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. For a practical purpose, we often need a set of different elliptic
curve cryptosystems with the same main performances and the same funda-
mental operations. In this paper, we show such a set of different elliptic curve
cryptosystems exists. We also show such a set of different elliptic curve cryp-
tosystems can be constructed in a practical time.

1

From a security point of view, it is desirable that a cryptosystem, in each sys-
tem or periodically in the same system, is changed to different cryptosystem which
is secure if the original cryptosystem is attacked. Especially when we construct
a cryptosystem with relatively low security level for the purpose of fast encryp-
tion/decryption, it is mandatory to change the cryptosystem periodically. From a
practical point of view, it is desirable that we can change a cryptosystem by modify-
ing only a few system parameters. Especially it is desirable that main performances
of the cryptosystem (security level, running time and memory size) be fixed.

Elliptic curve cryptosystem, which was first proposed by Koblitz ([4]) and Miller
([6]), can offer a small key length cryptosystem if it avoids the Menezes-Okamoto-
Vanstone reduction ([8]). The purpose of this paper is to study elliptic curve cryp-
tosystem with the above desirable condition. We introduce the idea of

, where elliptic curves over a finite field are called each
other when they have the same number of rational points on the finite field ([10]).
Furthermore we show that such an isogenous elliptic curve cryptosystem can be
constructed in time

O((log p)2+2kL(
√
p)2
√

2+O(1)),

where L(x) = exp (
√
log x log log x). We also show that there exist many isogenous

elliptic curve cryptosystems, each of which is constructed in the above time. Since
an actual range of p for a secure elliptic curve cryptosystem over Fp is 100-bit or
more, these results mean that we can offer enough many isogenous elliptic curve
cryptosystems in a practical time.

This paper is organized as follows. Section 2 describes the ElGamal signature
scheme on an elliptic curve and discusses the parameters which determines the
main performances. Section 3.1 investigates the condition necessary to change cryp-
tosystems. Section 3.2 describes elliptic curves which give different cryptosystems,
keeping the main performances.
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2

We will summarize cryptosystems using an elliptic curve over Fp, where p ≥ 5.
An elliptic curve over Fp is given as follows,

E : y2 = x3 +Ax+B (A,B ∈ Fp, 4A3 + 27B2 6= 0).

Then the set of Fp-rational points on E (with a special element O at infinity),
denoted E(Fp), is a finite abelian group, where

E(Fp) = {(x, y) ∈ F
2
p |y

2 = x3 +Ax+B} ∪ {O}.

We show one example of elliptic curve cryptosystems, ElGamal Signature scheme
and discuss the parameters of elliptic curve cryptosystems which determine main
performances (security level, running time and memory size).
Let m ∈ Z be a message. User A sends the message m to user B with her or his

signature of m.

• Initialization
— system parameter

∗ E : y2 = x3 + ax+ b (a, b ∈ Fp ; p is a prime of n bits).
∗ P ∈ E(Fp) : a basepoint.
∗ l = ord(P ) (l is t bits).

• Key generation
User A randomly chooses an integer s as a secret key and makes public the
point PA = sP as a public key.

• Signature generation
1: User A picks a random number k ∈ {1, ..., l} and computes

R = kP = (rx, ry).(1)

Here rx = x(R) and ry = y(R).
2: User A computes

y ≡
m− srx
k

(mod l)(2)

and outputs the signature (R, y).
• Signature verification

1: User B checks that

mP = yR+ rxPA.(3)

First as for the security level, it is determined by the size of the greatest prime
divisor of l (the order of a basepoint) since the only known attacks for E/Fp chosen
appropriately are the square root attacks. Therefore the parameter l determines
the security level.
Next we discuss the fundamental operations which determine the running time.

The most critical operation is an elliptic curve addition in ( 1) and ( 3). The addition
is accomplished by the arithmetic on the definition field Fp (arithmetic modulo p).
In the signature scheme, the division modulo l (the arithmetic modulo l) is also
required. In a practical situation, the signature generation is often calculated on a
smart card which has rather poor cpu power. Therefore we often compute ( 1) in
off-line using idle-time. Thus the computation of ( 2) dominates the running time
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of the signature generation. Except for the signature scheme, the fundamental
operation of elliptic curve cryptosystems is determined by the arithmetic modulo
p (definition field). Therefore the arithmetic modulo p and modulo l are regarded
as fundamental operations of general elliptic curve cryptosystems such as ElGamal
cryptosystem/signature, Diffie-Hellman etc.
Finally as for the memory size, it is clear that the data size (secret key, public

key and system parameter) is determined by the size of l and p. To sum up, the
parameters p and l determine the main performances.

3

We consider the following scenario: Each domain of an organization, which is
independent and has equal relation with each other (for example, each laboratory
of a company, each department of a company, each university in a country, etc.),
needs a cryptosystem. In this scenario, the next conditions are often required:

1 Each domain requires a different cryptosystem with the same performances (se-
curity level, running time and memory size).
2 An user in a domain in an organization can communicate with or identify an user
in the other domain in the organization easily.

From the above condition 1, we want to construct a set of different elliptic curve
cryptosystems in such way that, if one cryptosystem of the set is attacked, the rest
are secure, and that they have the same performances. On the other hand, for
the requirement 2, any user in a domain must be able to use the other domain’s
cryptosystem easily. Therefore smaller differences between each cryptosystem are
required. Especially, the fundamental operations of each cryptosystem must be
same since any user in a domain cannot support many fundamental operations
because of the limitation of the program size.
To sum up, we want a set of different elliptic curve cryptosystems with the

same main performances and the same fundamental operations. Using such a set of
different elliptic curve cryptosystems, we can change cryptosystems for each domain
in an organization. This section demonstrates that elliptic curves over Fp can offer
such cryptosystems easily.
We first discuss a necessary condition for a set of different elliptic curve cryp-

tosystems and then investigate elliptic curves satisfying the condition.

3.1. Necessary condition for different elliptic cryptosystems. First we in-
vestigate the condition to offer a set of different elliptic curve cryptosystems. The
only known attack on elliptic curve E/Fp chosen appropriately is to compute a
logarithm for a given point. So the cryptosystem on E0/Fp0 , in which there does
not exist an isomorphism to the original E/Fp calculated in a polynomial time,
will be safe even if the cryptosystem on E/Fp should be attacked. An isomorphism
between E0/Fp0 and E/Fp exists if and only if p = p0 and j-invariant of E, j(E)
equals j(E0). Therefore the condition of the different E0/Fp0 from the original E/Fp
is either p 6= p0 or j(E) 6= j(E0) with p = p0.
Next we investigate the above condition in order to keep the same main perfor-

mances and the same fundamental operations. As we have seen in Section 2, the
parameters which influence on the main performances and fundamental operations
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are p and l. So we want to keep these parameters fixed. As for the parameter l, it
is fixed if the number of rational points is fixed. Combining the above discussion,
we see that, for the original E/Fp, we need a different E

0/Fp with j(E) 6= j(E0)
and #E(Fp) = #E

0(Fp).
By Hasse’s theorem, we have |a| · 2

√
p for a = p + 1 − #E(Fp). Conversely,

for any integer |a| · 2
√
p, there exists E/Fp with #E(Fp) = p + 1 − a ([2]). On

the other hand, there are p elliptic curves over Fp modulo isomorphism. There-
fore there exist a number of elliptic curves over Fp with a certain #E(Fp) points
modulo isomorphism. Two elliptic curves E and E1 over Fp are called isogenous
if #E(Fp) = #E1(Fp) ([10]). From the above discussion, we need elliptic curves
isogenous to the original elliptic curve modulo isomorphism.

3.2. Isogenous Elliptic Curve. In this section, we will describe the isogenous
elliptic curves modulo isomorphism. For any |a| · 2

√
p, j-invariants of E/Fp with

p+ 1± a elements are represented as a solution ofY
b0|b
PDb02(X) ≡ 0 (mod p), 4p = a2 +Db2,(4)

where Pd(X) is a polynomial uniquely determined by d. For more information
about this, we would refer the reader to [5]. An algorithm to construct the isogenous
elliptic curves modulo isomorphism is obtained by generalizing the discussion [7].

Algorithm:
1: Choose a prime p.

2: Choose D with
³
−D
p

´
= 1.

3: Check 4p = a2 +Db2 for an integer a, b. If such integers a and b do not
exist, then goto step 2.
4: Set N = p+ 1− a and eN = p+ 1 + a. Check either N or eN is divided
by a large prime. If it is not divided, then goto step 2.
5: Calculate a class polynomial PDb02(X) and solve PDb02(X) ≡ 0 (mod p)
for an integer b0 with b0|b.
6: Take a solution j0 of PDb02(X) ≡ 0 (mod p). Construct an elliptic
curves E/Fp with j-invariant j0 and #E(Fp) equal to the one divisible

by a large prime, N or eN . Stop.
In step 5, the number of the solutions j of PDb02(X) ≡ 0 (mod p) is equal to the

degree of PDb02(X), deg(PDb02(X)). Any solution j can give an elliptic curve with

the required number of rational points, N or eN . On the other hand, it is difficult
to construct PDb02(X) with a large Db02 since deg(PDb02(X)) = O(

√
Db02) (Siegel’s

result). Therefore we may choose a small D and set b0 = 1 in order to construct
only one elliptic curve over Fp as the original algorithm described in [7]. In this
case, there is no problem on the running time of step 5.

Now we discuss the running time of Algorithm. In order to construct some differ-
ent elliptic curve cryptosystems, we need compute step 5 for b0 > 1. If b0 = O(

√
p),

then construction of PDb02(X) requires O(
√
p) time. So we can not construct it in

a practical time. Therefore the size of b0 is important to the running time. So we
add one more condition to step 3 of Algorithm: b is L(

√
p)α-smooth. Here we call
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an integer L(x)α-smooth when all of its prime factors are at most L(x)α, where

L(x) = exp (
p
log x log log x).

Then the probability that a random positive integer b ·
√
p is L(

√
p)α-smooth is

L(
√
p)1/(−2α)+O(1) for p→∞ ([1]). Here we assume that the probability holds for

an integer b in step 5. In this case, Algorithm consists of three parts:

(1) Find D such that 4p = a2 +Db2 for an integer a and b, that N = p+ 1− a oreN = p+ 1 + a is divisible by a large prime, and that b is L(
√
p)α-smooth (step 2,

3 and 4);
(2) For b0|b with b0 · L(

√
p)α, construct a polynomial PDb02(X) and solve the

equation PDb02(X) ≡ 0 (mod p) (step 5);
(3) Construct an elliptic curves E/Fp with j-invariant j0 and the given number of
rational points, where j0 is a solution of PDb02(X) ≡ 0 (mod p) (step 6).

The expected running time of each step (1) ∼ (3) is analyzed as follows.
(1) The expected time needed to test a candidate is O(log3 p) by using a proba-
bilistic primality test ([9]). The expected number of repetition depends deeply on
the product of the next two probabilities:
1. the probability that N or eN is divisible by a large prime;
2. the probability that b is L(

√
p)α-smooth.

From Cramer’s conjecture, we assume that the former probability is O(log−k p) for
a positive integer k. Combining the probability of smooth integer, we see that the
product is O(L(

√
p)1/(−2α)+O(1) log−k p). The remaining problem is the number of

D necessary to be checked. It is reasonable to expect that we have to try roughly
O((log2k p)L(

√
p)1/α+O(1)) values of D by the following reason: For the bound B

on D, we would expect that there are

BX
D=1

1

2deg(PD(x))
≥

BX
D=1

1

2
√
B
=

√
B

2

values of D with 4p = a2 +Db2. Therefore the expected final D is

O((log2k p)L(
√
p)1/α+O(1))

and the expected time required in (1) is

O((log2k+3 p)L(
√
p)1/α+O(1)).

(2) Since the degree of PDb02(X) with the final D is

O(

q
log2k pL(

√
p)2α+1/α+O(1)),

the optimal choice of α is 1√
2
. So the expected time to construct a polynomial

PDb02(X) is

O(logk pL(
√
p)
√

2+O(1)).
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The remaining problem is to factorize PD(X) modulo p. It is computed in time

O((log2+3k p)L(
√
p)3
√

2+O(1)) ([3]). Therefore the expected time required in (2) is

O((log2+3k p)L(
√
p)3
√

2+O(1)).

(3) The only problem in this stage is to determine which elliptic curve of at most
6 classes modulo Fp-isomorphism with a given j-invariant has the given number of
rational points. Therefore the expected time required in (3) is O(log p).

Combining the above discussion, we conclude that the total expected time is

O((log2+3k p)L(
√
p)3
√

2+O(1))

for p → ∞. In fact, we can construct isogenous elliptic curves in deg(PDb02(x))
numbers in this expected time. Therefore we can construct such an elliptic curve
cryptosystem in time

O((log p)2+2kL(
√
p)2
√

2+O(1)).

Since we select D such that 4p = a2 + Db2 and b is L(
√
p)1/

√
2-smooth, we can

construct isogenous elliptic curves in the same time for the other b”|b with b” 6= b0

and b00 · L(
√
p)1/

√
2. From the fact that the j-invariants of these elliptic curves are

different each other ([2]), all of them satisfy the “necessary condition” in Section 3.1.
Since an actual range of p for a secure elliptic curve cryptosystem over Fp is 100-bit
or more, we conclude that we can construct enough many isogenous elliptic curve
cryptosystems in a practical time.
In the case of F2r , we can construct E/F2r not by Algorithm but by the algorithm

to find a suitable elliptic curve by computing the number of rational points of a
randomly chosen elliptic curve. But in the algorithm, we can hardly construct an
elliptic curve E1 isogenous E since the probability to find such E1 is too small. We
often construct E/F2r by lifting an elliptic curve over a small field, like F2 or F4,
to F2r . Even by this method, we can hardly construct such elliptic curves from the
same reason.

4

From a security point of view, it is desirable that a cryptosystem, in each system
or periodically in the same system, is changed to the different cryptosystem which is
secure if the original cryptosystem is attacked. For this purpose, we have proposed
isogenous elliptic curve cryptosystems which have the same parameters on the main
performances and are secure if an elliptic curve cryptosystem is attacked. We have
shown such an elliptic curve cryptosystem can be constructed in time

O((log p)2+2kL(
√
p)2
√

2+O(1)),

where L(x) = exp (
√
log x log log x). We also show that there exist enough elliptic

curve cryptosystems, each of which is constructed in this time. Since an actual
range of p for a secure elliptic curve cryptosystem over Fp is 100-bit or more, these
results mean that we can offer enough many isogenous elliptic curve cryptosystems
in a practical time.
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