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abstract At Eurocrypt’96 Bleichenbacher proposed an attack over ElGamal signature. A trapdoor is
necessary for Bleichenbacher-attack. We have investigated how to apply Bleichenbacher-attack to ElGamal
signature over elliptic curves. Bleichenbacher-attack does not necessarily work ElGamal over elliptic curves
and the trapdoor cannot be constructed well. The conception of a trapdoor might be used for a constructive
purpose such as Key-Escrow system. So we are interested how to generate a trapdoor over elliptic curves.

In this paper, we propose a new trapdoor generating algorithm and investigate how to apply the algorithm.



1 Introduction

The ElGamal signature scheme([4]) was proposed in 1985, which is based on the dif-
ficulty of the discrete logarithm problem(DLP). On the other hand, the NIST Digital
Signature Algorithm(DSA)([10]) which is one of variants of ElGamal signature was pro-
posed in 1991. There had not been remarkable differences between ElGamal and DSA,
but in 1996 Bleichenbacher proposed an attack which works on ElGamal but not on DSA.
Bleichenbacher-attack can be avoided by modifying ElGamal signature slightly. However
Bleichenbacher-attack is important from the viewpoint of of security equivalence between
signature schemes([12, 9]): the attack indicates that ElGamal is not equivalent to DSA.
Furthermore Bleichenbacher-attack points out the existence of a trapdoor over ElGamal
signature: whoever knows a trapdoor for ElGamal signature can generate any user’s valid
signature on any message. The trapdoor is constructed on a basepoint of a definition field
fF,. As for EIGamal signature, the trapdoor generating algorithm is also proposed([2]).

In the case of ElGamal signatures over elliptic curves, called ECEIG in this paper, the
author investigates how Bleichenbacher-attack is applied to ECEIG([9]). It is shown that
all ECEIG is not necessarily vulnerable to Bleichenbacher-attack. A trapdoor generating
algorithm over ECEIG is also reported in [9]. However the algorithm is not so efficient
since it is a combination of choosing a random elliptic curve suitable for ECEIG and
checking whether a basepoint of the elliptic curve satisfies the trapdoor condition. In fact,
there has not been an effective method of constructing elliptic curves which is suitable for
cyprotsystems and, at the same time, has a designated basepoint. Such a method would be
useful for constructing elliptic curves with a trapdoor over ElGamal signature. A trapdoor
* for ElGamal signature can be used for a constructive purpose like ”proxy signature”: an
authority who knows the trapdoor can generate a valid signature instead of any user.
Therefore we take interest in constructing a trapdoor algorithm over elliptic curves.

In this paper, we propose an effective method of constructing elliptic curves suitable for
cyprotsystems with a designated basepoint. Using this method, we propose an effective
trapdoor generating algorithm over ECEIG. We also discuss the running time. Furthermore
we investigate how to apply the method to construct elliptic curves suitable for cryptosys-
tems.

This paper is organized as follows. Section 2 summarizes ElGamal signature, DSA, and
Bleichenbacher-attack over ElGamal. Section 3 summarizes ElGamal signature and DSA
over elliptic curves. Section 4 shows Bleichenbacher-attack over elliptic curves and presents
a new trapdoor generating algorithm over elliptic curves. Section 4.3 investigates how to
apply the algorithm to elliptic curve cryptosystems.



2 ElGamal, DSA and Bleichenbacher-attack

This section summarizes ElGamal, DSA, and Bleichenbacher-attack. We assume that,
in any signature schemes, the trusted authority uses a common system parameters: a large
prime p, a large prime factor ¢ of p — 1 and a basepoint g € F, = GF(p) = {0,...,p — 1}
whose order is q. These system parameters are known to all users. The signer Alice has a
secret key x4 and publishes its corresponding public key y4 = g*4 (mod p). The original
ElGamal signature([4]) uses a generator of F} = {1,...,p — 1} as a basepoint. However
for practical purposes([13, 12]), we use the above basepoint in F,. Here we summarize
how each signature scheme is defined for m € [}, where m is typically a hashed value of a
message.

ElGamal
Alice chooses a random number k € F;, and computes r; = ¢* (mod p) and | =
(mod g). Then she computes s € FF; from

sk=m+riza (mod q). (1)

Here if s = 0, then she chooses the random number k& again. Of course such a probability is
negligibly small. Then the triplet (m; (r1, s)) constitutes the signed message. The signature
verification is done by checking that (1, s) € IF, x [F; and the next equation,

r=g"yi (modp). (2)

We make the sign + of 7} in Equation (1) coincide with that of DSA since the following
discussion holds regardless of signs.

DSA

Alice chooses a random number £ € F;, and computes r; = g* (mod p) and 7} = r
(mod g). Then she computes s € IF; from Equation (1). Here if r{ = 0 or s = 0, then she
chooses the random number k again. Then the triplet (m;(r], s)) constitutes the signed
message. The signature verification is done by checking (r,s) € F; x F} and the next
equation,

= (g"*y}* (mod p)) (mod g). (3)

Here we summarize Bleichenbacher-attack([2]) over ElGamal.

Bleichenbacher-attack over ElGamal:
Assume that a forger knows 8 € F; and t € F such as 3 = 0 (mod ¢) and §' = ¢
(mod p). Then he can generate any user’s valid signature on any m € [F, as follows. For

Vm € I, he sets r; = f and s =tm  (mod ¢). Then (7, s) is a valid signature on m for

m, "1 —tm/t _

any user since (7, s) satisfies the verification equation 2 as follows: g™y’tr° = g™g
1.



In the case of DSA-signature, such r; = (3 is already removed. Therefore DSA is strong
against the attack. For practical purposes, it might be significant to remove the case of
ry = 0 from ElGamal signature. Importantly, it indicates the security differences between
ElGamal and DSA([9]). Furthermore the attack points out the existence of trapdoor over
ElGamal signature. For a given FF, and g, it would be difficult to find the trapdoor 8 and
t. However, an authority might generate F, and g with a trapdoor § and ¢t. We summarize
a trapdoor generating algorithm([2]):

1. set F,, a large prime ¢|p — 1, and p — 1 = ¢n,
2. find B=1g(l €{1,---,n — 1}) such that the order of 3 is g,
3. set a basepoint g =3 for 1 <t < q—1.

We usually set a prime p to be 768 or 1,024 bits and a prime ¢ to be 160 bits or more.
The algorithm does not construct directly a definition field with a designated basepoint.
Therefore this algorithm is not so efficient. In fact we might repeat n trials on the average
before finding a suitable 3 since the number of elements with the order ¢ is ¢q. Let us change
the algorithm to the following: choose a random (3 with the order g and check whether
is divisible by ¢q. Even with the algorithm, we might repeat ¢ trials on the average before
finding a suitable § since the number of elements divisible by ¢ is n. However a trapdoor
can be used for a constructive purpose like proxy signature. Therefore we would like to
construct a definition field with a designated basepoint in order to construct ElGamal
signature with a trapdoor.

3 ECEIG and ECDSA

The ElGamal-type signatures can be constructed in other groups, as long as DLP is
hard. So ElGamal and DSA can be also constructed on an elliptic curve,the number of
elements divisible by ¢ is n and the number of elements divisible by ¢ is n and the number
of elements divisible by ¢ is n and which are called ECEIG and ECDSA in this paper. In
this section we summarize how ECEIG and ECDSA are defined for a message m € -

We assume that the trusted authority chooses an elliptic curve E/IF,(p is a large prime)
and a basepoint G € E(FF,) with a large prime order q. The signer Alice has a secret key
z4 and publishes the corresponding public key Y, = 2,G. The following discussion also
holds in the case of E/IF,-.

ECEIG

Alice chooses a random number k € IFZ7 and computes

R1 - kG, (4)



in E. Then she sets v} = z(R;) (mod ¢) and computes s € IF; from Equation (1), where
z(R,;) denotes the z-coordinate of R;. Here if either z(R;) = 0 or s = 0, then she chooses
the random number k& again. Then the triplet (m; (R, s)) constitutes the signed message.
The signature verification is done by checking z(R,) € [F,, s € [F}, and the next equation
in F,

sRy = mG + Yy, (5)

where 7} = z(R;) (mod g).
ECDSA
Alice chooses a random number k € FF;, computes Equation (4), and sets

ry =z(Ry) (mod q). (6)

Then she computes s € F; from Equation (1). Here if either 7{ = 0 or s = 0, then
she chooses another random number k£ again. Then the triplet (m; (r], s)) constitutes the
signed message. The signature verification is done by checking r{,s € [, and the next
equation,

, m T
ry = x(?G + ?IYA) (mod gq). (7)

4 Bleichenbacher-attack over elliptic curves

In Section 2 we saw that a trapdoor generating algorithm is necessary for Bleichenbacher-
attack, which needs a method to construct [F, with a designated basepoint. In the case
of elliptic curves it is reported that Bleichenbacher-attack works for ECEIG that is not
equivalent to ECDSA([9]). Furthermore two trapdoor generating algorithms are presented
in [9]. However the algorithms are not so efficient since they cannot construct directly an
elliptic curve with a designated basepoint.

The conception of a trapdoor can be used for a constructive purpose like a proxy signa-
ture. Therefore we get interested in constructing a trapdoor over elliptic curves.

This section presents a new trapdoor generating algorithm by using a feature of elliptic
curves after summarizing Bleichenbacher-attack over ECEIG.

4.1 Bleichenbacher-attack over ECEIG

We assume ¢ < p since Bleichenbacher-attack works over ECEIG only in the case of
q < p ([9]). Then the attack is as follows. Assume that a forger knows B € E(FF,) and
t € B, such as z(B) € F,, 2(B) =0 (mod g¢), and tB = G. For m € [F;, he sets Ry = B
and s =tm (mod ¢). Then (R, s) is a valid Alice’s signature on m since (R, s) satisfies
the verification equation 5 as follows:

mG + 2(Ry)Ys — sRy = mG — tm/tG = O.
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A natural-trial trapdoor generating algorithm is as follows([9]):

A natural-trial trapdoor generating algorithm over elliptic curves

1. Construct an elliptic curve with a nearly-prime-order
set E/IF,, a large prime g|#E(FF,) and #F(F,) = ng.

2. Check the trapdoor condition

find B € E(F,) with 2(B) =lg (I € {1,---,n — 1}) such that the order of B is q. If
fails, go to step 1.

3. Set a basepoint
set a basepoint G =tB for 1 < Vt < ¢ — 1.

4. Output an elliptic curve with a trapdoor
output E and G with a trapdoor ¢t and B.

The above natural-trial trapdoor generating algorithm over elliptic curves seems cannot
construct directly an elliptic curve with a designated basepoint in the same way as the case
of finite fields. In the case of elliptic curves we can take p and g whose sizes are almost the
same since there does not exist any sub-exponential algorithm to compute the logarithm
on elliptic curves chosen suitably([11]). Therefore it may often occur that an elliptic curve
of step 1 fails in step 2. So we must repeat step 1 until the elliptic curve of step 1 succeeds
in step 2. However, step 1 does not necessarily run fast([14]). It would be preferable to
construct an elliptic curve with the designated basepoint.

Another trapdoor generating algorithm presented in [9] is also a combination of choosing
a random elliptic curve and checking the existence of a designated point. Therefore this
algorithm has the same problem as the above algorithm.

4.2 A new trapdoor generating algorithm

Here we show a new trapdoor generating algorithm over elliptic curves by using a feature
that any elliptic curves has many isomorphic elliptic curves.

A new trapdoor generating algorithm

1. Choose an elliptic curve E/FF,
v’ =2 + az + b(a,b € F,)

such that #E(fF,) is divisible by a large prime ¢ and that ¢ is a quadratic residue
modulo p. Here we set u € FF,, such that > = ¢ (mod p).

2. Choose R = (r,,7,) € E(F,) such that the order of R is ¢ and that 7, is a quadratic
residue modulo p. Such R can be constructed a systematicly by finding only one



order-¢g point: set any R = (r,r,) with the order ¢. If r, is a quadratic residue
modulo p then output R. If not, compute 2R = (72, 7,) and check whether 7y, is a
quadratic residue modulo p. If not, compute 3R = (r3,, 73,) and check 73,. Continue
the computation of nR = (7, rny) until 7,, is a quadratic residue modulo p. Here
we set | € FF, such that > =7, (mod p).

3. Choose 1 < Vt < ¢q and computes
tR=G = (gz, 9y)-

Then the order of G is ¢ since t is relatively prime to q.

4. Define an isomorphism ¢ from F to E, as follows

ugq
o B(F,) 3 (2,5) » (--w, ) € By(Fy),
where E,/F, 1 y* =2 +a(;L)?x + b(;L)*. Then output the elliptic curve E, and
the basepoint ¢(G) with a trapdoor ¢(R) and ¢.

The above E, and ¢(G) generated in Algorithm 1 has a trapdoor ¢(G) and t as follows.

Theorem 1 An elliptic curve E, and a basepoint o(G) constructed by the above Algorithm
has a trapdoor p(R) and t. That is, the z-coordinate of p(R) is q and p(G) = tp(R).

proof: We show the elliptic curve E, has a trapdoor. Since ¢ is isomorphism and p(O) =
O, ¢ is homomorphism([15]). Therefore

L ¢(G) = ¢(tR) = to(R);
2. both the order of p(R) and ¢(G) are q.

Furthermore ¢(G) = (;L gz, ;2 9y), and (R) = (g, 32ry). So the z-coordinate of ¢(R) is g.

lre

This means that ¢(R) and ¢ is a trapdoor on the elliptic curve E, and the basepoint ¢(G).

Note that the existence of the trapdoor cannot be recognized easily by E,, and ¢(G). The
coefficients of F, are not necessarily divisible by ¢ since the coefficients a( ;’i—)Z and b(;qx—)?’
are represented in modulo p. Furthermore if we choose a suitable ¢ such as ;‘i— Gz, % Gy > D,
then both z- and y-coordinate of ¢(G) are not necessarily divisible by ¢ since they are
represented in modulo p.

We discuss the running time of the above trapdoor generating algorithm. The above
Algorithm requires the next two processes (in addition to the usual process of generating
an elliptic curve and a basepoint suitable for cryptosystems): finding ¢ that is a quadratic
residue modulo p and finding R of which the z coordinate is a quadratic residue modulo

p. Each condition is satisfied by two trials on the average. To sum up, the running time



of the above trapdoor generating algorithm is the same as that of constructing the usual
elliptic curves for cryptosystems.

There are many isomorphism for any elliptic curves. From the above algorithm, we
see that a suitable isomorphism can set the z-coordinate of a basepoint of elliptic curve
cryptosystems to a random quadratic residue number modulo p. In the next section we
will show another application of isomorphism defined in Algorithm 2.

4.3 Application of isomorphism over elliptic curves

This section investigates the constructive application of isomorphism over elliptic curves.
Some applications require elliptic curves with a basepoint of a small coordinate in order to
achieve a fast operation and decrease the size of system parameters([8]). For this purpose,
the isomorphism ¢ defined in Algorithm 1 is useful as follows.

Algorithm constructing elliptic curve with a small basepoint

1. Choose an elliptic curve E/F,
y? = 2° + az + b(a,b € F,)
such that #E(FF,) is divisible by a large prime q.

2. Choose G = (g, 9y) O E(IF,) such that the order of G is ¢ and that g, is a quadratic
residue modulo p.

Here we set [ € [F, such that I? =g, (mod p).

3. Define an isomorphism ¢ from E to E, as follows

o E(F,) 5 (z,y) - (—z, iy) € E,(F,),

x

where E,/F, : y> =2+ a(i—)zx + b(giw)a. Then output the elliptic curve E, and
the basepoint ¢(G) = (1, &).

By the above algorithm, we can construct an elliptic curve and a basepoint with the z-
coordinate equal to 1.

Here we discuss the security of EDLP on E, and ¢(G). In step 1 we choose a random
E with ¢q|#E(F,) for a quadratic residue ¢. The only condition added to a usual elliptic
curve for EDLP is that g is a quadratic residue. Therefore EDLP on (E, G) in step 1 is the
same security as any EDLP. On the other hand, EDLP on (E,, ¢(G)) is the same security
as EDLP on (F,G) in step 1 since (E,, ¢(G)) is isomorphic to (F,G). To sum up, EDLP
on (E,, ¢(G)) is the same security as any EDLP.

Next we discuss the performance of (E,, ¢(G)). As for the public key size, the public
key size is reduced by 25% since a user’s public key mainly consists of a basepoint’s z-

coordinate, two parameters of an elliptic curve and the user’s public key’s z-coordinate.
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As for the speed of computation of kG, the computation of addition to GG, which is required
in the computation of kG, is reduced by 10%.

5 Conclusion

In this paper, we have shown a new trapdoor generating algorithm over ECB-attack.
We have also shown the running time is the same as that of a usual construction of an
elliptic curve and a basepoint suitable for cryptosystems. This algorithm uses a suitable
isomorphism over elliptic curves. As an application of the isomorphism we have presented
an algorithm constructing elliptic curve with a small basepoint.
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