comparison
between Algonthm 1 and Algonthm 2 shown in the next section; since both algorithms require this step.

On the other hand, the expected time needed to test A and B for each step is dominated by the running time of Schoof’s
algorithm, which is O((logp)®). It seems to work rather slow. ‘In the following section, we will show an algorithm which
works faster.

prob(#E'/F € S)




4.2 Construction Method 2

B . LI : . . B CAR SRR TS S W
We will show an algorithm using the fact that E/ Fy can be described as.the reduction modulo p of an-elliptic curve wit|
complex multiplication by an order of a quadratic field Q(v/—D), where D = 0,3 (mod 4) is a positive integer indivisibl
by the square of any odd prime ([4, 10]). Applying the fact, a primality proving algorithm is proposed ([1]). A :problen
in applying the fact is that the larger D becomes, the more difficult it is to construct E/F, correspond to an order o
Q(V=D). Therefore we set an upper bound of D to B. An algorithm to construct E/F, whose #E(F,) is divisible by :

large prime is given as follows.
Algorithm?2
1. Choose a prime p represented by p = 2¢ — s.

2. Choose-D with (=2) = 1. If such D < B does not exist, then goto step 1.
4 el ? , _ 0 8

3. If D=3 (mod 4), then check 4p = a® 4+ Db? for an integer a,b. If D=0 (mod 4), then set D = 4D’ and chéck
- 4p = a® + D'V for an integer a, b. If such integers a and b do not exist, then goto step 2. - o o

4. Set N=p+1-aand N = p+ 1+ a. Check éither N or N is divided by a large prime. If it is not divided, then gotc
. .-step 2. : - , : , i : : T

5. Calculate a class polynomial Pp(X). Take one solution jo of Pp(X) = 0 (mod p). Construct a.n éllipf,ic cin_’Veg E/Fp.
with j-invariant j, and #E(F,) eqﬁal‘ to the one divisible by a large prime, N or N. Stop. L o

In step4, we check either N or N is divided by a large prime. The size of the large prime dépends on a security level, which
will be discussed at the end of this section. : e
The expected running time of Algorithm 2 is to be investigated. Each step 1 and 2 can be done easily. In step 3, we can
also easily check by computing the expansion into continued fraction. The problem is the expected number of repetition
of step 3, which is also relation to step 5. We will discuss it later. In step 4, which is also required in Algbtifhml, We can
easily check whether an integer is divisible by a large prime. As for the expected number of repetition of step 4, we have
already discussed in Section 4.1. ‘ , _ _ ‘ S
There exists a barrier in step 5. The degree of Pp(X), denoted h(—D), is known to be O(D'2*¢). For a large D, we
can hardly construct Pp(X). Generally, in proportion as p becomes large D becomes large. At first sight, the step 5 seems
not to work well. Thus the bound B of D is important. If we can set B to be small, then there is no problem in step 5.
But it will cause the decrease of probability to pass step 2 and 3. Next we will show the probéb'ility io'pa.és"'étép 2 and 3
is actually enough large for a small B. J - . , R
As is proved later, the smaller h(—D) > 1 is, the larger the probability for D to pass step 3 is. We would use‘,a_ll D
satisfying the condition that h(—D) is smaller than or equal to at least three. The last D with h(—-D) < 3 is equal to 907.
Here we set B = 1055 (> 907). In fact, the probability to pass step 3 is almost equal with any B > 907. R
Now we show the probability to pass step 2 and 3 is enough large, regardless of p. Since the upper bound B of D equals
1055, we get that ’ : : o . ' L o s o

#{D =0,3 (mod 4)|D > 0 is indivisible by the square of any odd prime.} = 322.

Table 1 shows first D, last D and the number of D with D < 1055 and h(-D) < 10. RO SR _

- For a given p, the probability for D to pass step 2 is % On the other hand, D passes step 3 if and only if p splits into
two principal ideals in an imaginary quadrafic field Q(s/——D') So the probability for D to pass step 3 is h(+D)' .To join
these, we get the probability for D to pass step 2 and 3 is

BN . .
. [ I

1
2h(-D)’
Therefore the probability for at least one D to pasé step 2 and step 3 is given as follows.
- o 2h(~D) -1 1 3 5 7 2h(~D) — 1
A= — = 1- . - H — L — H — H —_—t— ity

DI;IB 2(-D) - ».:h(—I;I)=l2h(-D)=2 2 M_l;l)z 23 D=2 dacops 2H(=D) .

- 19318516 746_ ) - T R T

s 1-(Y (3 (2 7 v ey

-6 606 .
~ 1 waltent i (2)

We have got, regardless of p, at least one D goes to step 4 in probability almost equal to 1.
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Thus we have got the next result. The running time of step 2, 3 and 5 js a low order term respectively. So the expected
time needed to test D for each step is dominated by step 4. If we use a probabilistic primality test for step 4, the expected
running time is O((logp)®) ([19]). On the other hand, the expected number of repetition of Algorithm 2 to find a good
E/F, is almost equal to that of step 4. So it is almost equal to that of Algorithm 1. To sum up, we have seen that:

1. the expected time needed to test a candidate is O((log p)®) for Algorithm 1; -
2. the expected time needed to test a candidate is O((logp)3) for Algorithm 2;
3. the expected number of repetition of Algorithm 1 is almost equal to that of Algorithm 2.

Therefore we have seen that Algorithm 2 works rather faster than Algorithm 1. We have also seen that, for a prime p
represented by p = 2° — s (s is a small integer), the running time of Algorithm 2 is roughly equal to that of finding an
integer, of size approximately p, divisible by a large prime. In fact, we were convinced experimentally of this. So we can
easily construct secure elliptic curve cryptosystems over F, by working Algorithm 2 (see Section 5).

[ h(=D) | First D [ Last D [ Number of D
1 3 163 9
2 15 427 18
3 23 907 16
4 39 1027 46
5 47 1051 18
6 87 1048 23
7 71 859 12
8 95 1043 41
9 199 823 6
10 119 923 20

# 1: First D, Last D with h(—D) < 10andD < 1055

We will briefly discuss the size of “a large prime” in step 4 of Algorithm 2. If “a large prime” is more than 120-bit, then
the known attacks on such an elliptic curve cryptosystems require at least 20 elliptic curve operations. The amount of
necessary operations is roughly equal to that of attacks on finite field cryptosystems on F, (p is 512 bits). Sometimes lower
security is required when fast implementation is required or memory storage is limited. In such a case, “a large prime” is
replaced by a smaller prime like 97 bits. We will show examples for each case. Here we call the former case Higher Security
Case and the latter case Lower Security Case.

We calculate roughly the expected number of repetition for step 4 of Algorithm 2 in the above two cases. We have seen
that it is determined by the probability of the chance that a randomly chosen integer of size approximately p is divisible
by a large prime more than L. This probability is roughly equal to 1 — u™ where u = logp/log L ([7]). In fact we were
convinced experimentally that the probability is almost equal to the probability to pass step 4 for the next each case.

¢ Higher security Case
We set p = 2!%" — 5 (s = 1,25,39,---) and log, L = 120. As we know well, the prime of s = 1 is the 12th Mersenne

prime. Then the probability for N (N) to be divisible by a large prime more than L is
1 — (logp/log L)~ 'os?/les L — 1 _ (127/120)~1"/1% ~ 0,06
Since we have two elliptic curves for each D, the expected number of repetition for step 4 of Algorithm 2 is about 8.

o Lower security Case
7'We set p = 219 — 5 (s = 1,171,321,---) and log, L = 97. As we know well, the prime of s = 1 is the 11th Mersenne
prime. Then the probability for N (N) to be divisible by a large prime more than L is

1 — (logp/ log L)~ 'og?/18 L — 1 _ (107/97)72°/°" ~ 0.10

Since we have two elliptic curves for each D, the expected number of repetition for step 4 of Algorithm 2 is about 5.

5 Examples

In this section, we show examples constructed by Algorithm 2 described in Section 4. First we show an example in the
case that higher security is required.




¢ Higher security Case , _ L Wi
Here we set p = 2127 _ 1, _ P : SRR IV

step 2 For D =24, we get (‘T?‘) =1
step 3 Computing the expansion into continued fraction, we find that
| p = a®+ 6b?,
with
a = 10671 93179 31455 45219, - b = 3061 89089 89631 04781
step4 Set N=p+1-qaand N = p+1+a. Then
N =2x2+3 %141 78431 95503 91026 40749 96471 19418 27071,

where the last prime is a 124-bit prime.

step 5 Calculate a class polynomial Pyy(X). Then we get
Ppy(X) = X? - 4834944X + 14670139392,

Then j = 31493462074257663932556096 is one solution of Pu(X) =0 (mod p). Construct an elliptic curve E/F,
with j-invariant j and #E(F,) = N. We get

E:y*=2%+ Az + B,
where

A =915 03150 65123 53429 89289 36723 21130 54488
B = 1177 15828 25431 33059 03422 01272 67034 04901.
In the above example, #E(F,) is divisible by a 124-bit prime. So E/Fyi2r_; can offer a fast cryptosystem keeping a desirable

security.
Next we show an example in the case that lower security is allowed.

e Lower security Case
Here we set p = 2107 _ 1,

step 2 For D = 3, we get (=p§) =1.
step 3 Computing the expansion into continued fraction, we find that
4p = a? + 3p?,
with
a = 24 38789 23037 40815 ; b = 4 25314 84925 08931.
step 4 Set N=p+1-a and N=p+1+a. Then
N =2 %89 % 91156 89709 50636 59896 51314 76441,

where the last prime is a 100-bit prime.

step 5 Calculate a class polynomial P;(X). Then we get P3(X) = X. So j = 0 is one solution of P;;(X )=0 (mod p).
Construct an elliptic curve E/F, with j-invariant 0 and #E(F,) = N. We get

[P
%3

E:y*=2"+625.
| BN :
In the above example, #E( Fp) is divisible by a 100-bit prime. So E/Fyor_; can offer a fast cryptosystem keeping a
desirable security. : . S AR T T e N (7T L P
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6 Other Aspects of Security

Here we investigate another advantage of elliptic curve cryptosystems. From a security point of view, we would prevent
all cryptosystems from breaking when a cryptosystem happen to be broken. We would also reduce the probability that a
system happens to be broken. This is why it is desirable that the system parameter of a cryptosystem is changed, in each
system or periodically in the same system, to another non-isomorphic cryptosystem with the same security. On the other
hand, the running time of a cryptosystem depends on that of the fundamental operation. Therefore it is also desirable that
a different cryptosystem can be offered without changing the fundamental operation.

The system parameter of a cryptosystem on an elliptic curve E/F, is the coefficient of E, p of the deﬁmtlon field Fy,
a basepoint in E(F,) and #E(F,) (or the order of the basepoint). As we have seen in Section 2, a parameter p of the
definition field forms a part of the fundamental operation. In the case of signature or identification, #E(F,) (or' the
order of basepoint) forms other part of fundamental operation. Applying the above desirable condition to elliptic curve
cryptosystems, we had better construct non-isomorphic elliptic curves each other without. changing these parameters, p
and #E(F,). Namely it is desirable that we can construct non-isomorphic elhptlc curves over F,, each other with the same
number of rational points. :

By Hasse’s theorem, we have |a| < 2,/p fora=p+1- #E(F ). Conversely, for any integer |a| < 2,/p, there exists E/F,
with #E(F,) = p+ 1 —a ([4]). On the other hand, there are at least 2p elliptic curves over F, modulo F,-isomorphism.
Therefore there are some elliptic curves over F, with the same # E(F,) points modulo F-isomorphism. Two elliptic curves
E and E, are called isogenous if #E(F,) = #E,(F,). From the above discussion, it is desirable to construct elliptic curves
that are non-isomorphic and isogenous each other.

By Algorithm 1, we can hardly construct an elliptic curve E; isogenous to E since the probability to find such F, is too
small, O((,/p)™"). From the above point of view, Algorithm 1 is not so suitable. On the other hand, by Algorithm 2, we
can construct such elliptic curves as follows.

For any |a| < 2,/p, j-invariants of E/F, with p+ 1+ a elements are represented as a solution of

IIPowv(X)=0 (mod p), 4p = a® + Db>. (3)
¥lb

So computing another solution j; (not equal to j(E)) of ( 3), we get an elliptic curve which is not isomorphic to E but has
the same number of rational points.
We show one example. In the example of Higher Security Case (Section 5),

Pu(X) = X?-—4834944X + 14670139392
= (X-j) X -47) (modp),
where '
'j = 314934 62074 25766 39325 56096,
j1 = 170141183 46043 77382 69613 04605 19563 84575.

Then we construct an elliptic curve E/F, with j-invariant j; and #E,(F,) = N, where N is divisible by a 124-bit prime.
We get
Ei:y?=z+ Az + By,

where
A; = 1400 68970 50479 08325 24538 34292 93927 22673,
B; = 366 65585 84970 41444 39129 79404 76337 79873.

Rs described above, two elliptic curves E, E;/Fur_; are not isomorphic each other but have the same N ra.tlona.l pomts
So we can construct two different cryptosystems, implemented by the same fundamental operations.

7 Conclusions

We have investigated an elliptic curve over F, which gives fast and secure cryptosystems from the view point that we
can select F, with fast modular multiplication. We have shown an algorithm to construct such E/F, where p ='2° — s (s
is a small integer) and that the a.lgonthm can work well. Especially we have shown examples of E/F, constructed by the
algorithm for two Mersenne primes p = 21°7 — 1 and p = 2'?" — 1. Furthermore we have discussed new adva.ntage of elliptic
curve cryptosystems, which are non-isomorphic each other and implemented by the same fundamental operations.
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