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The ElGamal signature([3]) is based on the difficulty of the discrete logarithm problem(DLP). For the
ElGamal signature scheme, many variants like the NIST Digital Signature Algorithm(DSA)([10]) and a
new signature with a message recovery feature([12]) are proposed. The message recovery feature has the
advantage of small signed message length, which is effective especially in applications like identity-based
public key system([4]) and the key exchange protocol([2]). However, its security is not widely accepted
because it has been only a few years since the scheme was proposed. Even the relative security between
the new message recovery scheme and already-existing schemes is scarcely known. In this paper, we make
a strict definition of a conception of equivalent classes([14]) between signature schemes. We prove that
ElGamal is not strongly equivalent to DSA according to this definition. We show that an elliptic curve

gives the message recovery signature equivalent to both DSA and ElGamal.
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1 Introduction

The ElGamal signature([3]) is based on the difficulty of the discrete logarithm problem(DLP).
For the ElGamal signature schemes, many variants like the NIST Digital Signature Algorithm(DSA)
[10] are proposed, any of which does not have a message recovery feature. Recently new variants
with the message recovery feature are proposed([12]), which have an advantage of smaller signed
message length. Therefore they are effective especially in applications like identity-based public key
system([4]) and the key exchange protocol([2]). However, the new signatures have stood only for
a few years, so its security is not widely accepted. Therefore we would construct an ElGamal-type
message recovery signature whose security is proved to be equivalent to a widely known signature
like ElGamal or DSA with some criterion. A conception is proposed to investigate the security
relation between signature schemes([14]). The conception is useful, but it needs to be discussed
more strictly.

In this paper, we make a strict definition of the conception of equivalent classes between signa-
ture schemes and show that ElGamal is not strongly equivalent to DSA according to this definition.
The reason why a new attack([1]), called Bleichenbacher-attack, works for ElIGamal but not for
DSA can be also explained well by the conception. We found that the relation between modulo-p
arithmetic and modulo g-arithmetic is important for the equivalences between ElGamal-type sig-
natures, where F, = GF(p) is an underlying field and ¢ is the order of a basepoint. We know the
ElGamal-type signatures can be also constructed on an elliptic curve([6, 7]), which have a good
feature that they can be implemented in smaller size than finite fields([5]). We also know they have
another remarkable feature that elliptic curve signatures can choose various modulo-g arithmetics
on an underlying field FF,. By using the feature, we show that the message recovery signature on
a special elliptic curve is strongly equivalent to DSA on it.

This paper is organized as follows. Section 2 summarizes ElGamal, DSA and message recovery
signature. Section 3 discusses the conception of security equivalent and some equivalent classes
based on it. Section 4 investigates the security equivalent classes of signatures defined on elliptic
curve, and also shows an elliptic curve gives the message recovery equivalent to DSA.

2 ElGamal, DSA and message recovery signature

This section summarizes ElGamal, DSA, and the message recovery signature called MR in this
paper. We assume that in any signature schemes, the trusted authority uses system parameters,
that are a large prime p, a large prime factor ¢ of p — 1 and a basepoint g € F, = GF(p) =
{0,...,p — 1} whose order is q. These system parameters are known to all users. The signer
Alice has a secret key x4 and publishes its corresponding public key y4 = ¢°4 (mod p). The
original ElGamal signature([3]) uses a generator of F; = {1,...,p — 1} as a basepoint. However
for practical purposes([17, 14]), we use the above basepoint in [F,. Here we summarize how each
signature scheme is defined for a message m € IF}.

ElGamal

She chooses a random number k& € F*

s> and computes r; = ¢* (mod p) and 7} = r; (mod g).

Then she computes s € I, from

sk=m+rizsy (mod q). (1)



Here if s = 0, then she chooses the random number &k again. Of course such a probability is negli-
gibly small. Then the triplet (m; (71, s)) constitutes the signed message. The signature verification
is done by checking that (7, s) € F, x [F; and the next equation,

r; =g"y} (mod p). (2)

We make the sign + of r] in Equation (1) coincide with that of DSA since the following discussion
holds regardless of signs.

DSA

She chooses a random number k € FF;, and computes r; = ¢* (mod p) and rj = r; (mod g).
Then she computes s € F, from Equation (1). Here if 7{ = 0 or s = 0, then she chooses
the random number k again. Then the triplet (m;(r], s)) constitutes the signed message. The
signature verification is done by checking (7}, s) € I, x [F; and the next equation,

= (¢™°ya”* (mod p)) (mod g). (3)

Here we summarize Bleichenbacher-attack([1]) over ElGamal.

Bleichenbacher-attack:

Assume that a forger knows 3 € [, such as § =0 (mod ¢) and f* =g (mod p) for a known
t € F,. For Vm € [F,, he sets 7y = § and s =tm (mod ¢). Then (ry, s) is a valid signature on m
since gmyliry* = gmg ™t = 1.

For a given [, and g, it would be difficult to find the above 5. However, an authority can
generate [F, and g with a trapdoor 3 by repeating a natural trial([1]): first set F,, a large prime
glp—1,and p—1 = gn, next find B =lg (I € {1,---,n — 1}) such that the order of 3 is g, then
set a basepoint g = ' for 1 < t < ¢ — 1. Generally, n is sufficiently large, so this algorithm may
work well. Apparently the existence of the trapdoor B cannot be recognized easily. In the case of
DSA-signature, such r = 3 is already removed. Therefore DSA is strong against the attack.

MR
MR can be derived from ElGamal by adding the message-mask equation (4) and replacing m (resp.

*

»» she chooses a random number

1) by 1 (resp. r4) in Equation (1). To sign a message m € F
k € F,, and computes 7, = ¢* (mod p), and

ro =m~'r;  (mod p). (4)
Then she sets 7, =75 (mod ¢), and computes s,, € FF; from
smk=14+719z4 (mod gq). (5)

Here if r = 0 or s, = 0, then she chooses the random number k again. Then the signature is
given by (72, s,). The message can be recovered by checking (2, sm) € IF; x FF; and computing a
recovery equation

m = gl/s"‘y:‘;/smr{l (mod p). (6)

Another message-mask equation 7 = mr;' (mod p) and other signature equations are also
proposed in [14]. The following discussion also holds for the message-mask equation and the
signature equations in almost the same way.



3 Security equivalent classes

A conception of equivalent classes between signature schemes is proposed([14]). In this section,
we will make a strict definition of this conception and discuss the security equivalent classes between
signature schemes.

Let S1 and S2 be two signature schemes, I be a public information necessary for verifying these
signatures. Then in order to forge a valid Alice’s S1- or S2-signature for a given m without the
knowledge of her secret key, we have to solve the next two problems, Pr_S1(I, m) or Pr_S2(I, m)
respectively, where

Pr_S1(I, m) is the problem that on input I and m, outputs a valid Sl-signature S1(m) of Alice,
Pr_S2(I, m) is the problem that on input I and m, outputs a valid S2-signature S2(m) of Alice.

Then the next proposition shows that the equivalence between Pr_S1(I, m) and Pr_S2(I, m) is
related with transformability between two signatures S1 and S2.

Proposition 1 (1) If any S1-signature can be transformed into an S2-signature by a function f
in (expected) time polynomial in the size of public information for verifying S1-signature without
knowledge of the secret key, then Pr_S2(I, m) is (ezpected) polynomial-time reducible to Pr_S1(I,
m).

(2) If any S1-signature can be transformed into an S2-signature by a function f in (expected) time
polynomial in the size of public information for verifying S1-signature, and vice versa, without
knowledge of the secret key, then Pr_S1(I, m) and Pr_S2(I, m) are equivalent with respect to the
(ezpected) polynomial-time Turing reducibility.

proof: (1) For input I and m, output Pr_S2(I, m) := f(Pr_S1(I, m)). Since f runs in a (expected)
polynomial-time, Pr_S2(I, m) is (expected) polynomial-time reducible to Pr_S1(I, m).
(2) It follows immediately from the discussion of (1).

From Proposition 1, we define “strong equivalences” between signature schemes as follows.

Definition 1 Two signature schemes S1 and S2 are called strongly equivalent if any S1-signature
can be transformed into an S2-signature in (expected) time polynomial in the size of public infor-

mation for verifying S1-signature, and vice versa, without knowledge of the secret key.

Note that the transitive law holds in strong equivalences: for three signature schemes S1, S2 and
S3, if S1 and S2, and, S2 and S3 are strongly equivalent respectively, then S1 and S3 are strongly
equivalent. In order to show that two signature schemes are strongly equivalent, we must show
that any signature for a scheme can be transformed into another and vice versa. In [14], DSA and
ElGamal were erroneously said to be strongly equivalent since they did not investigate ElGamal
signatures that are not transformed into DSA signatures. The following theorem will show the
correct relation between ElGamal and DSA.

Theorem 1 Any DSA signature can be transformed in time polynomial in |p| to an ElGamal
signature without knowledge of the secret key, but some ElGamal signatures cannot be transformed.
(i.e. DSA and ElGamal are not strongly equivalent.) If we add the condition of 1y # 0 (mod q)
both to the signature generation and verification of ElGamal, then ElGamal is strongly equivalent
to DSA.



proof:  Let (r1,s) € F, x F; be a DSA signature on m € ;. First set
ri=g™y3”" (mod p).

Then (71, s) is an ElGamal signature on m since (r1,s) € F, x IF}.

On the other hand, let (r1,s) € F, x F; be an ElGamal signature on m € [F, such as g|r;.
Then the signature cannot be transformed explicitly to DSA signature since r; =r; (mod ¢) = 0.
Therefore ElGamal is not strongly equivalent to DSA. Apparently if the condition of r; # 0
(mod g¢) is added to both the signature generation and verification of ElGamal, then the ElGamal
signature which cannot be transformed to DSA is removed. Therefore it is strongly equivalent to
DSA.

Theorem 1 says that Pr_ElGamal(g, y4, m) is polynomial-time reducible to Pr_DSA(g, ya, m),
but the opposite is not. In this sense we would say that DSA is stronger against attacks than
ElGamal. Bleichenbacher-attack, which works for ElGamal but not for DSA, reflects this relation
well. Theorem 1 also makes clear the condition on which ElGamal is made strongly equivalent to
DSA, so we would say that the security relation between ElGamal and DSA become clear.

The relation between MR and DSA is correctly pointed out not to be strongly equivalent([14]).
Here we summarize why MR is not strongly equivalent to DSA. We can make r, of MR-signature
transform into r] of DSA-signature. But s, of MR cannot be transformed into s of DSA by
the following reason. The signature equation is computed on the modulo-g arithmetic, while the
message-mask equation (4) in MR is computed on the modulo-p arithmetic. Therefore the next

relation between the modulo-p arithmetic and the modulo-¢ arithmetic, that is
(m~'r; (mod p)) (mod q)#m™'r, (mod gq), (7)

reduces non-equivalences. By the same reason, MR and ElGamal are not strongly equivalent. To
sum up, we don’t know the relative security of MR to DSA or ElGamal. We cannot guarantee the
security of MR by either DSA or ElGamal, either.

We have seen that Bleichenbacher-attack works for ElGamal but not for DSA since they are

not strongly equivalent. In the same way, we show an attack, called the redundancy attack, that
works for MR but not for either DSA or ElGamal.

Redundancy attack

Assume that a forger gets Alice’s MR-signature (7, s,,) for a message m. Then the forger can
compute an MR-signature (72, §,,) for a message m without the knowledge of Alice’s secret key by
the following way:

1. computes gl/smyj"/sm =7 (mod p).
2. chooses any number n € I, such that 7, = r} + ng < p. (There are about |p/q| variants.)
3. sets a message m = 17+ (mod p) and §,, = Sp,.

4. sends (79, 5,,) as a signature of m.

We see that (s, §,,,) is a valid MR-signature for m since

gyl iyt = iyt =@ (mod p).



The redundancy attack utilizes the next facts: (i) there is redundancy between the signature
ry € F, and the necessary value r; for Equation (5); (ii) the redundancy enables a forger to
construct a new message m and the valid signature (79, §,,) by setting 7 = 7, (mod ¢) (and
Ty # 73), 8m = Sm and m = 7,7, ' (using Equation (4)). However, the fact (i) does not hold for
ry of DSA, and the fact (ii) does not hold in ElGamal for lack of the message-mask equation (4).
This is why the redundancy attack works for MR, but not for either DSA and ElGamal.

The redundancy attack is not a serious attack because it is an existential attack. However,
there might exist another attack against MR that does not work for DSA since MR is not strongly
equivalent to DSA. Especially it has been only a few years since MR was proposed, so its security
is not widely accepted. If a message recovery signature is shown to be strongly equivalent to a
widely known signature scheme like DSA, it would be safe to say that its security is guaranteed

by DSA.

4 Aspect of elliptic curves in signature schemes

The ElGamal-type signatures can be constructed in other groups, as long as DLP is hard. So
ElGamal, DSA, and MR can be also constructed on an elliptic curve, which are called ECEIG,
ECDSA, and ECMR respectively in this paper.

Elliptic curves, chosen suitably, can be implemented in smaller size than finite fields since the
most serious attacks defined on finite fields cannot be applied to elliptic curves([11]). Furthermore
there is a remarkable difference in conditions of the order ¢ of a basepoint between elliptic curves
and finite fields. In the case of finite fields, ¢ is limited to a divisor of p — 1. On the other
hand, in the case of elliptic curves E//FF,, ¢ is chosen randomly in the range determined by Hasse’s
theorem([18]): p+1—2,/p < #E(F,) <p+1+2,/p. For example, we can choose a basepoint
G € E(F,) with the order ¢ > p, which is impossible in the case of finite fields. In the previous
section, we saw that the relation between the modulo-p arithmetic and the modulo-q arithmetic is
important for the equivalence between signature schemes. Therefore such characteristics might be
suitably used on signature schemes.

We assume that the trusted authority chooses an elliptic curve E//IF, and a basepoint G € E(FF,)
with a prime order ¢q. The signer Alice has a secret key x4 and publishes the corresponding public
key Y4 = 24G. Here we summarize how each signature scheme is defined for a message m € .
The following discussion also holds in the case of E/IF-.

ECEIG

She chooses a random number k € I}, and computes
R, = kG, (8)

in E. Then she sets r; = z(R;) (mod g) and computes s € F; from Equation (1), where z(R,)
denotes the z-coordinate of Ry. Here if (R;) = 0 or s = 0, then she chooses the random number
k again. Then the triplet (m; (Ry, s)) constitutes the signed message. The signature verification is
done by checking z(R;) € [F,, s € F}, and the next equation in E,

sRy = mG + 7Yy, (9)

where r; = z(R;) (mod g).



ECDSA
She chooses a random number k € F}, computes Equation (8), and sets

ri=2z(R1) (mod gq). (10)

Then she computes s € [ from Equation (1). Here if r{ = 0 or s = 0, then she chooses
the random number k again. Then the triplet (m;(r],s)) constitutes the signed message. The
signature verification is done by checking 1, s € [F; and the next equation,

/
Ty = a:(l:-G + %YA) (mod gq). (11)

ECMR
She chooses a random number k € F;, and computes Equation (8). Then she sets

ro =m 'z(R;) (mod p), (12)

5 =72 (mod g) and computes s,, € F; from Equation (5). Here if 7, = 0 or s,, = 0, then she
chooses the random number k again. Then the signature is given by (72, $,,). The message can be
recovered by checking 7y € IF; and s, € IF;, and computing the recovery equation

T

1 /
m= :r(s—G + S—QYA)rz_l (mod p). (13)

4.1 Equivalences among ECElIG, ECDSA and ECMR

We discuss the strong equivalent classes between elliptic curve signature schemes. The equiv-
alent classes are different according to the choice of elliptic curves. In this section, we deal with
elliptic curves except for a special elliptic curve E/IF, with p-elements([8, 9]). For these dealed
elliptic curves, the order ¢ of G is always different from p from Hasse’s theorem. As for the special
elliptic curve, we will discuss in the next section.

Theorem 2 (i) Any ECDSA signature can be transformed in time polynomial in |p| to an ECEIG
signature without knowledge of the secret key.

(i) If ¢ > p, then ECEIG is strongly equivalent to ECDSA.

If ¢ < p, then there exists ECEILG that is not strongly equivalent to ECDSA.

(111) If p # q, ECMR is not strongly equivalent to either ECDSA or ECEIG.

proof: (i) Let (71, s) be an ECDSA signature on m € ;. First compute
/
R =2+ 2y,
s s

in E. Then (Ry,s) is an ECEIG signature on m. In fact, (Ry, s) satisfies (R;) € F, and s € IF,
since i = z(R;) (mod q) satisfies 7} # 0.
(ii) Let (Ry,s) be an ECEIG signature on m € FF,. First set 77 = z(R;) (mod ¢). In the case
of ¢ > p, z(R,) satisfies 1 < z(R;) < p—1 < q. So 7} = z(R;). Therefore (r}s) is an ECDSA
signature on m. Thus ECEIG is strongly equivalent to ECDSA.

On the other hand, in the case of ¢ < p, there exists an elliptic curve E/IF, with E(F,) > R,
such as z(R;) # 0 and g|z(R;). In the same way as Theorem 1, a signature with R; cannot be



transformed into an ECDSA signature. Therefore for E/IF, with E(fF,) > R; such as z(R;) # 0
and ¢|z(R,), ECEIG is not strongly equivalent to ECDSA.
(iii) From the assumption of E, the order q is different from p. Therefore in the same way as the
case of finite fields, the next relation between the modulo-p arithmetic and the modulo-g arithmetic,
that is

(m™'z(R1) (mod p)) (mod gq) #m 'z(Ry) (mod g), (14)

reduces non-equivalences.

We can construct £/F, and G with ¢ > p, on which ECEIG is strongly equivalent to ECDSA,
since constraint of the order ¢ is loose for elliptic curves. Furthermore we will show that ECEIG,
ECDSA, and ECMR on a special elliptic curve E/FF, are all strongly equivalent each other in the
next section.

4.2 Message recovery signature equivalent to ECDSA

We deal with an elliptic curve E/IF, which has p-elements over F,, denoted E, in this paper.
Such an elliptic curve can be constructed as easily as the other elliptic curve([8, 9]). Then the
system parameters are: an elliptic curve E,/IF,, a basepoint G € E,(FF,) whose order is p. For the
equivalences among ECEIG, ECDSA, and ECMR on E,/IF,, we have the next result.

Theorem 3 Let E,/IF, be an elliptic curve with #E,(F,) = p. For signature schemes on E,,
ECEIG, ECDSA, and ECMR are strongly equivalent each other.

proof: We show the next two facts,

(i) ECEIG is strongly equivalent to ECDSA,

(i) ECMR is strongly equivalent to ECDSA.

Then from the transitive law, ECEIG, ECDSA, and ECMR are strongly equivalent each other.
(i) Any ECDSA signature can be transformed into an ECEIG from Theorem 2. On the other hand,
let (Ry,s) be an ECEIG signature on a message m € F,. We set 7} = z(R;). Then (r},s) is a
DSA signature since r; # 0. Thus ECEIG is strongly equivalent to ECDSA.

(ii) Let (rq, s) be an ECDSA signature on m € IF;. We set

/
R, = 6+ ﬁYA, ro =m~'r] (mod p), and s,, = s/m (mod p).
s s
Then z(R;) = 1y, and (72, s;m) € F, x I since (r1,s) € F; x [F;, and m is recovered as follows,
1 T9 -1
m = $(;G + ;YA)TQ .

So (72, 5m) is an ECMR signature. Conversely, let (73, s,,) be an ECMR signature on m € IF;. We
compute

and recover m = z(R;)r;'. Then weset s = ms,, (mod p)and 7} = z(R;). Then (7}, s) € Fox )
since 7, = m~'z(R;) (mod p) # 0. So (7}, s) is an ECDSA signature. Thus ECMR is strongly
equivalent to ECDSA.



ElGamal-type signature requires two modulo arithmetics. One is modulo-p arithmetic in un-
derlying field F,. The other is modulo-g arithmetic for the order ¢ of a basepoint. In ElGamal-type
signature, the two modulo arithmetics are not independent. In fact a result of modulo-p arithmetic
is the input for the next modulo-q arithmetic. In the case of a finite field, the relation between
these two modulo arithmetics, as we see in Equation (7), makes the equivalences among signature
schemes impossible. On the other hand, in the case of elliptic curves the order g is chosen ran-
domly in the range determined by Hasse’s theorem. Therefore there exists the above E,/IF, with
p elements. For such an elliptic curve, two modulo arithmetics are the same. This is why ECEIG,
ECDSA, and ECMR are strongly equivalent each other. This is an advantage of elliptic curves
over finite fields.

As a concluding remark of Section 4, we discuss E//FF, and G which satisfies ¢ > p. From
Theorem 2 and 3, we see that if ¢ > p, then ECEIG is strongly equivalent to ECDSA. From
Hasse’s theorem, an elliptic curve with ¢ > p is limited to a prime-order elliptic curve, that is
#E(F,) = q. It is interesting that, for a prime-order elliptic curve, another feature is proved([16]).
In the case of E//IFy-, we cannot generate such a prime-order elliptic curve by an usual construction
of using Weil-conjecture: lifting E over a lower field, for example E/IF; or E/IFy2, to E/F,-. Then
E(FFy-) is never a prime-order since #E([F,-) is always divisible by the lifted #E(F,) or #£E(Fy2)
respectively.

5 Conclusion

In this paper, we have strictly analyzed strong equivalences between signature schemes. We
have proved that Pr_ElGamal(g, y4, m) is polynomial time reduced to Pr_DSA(g, y4, m) and shown
that ElGamal is not strongly equivalent to DSA. We have discussed that the relation between
modulo-p arithmetic and modulo g-arithmetic is important for the equivalences between ElGamal-
type signatures. We have focussed our attention on elliptic curves which have a good feature, in
addition to smaller size, that elliptic curve signatures can choose various modulo-q arithmetics on
an underlying field fF,. By using this feature, we have shown that ECEIG is strongly equivalent to
ECDSA on a prime-order elliptic curve E/IF, with #E(FF,) = ¢ > p. Furthermore we have shown
that ECEIG, ECDSA, and ECMR on an elliptic curve E,/IF, with #E,(fF,) = p are all strongly
equivalent each other. Therefore such an elliptic curve E,/F, can construct a message recovery
signature whose security is guaranteed by a widely known signature, ECDSA and ECEIG.
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