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素因数分解に基づく効率的な署名方式の提案

岡 本 健y 多 田 充y 宮 地 充 子y

1999 年，Poupard と Stern は on the 
y 署名と呼ばれる署名方式18) (PS方式)を提案した．こ
の方式は，on line の署名作成時において，剰余演算を不要にすることにより，高速な署名実現する．
本論文では，PS 方式を改良することにより，新しい on the 
y 署名を提案する．PS 方式は，秘

密鍵のサイズが法のサイズと素因数の数に依存しており，素因数の数の増大に従って秘密鍵のサイズ
が大きくなるという短所があった．提案方式は，秘密鍵の構造を変更することによって，この問題点
を解決している．これらの改善により，提案方式は計算処理量（事前計算，署名生成，検証）とデー
タサイズ（秘密鍵，署名）の 2 点に関して効率が良くなっている．PS 方式と提案方式の性能を比較
した場合，事前計算，署名生成，検証の計算量は，それぞれ 55%, 33%, 47% 以上削減可能である．
また，秘密鍵，署名サイズは，それぞれ 33%, 23% 以上削減可能である．提案方式のこのような特
徴は，現在においても計算処理や記憶量に制限のある IC カードの利用に適している．

Proposal of EÆcient Signature Schemes based on Factoring

Takeshi Okamoto,y Mitsuru Taday and Atsuko Miyajiy

In 1999, Poupard and Stern proposed on the 
y signature schemes18) (PS schemes), which
aim at minimizing the on-line computational work for the signer.
In this paper, we propose eÆcient on the 
y signature schemes which are derived from

three-pass identi�cation scheme. To construct our schemes, we improve PS schemes in the
computational work(pre-computation, on-line signature generation and veri�cation) and the
data size(secret key and signature) by changing the structure of the secret key and by ex-
tending two primes of RSA modulus to three or more primes. Compared with the previous
scheme18), the complexity of pre-computation, on-line signature generation, and veri�cation
are reduced by at least 55%, 33% and 47% respectively, and the size of secret key and signature
is also reduced by at least 33% and 23% respectively. Consequently, our proposed schemes
are suitable for a smart card application, whose CPU power or memory is rather limited.

1. は じ め に

近年，情報化社会の進展やデバイス技術の発達によ

り，IC カードや携帯端末を利用した情報通信が急増

している．このような通信の安全性を確保するため，

通信基盤の基幹技術である暗号技術，特に公開鍵基盤

となる安全な署名技術が求められている．

これらの要求に対応し，かつ利用者の利便性を保つ

ためには，署名の高速化，およびコンパクト化が要求

される．例として，ICカードを用いた電子商取引を考

える．利用者は安全性を確保するため，このカードに

署名機能を付加することが望ましい．通常，利用者は

カードリーダに ICカードを通すという操作によって，

電子決済を行なうが，利用者の利便性を向上させるた
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めに，署名の高速化が求められる．また，銀行のカー

ドやプリペイドカードという一般的な ICカードの場

合，現在における性能は，CPUが 16ビット程度，メ

モリサイズが 10K バイト程度なので，通常の計算機

と比べて，計算処理能力や記憶容量に制約がある．こ

のため，署名のコンパクト化というのも大切な要素で

ある．

署名作成に必要な計算は，事前計算と，on line で

必要となる署名生成の 2つに分類できる．署名の性能

評価において，我々はこの 2つを明確に区別しなけれ

ばならない．事前計算は，署名者が使用する機器の稼

働時にバックグラウンドで計算が可能なため，リアル

タイムの処理時間に影響を与えない．一方，署名生成

はこのような処理時間を要求するため，署名生成の効

率化は重要な課題である．

1992 年，Girault7) は，Schnorr 署名22) において

公開鍵となる素数法の代わりに RSA法（素因数が 2
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つからなる合成数）を用いる署名方式 (GPS 方式)を

提案した．Schnorr 署名では署名生成において加算，

乗算，剰余という 3種類の演算が必要であった．これ

に対し，GPS 方式は，この中で剰余を不要にしてい

るため，Schnorr署名より高速な署名生成を実現でき

る．1998年，Poupard と Stern17) は GPS方式の厳

密な安全性について考察した．本論文では，GPS 方

式のように署名生成において剰余を行なわない署名方

式を，on the 
y 署名と呼ぶことにする．

さらに 1999年，Poupardと Sternは安全性が素因

素分解に帰着する on the 
y 署名18) (PS方式)を提

案した．この方式は，公開鍵のパラメータ数が GPS

と比べて少ないため，公開鍵のサイズを削減できると

いう利点を持つ．しかしながら，PS方式における秘

密鍵のサイズは，公開鍵となる合成数法の素因数の数

に依存しており，この数値を増やすに従って秘密鍵の

サイズが大きくなり，結果として計算処理量とデータ

サイズの効率が悪くなるという問題点がある．

本論文では，素因数分解に基づく新しい on the 
y

署名を提案する．提案方式は，PS方式を改良するこ

とによって得られた方式である．提案方式の主な特徴

は，秘密鍵の構造を変更している点である．これによ

り，提案方式は PS方式と異なり，合成数法の素因数

の数を増やすことによって，秘密鍵のサイズを削減で

きる．現在，RSA暗号21) を高速化するために，公開

鍵 n の素因数の数を増やす試み23) がなされているが，

提案方式は PS方式と異なり，このような手法を容易

に適用できる．また，提案方式は認証から変換された

方式であり，この認証は正直な検証者に基づくゼロ知

識対話証明なので，他の既存方式6),18),22) と同様に，

安全性の証明16) が可能である．

さらに，提案方式は PS方式と同程度の安全性を持

ちながら，計算処理量（事前計算，署名生成，検証）と

データサイズ（秘密鍵，署名）の点で優れている．両

方の方式を比較した場合，提案方式は，事前計算，署

名生成，検証の計算量について，それぞれ 55%, 33%,

47% 以上，秘密鍵，署名のサイズについて，それぞれ

33%, 23% 以上の効率化を実現している．

本論文の構成は以下のようになる．2章では，本論

文で使用する記号や用語の定義を与える．3 章では，

PS方式について説明し，この方式の問題点を述べる．

4章，5章では，今回提案する認証方式，および署名

方式をそれぞれ述べる．また，提案方式の特徴，およ

び安全性についても検討する．6章では，提案方式で

用いる鍵やパラメータが満たすべき条件等について検

討する．7章では，提案方式のデータサイズを効率化

する方法について述べる．8章では，これまでに提案

された主要な署名方式と比較することにより，提案方

式の性能を評価する．9章で結論を述べる．

2. 準 備

本論文で用いる記号や用語について定義する．
Z : すべての整数の集合

Zp : 0 以上 p 未満の整数の集合

Z
�
p : Zp かつ p と互いに素な整数の集合

N : すべての自然数の集合

N>i : i より大きい自然数の集合

Nprime : すべての素数の集合

ajb : a は b を割り切る

jxj : x を 2進表現したときの長さ

gcd(a; b) : a と b の最大公約数

'(x) : x の Euler関数

�(x) : x の Carmichael関数

ordn(g) : 乗法群 Z
�
n における g の位数

定義 2.1 f , g を非負関数とする．このとき，
(9c > 0; 9u; 8x > u) [f(x)=g(x) < c];

(8c > 0; 9u; 8x > u) [f(x)=g(x) < c];
であるならば， それぞれ f(x) = O(g(x)); f(x) =

o(g(x)) と表記する．

定義 2.2 f を非負関数とする．このとき，

(8c > 0)[f(x) = o(1=xc)];

が成り立つのであれば，f(x) は x に関して無視でき

るという．逆に f(x) が無視できる関数でないとき，

f(x) は x に関して無視できないという．

本論文では，特に記述がない場合，「無視できる」，

「無視できない」という議論はセキュリティーパラメー

タに関して行なう．このため，特別な場合を除き，「セ

キュリティーパラメータに関して」という記述は省略

する．

定義 2.3 素因数分解問題とは，n 2 N>1 が与えられ

たとき，ajn (1 < a < n) となるような整数 a を求

める問題である．

3. 従来方式とその特徴

本章では，PS方式の署名と認証の両機能について

説明する．

3.1 認 証 方 式

鍵生成アルゴリズム

Step1 サイズが同じ 2 つの素数 p; q (p =

2p0 + 1; q = 2q0 + 1; (p0; q0) 2 Nprime) を

選ぶ．n = pq とする．

Step2 L 2 fp0q0; 2p0q0g に対して，ordn(g) =



Vol. 142 No. 8 素因数分解に基づく効率的な署名方式の提案 3

パラメータ : n = pq

g 2 Z�n
s = n� '(n)

証明者 検証者

公開: n, g

秘密: s

r 2R ZA
x = gr mod n

x����������������!
e ����������������� e 2R ZB

y = r + es
y����������������!

確認:

y
?
< A

x
?
= gy�ne mod n

図 1 Poupard-Stern 認証方式
Fig. 1 Poupard-Stern identi�cation scheme

L となるような g 2 Z�n を選ぶ．
Step3 s = n� '(n) = p+ q � 1 を計算する．

Step4 証明者の公開鍵を (n; g)，秘密鍵を s と

する．

認証アルゴリズム 証明者は，以下に示す手順を ` 回

繰り返す．すべてのラウンドで検証に合格すれば

受理する．そうでなければ受理しない．

Step1 証明者は，乱数 r 2 ZA を選び，x =

gr mod n を計算し，x を検証者に送る．こ

こで，A < n; jAj = �+ k + jBj である☆．

Step2 検証者は，乱数 e 2 ZB を選び，証明者
に送る．

Step3 証明者は，y = r + se (Z上) を計算し，

検証者に送る．

Step4 検証者は，y < A および x =

gy�ne mod n の両方が成り立つか確認する．

3.2 署 名 方 式

鍵生成アルゴリズム 認証方式と同じ手順により，署

名者の鍵を作成する．

署名生成アルゴリズム

入力: 署名者の公開鍵 (n; g)，秘密鍵 s，メッ

セージ m

出力: メッセージ m に対する署名 (e; y)

☆ k はセキュリティーパラメータであり，k = jnj=2，� は情報
リークパラメータであり，1=� が無視できるように設定する．ま
た，B と ` は 1=B` が無視できるように設定する．

Step1 乱数 r 2 ZA を選ぶ．
Step2 x = gr mod n を計算する．

Step3 e = H(x;m) を計算する．ここで，H
は H : f0; 1g� ! f0; 1gjBj となるハッシュ
関数である☆☆．

Step4 y = r + se (Z上) を計算する．

Step5 (e; y)を出力する．

署名検証アルゴリズム

入力: 署名者の公開鍵 (n; g)，メッセージ m，署

名 (e; y)

出力: 「受理」 あるいは 「不可」

Step1 もし，y < A が成り立たなければ「拒

否」を出力してプロトコルを停止する．

Step2 x0 = gy�ne mod nを計算する．

Step3 e0 = H(x0;m)を計算する．

Step4 もし，e = e0 が成り立つのであれば「受

理」を出力，そうでないならば「不可」を出

力する．

3.3 特徴と問題点

本節では，文章の簡単化のため，署名に関して記述

するが，認証についても同様に考察できる．

検証者は，検証時に署名の一部となる y のサイズ

を明示的に確認する必要がある．このような確認は，

既存方式4),8),22) には見らないため，PS方式の特徴と

☆☆ B は 1=B が無視できるように設定する．
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いえる．

秘密鍵 s = n�'(n) は，公開鍵 n のみに依存して

いる．また，s と n は法 '(n) において合同であり，

s のサイズは n のサイズに比べ約 1=2 である．また，

s は，サイズを大きくすると，計算処理量 (事前計算，

署名生成，検証)とデータサイズ (署名)の両方に関し

て効率が悪くなる．

署名の一部である y = r + se の演算は，Z上で行

なうが，se のサイズより大きいサイズの乱数 r を加

えることにより，秘密鍵の情報漏洩を防いでいる (秘

密情報のマスク化)．このため，y のサイズは se のサ

イズに依存する．

公開鍵 g の位数 L は公開されないため，検証者は，

x = gy�ne mod n の検証時において，jy � nej ビッ
トの指数演算を行なう必要がある．

上記のような特徴から，PS方式には以下のような

問題点がある．

公開鍵 n の拘束 公開鍵 n の素因数の数を，3つ以

上に変更した場合，秘密鍵 sのサイズが増大する．

例えば，n = pqr (p; q; r 2 Nprime) というように

3 つの素数の積からなる n を用いてシステムを構

成した場合，秘密鍵は s = n� '(n) = n� (p�
1)(q�1)(r�1) = pq+qr+rp�(p+q+r)+1と

なり，秘密鍵のサイズが変更前と比べ，約 3=2 に

なる．このことは前述の通り，計算処理量とデー

タサイズの両方が増加するため，変更前と比べて

効率が悪くなる．

検証における計算量の増大 検証式 x = gy�ne mod

n に関して，y < A なので，jyj < jnej という条
件が成り立つ．このため，検証者の計算量は jnej
の増加に従って増大する．例えば，jnj = 1024,

jej = 80 とすると 約 1104 ビットの指数演算が

必要である．これは現在使用されている主要な方

式13),21),22) と比べて計算量が非常に大きい．

4. 認 証 方 式

本章では，提案する認証方式について説明する．本

章で記述するパラメータは，2k+b � 2a; q < 2k � 2c

という条件を満たす．鍵やパラメータに関する詳細に

ついては，6 章に記述する．

鍵生成アルゴリズム

Step1 素因数の数 t 2 N>1 を決定する．次

に，サイズが同じ t 個 の素数 pi (pi =

2qi + 1; qi 2 Nprime ; 1 � i � t) を選ぶ．

n =
Qt

i=1
pi とする．

Step2 ordn(g) = q (qj�(n)) となるような

g 2 Z�n を選ぶ．
Step3 乱数 z 2 Z2c を生成する．

Step4 s = z mod q を計算する．

Step5 証明者の公開鍵を (n; g; z) ，秘密鍵を s

とする．

認証アルゴリズム 証明者は，以下に示す手順を ` 回

繰り返す．すべてのラウンドで検証に合格すれば

受理する．そうでなければ受理しない．

Step1 証明者は，乱数 r 2 Z2a を選び，x =

gr mod nを計算し，x を検証者に送る．

Step2 検証者は，乱数 e 2 Z2b を選び，証明者

に送る．

Step3 証明者は，y = r + se (Z上) を計算し

検証者に送る．

Step4 検証者は，jyj � a + 1 および x =

gy�ze mod n の両方が成り立つか確認する．

4.1 変更点と利点

前述のとおり，PS方式の公開鍵 nは，効率の観点

から，RSA法を用いなければならなかった．このと

き，s のサイズは n のサイズの約 1=2 になる．これ

に対し，提案方式の秘密鍵は，s = z mod q となるの

で，s のサイズは，q のサイズと同程度になる．提案

方式に対する攻撃として，6.1 章に記述しているよう

な q に依存する攻撃を考えた場合，計算量は O(
p
q)

となり，指数時間かかるため，実装環境では q のサイ

ズを小さくとることができる．

また，検証式に関して，PS方式は x = gy�ne mod n

であったが，提案方式は x = gy�ze mod nとなり，指

数部分のパラメータが n から z に変更されている．z

のサイズは，n のサイズより小さくできるため，提案

方式は PS方式と比べ，検証時の計算量を大幅に削減

できる．

上記のような変更により，提案方式は以下のような

手法を利用できる．

中国人剰余定理の利用 事前計算 x = gr mod n の

計算を速くするため，中国人剰余定理を用いる方

法がある．このとき，n の素因数の数を PS方式

より増やした場合，計算量はさらに削減できる．

例えば素因数の数を 2から 3に変更した場合，計

算量は素因数の数が 2 の場合と比べて約 4=9 に

なる．

4.2 安 全 性

提案する認証は，知識の対話証明であり，その中で

もゼロ知識対話証明と呼ばれる方式である．本論文に

おいて，対話証明の定義は文献 4)に従う．また，安全

性の証明のために素因数分解問題の困難性を仮定する．
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パラメータ : n =
Qt

i=1
pi (t 2 N>1 )

g 2 Z�n
z 2R Z2c (c � k + 2�)

s = z mod q

証明者 検証者

公開: n, g, z

秘密: s

r 2R Z2a

x = gr mod n
x����������������!
e ����������������� e 2R Z2b

y = r + se
y����������������!

確認:

y
?� a+ 1

x
?
= gy�ze mod n

図 2 提案型認証方式
Fig. 2 Proposed identi�cation scheme

次の補題を準備する．

補題 4.1 n は任意の整数， L は �(n) の倍数であり，

Lのサイズは jnj の多項式で抑えられるとする．この
とき，入力 (n; L) に対し，O(jnjjLj) の計算量で n の

素因数を出力する確率的多項式時間 Turing機械を構

成できる．

証明 この補題は，Miller12) により示された．例とし

て，n を異なる素数の積からなる合成数とするとき，

以下のようなアルゴリズムを用いる．

素因数分解アルゴリズム 表記として，f(x) は 整数

x の多項式で表現されるような関数とする．この

とき，a � f(jnj) となるような全ての整数 a に

対して以下を実行する．

Step 1 ajn が成り立つか確認する．もし，成り
立つのであれば a を出力する．

Step 2 a � b � maxfK : 2K jLg となるよう
なある整数 a; b に対して

gcd((aL=2
b

mod n)� 1; n) = c

を計算する．もし，c 6= 1 ならば，c を出力

する．

このアルゴリズムの計算量は，O(jnjjLj) である．任
意の合成数を素因数分解するアルゴリズムの詳細は，

文献 12) に記述されている． �

提案する認証方式は，統計的ゼロ知識証明であるこ

とを証明する，完全性，健全性，統計的ゼロ知識性を

それぞれ示す．証明の手法は，いずれも文献 17)，18)

に従う．

定理 4.2 [完全性] 認証アルゴリズムは，完全である．

証明 正直な証明者 P と正直な検証者 V が，認証

アルゴリズムを実行したとき，jsej < jrj � a より，

y (= r + se) � a+ 1 となる．また，

gy�ze = gr+(z modq)e�ze = gr = x mod n

なので，このようなアルゴリズムの実行は，常に検証

式が成り立つ． �

定理 4.3 [健全性] 認証アルゴリズムは，健全である．

証明 不正な証明者を P � とする．ここで，P � は乱

数テープ ! を持つ確率的多項式時間 Turing 機械で

ある．P � を用いて，以下のような確率的多項式時間

Turing機械 M を構成する．

最初に M は，2 つの乱数 ~g 2 Z
�
n; ~z 2

f2k+�; � � � ; 2c � 1g を選び，攻撃対象となる公開鍵
を新たに (n; ~g; ~z) と設定する．

偽造アルゴリズム M は以下に示す手順を ` 回に達

するか，あるいはアルゴリズムの停止が宣言され

るまで繰り返す．

Step1 乱数テープ ! と公開情報を P � に与え，

x 2 Z�n を得る．
Step2 Z2b の中から，今回のラウンドにおいて，

まだ選択されていない整数をランダムに選ぶ．

次に，この整数 を e として P � に与え，検
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証式が成り立つような y が得られたかどう

か確認する．その後，P � の状態 (P � はプロ

グラム化されている)をクリアにして，Step1

の終了時と同じにする．このような試行を 2b

回繰り返す．

Step3 もし P � から検証式の成り立つ 2 組

(e1; y1), (e2; y2)を得たのであれば，(Y;E) =

(y1� y2; e1� e2) を出力して，アルゴリズム
を停止する．

V は， P � によって，1=2b` + " (" > 0) 以上の確

率で受理すると仮定する．このとき，偽造アルゴリズ

ムを 1回試行することより，M が (Y;E) を出力する

確率は，分割補題 (Splitting Lemma)16) より "=2 以

上であり，計算量は O(2b`�) となる．ここで，� は `

ラウンドにおける平均実行時間である．

次に，M は偽造アルゴリズムを jnj=" 回繰り返す．
このとき，偽造に成功する確率は，

1�
�
1� "

2

� jnj
" = 1�

�
1� "

2

�� 2

"

�
� jnj

2

�
> 1� e�jnj

であり，計算量は O(2bjnj`�=") となる．また，x =

~gy1�~ze1 = ~gy2�~ze2 より，~gY�zE = 1 mod n なので，

L = Y � ~zE は ~g の位数の倍数になる．さらに，~g の

位数が �(n) である確率は，

'(�(n))

'(n)
=

'(
Q

i
qi)

2t
Q

i
qi

=
1

2

Y
i

�
1� 1

qi

�
>

1

22t

である．最後に，M は Miller のアルゴリズム12) を

用いて n の素因数を求める．このアルゴリズムの計

算量は O(jnjjLj) = O(jnjO(1)) である．

上記のような操作により，M は O(2bjnj`�=" +

jnjO(1)) の計算量で，n の素因数を求めることがで

きる．もし，" が無視できない確率ならば，M は多

項式時間で公開鍵 n の素因数を求められるが，この

ことは素因数分解問題の困難性に矛盾する． �

定理 4.4 [統計的ゼロ知識性] qT=2a が無視できると

仮定する．ここで，T は k の関数であり，同一鍵に

対する認証アルゴリズムの最大繰り返し回数とする．

このとき，認証アルゴリズムは，統計的ゼロ知識性を

もつ．

証明 任意の検証者を V � とする．このとき，P と

V � の対話を再構成する確率的多項式時間 Turing 機

械（シミュレータ） TMV � を考え，以下のように構

成する．

模倣アルゴリズム TMV � は (x0; e0; y0) の出力が `

組になるまで，以下を繰り返す．

Step1 乱数 e0 2 Z2b と y0 2 f�; � � � ; 2a � 1g

を選ぶ．ここで，� = (2b � 1)(2k � 1) で

ある．

Step2 x0 = gy
0�ze0 mod n を計算する．

Step3 V � に x0 を 入力し，e を得る．

Step4 もし，e = e0 ならば (x0; e0; y0) を出力

する．そうでなければ今回のラウンドを無効

にする．

整数 A，正の整数 �，関数 F : Zn! Z2a に対して

N (F;A;�)は，e = F (gy�ze)であり，(e; y) 2 Z2b�
fA; � � � ; A+��1gとなるような集合の要素数とする．
このとき，F (gy�ze) = e; z = s mod n より，任意の

整数 d 6= 0 に対して，g(y+sd)�z(e+d) = e 6= e+ d な

ので，Z2b�fA; � � � ; A+��1gの集合を��s(2b�1)
と 2s(2b � 1) の部分集合に分類したとき，前者には

必ず 1組の (e; y) ，後者には高々1組の (e; y) が存在

する．このため，� = (2b � 1)(2k � 1) � s(2b � 1)

より，�� � � N (F;A;�) � �+� が成り立つ．

P と V � の対話により，(x; e; y) の組を得る確率を

p(x; e; y) とする．このとき，

p(�; �; 
) =
X

0�r<2a

Pr

2
64 gr mod n = �

F (gr) = �

r+ sF (gr) = 


3
75

=
1

2a
�

0
B@ 0 � 
 � s� < 2a

F (�) = �

� = g
�z� mod n

1
CA

となる．ここで，� は特性関数であり，述語 P に関

して，P が真ならば �(P ) = 1，偽ならば �(P ) = 0

となる．

同様に，TMV � が模倣アルゴリズムを実行するこ

とによって (x; e; y) の組を得る確率を p0(x; e; y) とす

ると，
p0(�; �; 
)

=
X

0�r<2a

Pr

2
64 e = �

y = 


� = g
�z� mod n

����� F (�) = �

3
75

= �

0
B@ � � 
 < 2a

F (�) = �

� = g
�z� mod n

1
CA
,
N (F;�; 2a � �)

となる．

1ラウンドにおける p(�; �; 
) と p0(�; �; 
) の差異

の総和を，
�0 =

X
�;�;


���p(�; �; 
)� p0(�; �; 
)
���

とする．このとき，
�0 = 2(1�N (F;�; 2a � �)=2a);

2a � � � N (F;�; 2a � �);

� � (2b � 1)2q (* 2k�1 � q < 2k);
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より，

�0 < 8q(2b � 1)=2a

となる．これより，T ラウンドの繰り返しによる差

異は，

�T =
X

�i;�i;
i
i�T

����� Pr [(�i; �i; 
i) = (xi; ei; yi)]

� Pr [(�i; �i; 
i) = (x0i; e
0
i; y

0
i)]

�����
< 8(2b � 1)

qT

2a
となる． このとき，qT=2a は仮定より無視できるの

で，�T は統計的に識別不可能である． �

5. 署 名 方 式

表記として，H は H : f0; 1g� ! f0; 1gb となる
ハッシュ関数を表す．

鍵生成アルゴリズム 認証と同じ手順により，署名者

の鍵を作成する．

署名生成アルゴリズム

入力: 署名者の公開鍵 (n; g; z)、秘密鍵 s、メッ

セージ m

出力: メッセージ m に対する署名 (e; y)

Step1 乱数 r 2 Z2a を選ぶ．

Step2 x = gr mod n を計算する．

Step3 e = H(x;m)を計算する．

Step4 y = r + se (Z上) を計算する．

Step5 (e; y)を出力する．

署名検証アルゴリズム

入力: 署名者の公開鍵 (n; g; z)，メッセージ m，

署名 (e; y)

出力: 「受理」 あるいは 「不可」

Step1 もし，jyj � a+ 1 が成り立たなければ

「拒否」を出力してプロトコルを停止する．

Step2 x0 = gy�ze mod nを計算する．

Step3 e0 = H(x0;m)を計算する．

Step4 もし，e = e0 が成り立つのであれば「受

理」を出力，そうでないならば「不可」を出

力する．

5.1 安 全 性

これまで提案されてきた on the 
y 署名7),18) は，

いずれも認証を署名に変換した方式である．これらの

方式の安全性は，文献 16)�19) に記述されている．提
案する署名の安全性は，これらの結果を用いることに

よって考察できる．

本節では，メッセージ m に対する署名を (x; e; y)

とする．また，安全性の証明のために，素因数分解問

題の困難性およびランダムオラクルモデルを仮定する．

認証の場合，b は定数であり，` は k に依存していた．

この設定を変更することによって，以下のような補題

を導ける．

補題 5.1 認証アルゴリズムに関して，` = 1 とし，

1=2b および 2bq=2a は無視できるように設定する．こ

のとき，認証アルゴリズムは，正直な検証者に基づく

統計的ゼロ知識対話証明である．

証明 定理 4.2 と同様の考察により，この認証アルゴ

リズムは，完全である．

定理 4.3および文献 22)より，もし，攻撃者Aが " >

1=2b の確率で偽造に成功するならば，O(1="+jnjO(1))

の計算量で，公開鍵 n の素因数を分解できる．よっ

て，この認証アルゴリズムは，健全である．

P; V の対話に関して，以下のような確率的多項式

時間 Turing 機械 (シミュレータ) TMV を考える．

最初に，TMV は定理 4.3 と同様の手順により，新

しい公開鍵 (n; ~g; ~z) を設定する．次に，TMV は 2

つの乱数 e0 2 Z2b , y
0 2 f�; � � � ; 2a � 1g を選び，

x0 = ~gy
0�~z mod n を計算する．

定理 4.4と同様に，P と V の対話により， (x; e; y)

の組を得る確率を p(x; e; y) とする．このとき，

p(�; �; 
) =

�

0
B@ ~g
�~z� mod n = �

R(�) = �


 � s� 2 Z2a

1
CA

2a
となる．ここで，R は乱数 � 2 Z2b を生成する関数

である．同様に，TMV に関する確率は，

p0(�; �; 
) =

�

0
B@ ~g
�~z� mod n = �

R(�) = �

� � 
 < 2a

1
CA

N (R;�; 2a � �)
となる．このとき，

�0 =
X
�;�;


���p(�; �; 
)� p0(�; �; 
)
���

とすると，�0 < 8 �2bq=2a であり，仮定より，2bq=2a
は無視できるので，この認証アルゴリズムは，統計的

ゼロ知識性をもつ． �

定理 5.2 1=2b および 2bq=2a が無視できると仮定す

る．このとき，提案する署名方式は，適応的選択文章

攻撃に対して，存在的偽造不可である．

証明 補題 5.1は，署名方式に対して分岐補題 (Forking

Lemma)16) と呼ばれる補題を適用するための条件を

すべて満たしている．以下では，分岐補題を用いて，

素因数分解問題を解く特殊な 2つの署名が作成できる

ことを示す．詳細は文献 16)に記述されている．

適応的選択文章攻撃を行う攻撃者を A とする．こ
こで，A は確率的多項式時間 Turing 機械である．A
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を用いて以下のような確率的多項式時間 Turing 機械

M を構成する．

最初に，M は定理 4.3 と同様の手順により，新し

い公開鍵 (n; ~g; ~z) を設定する．

署名オラクルをシミュレートするため，M は補題

5.1と同様に，乱数 e0; y0 を選び，x0を計算する．次に，

M は メッセージ m に関する署名として，(x0; e0; y0)

を A に返す．
また，ランダムオラクルの答えとして，M は A の
乱数テープを固定して，A のアルゴリズムを 2度起動

する．そして，2度目の質問に対しては，別のランダ

ムオラクルを用いることによって，1度目とは異なっ

た答えを返す．このような操作を繰り返すことにより，

最終的に M は， (x; e; y), (x; e0; y0) というような同

一メッセージに対する 2つの異なった署名を得ること

ができる．

最後に，定理 4.3 と同様の操作を行うことにより，

M は無視できない確率で公開鍵 n を素因数分解する

ことができる．しかしながら，このことは素因数分解

問題の困難性の仮定に矛盾する． �

6. パラメータと実装に関する記述

本章では，提案方式のパラメータが満たすべき条件

や，実装における注意点について記述する．

6.1 安全性に関するパラメータ

aと bの関係 a; b は，a � b+ k + � という条件を

満たす．ここで，k はセキュリティーパラメータ

であり，q < 2k である．また，� は情報リーク

パラメータであり，1=2� が k 無視できるように

設定する．推奨値は，k � 160，� = 80 である．

bの値 実装環境において，b の値は認証と署名では

異なる．署名の場合，誕生日攻撃 (birthday at-

tack)によるハッシュ値の衝突を考慮に入れるた

め，認証における b` より，値を大きくする必要

がある．認証の場合，推奨値は数回程度の ` に

対して b` = 40 であり，署名の場合， 推奨値は

b = 80 である．

cの条件 もし，jyj > jezj ならば，攻撃者は証明者/
署名者になりすまし，通常のアルゴリズムに従っ

て x = gr mod n を計算することにより， 検証

式 x = gy�ze mod n となる y を容易に計算でき

る．このような攻撃を防ぐため， c � k + 2� と

いう条件を満たす必要がある．

bと `の関係 認証と署名では，b と ` の関係に違い

がある．認証の場合，b は定数であり，` は k に

依存する．このため，1=2b` は無視できるように

設定する．また，認証アルゴリズムは多項式時間

で実行できなければならないので，k は ` の多項

式で抑えられる．これに対し，署名の場合 ` = 1

に設定される．このため，b は k に依存しており，

1=2b は無視できるように設定する．

q のサイズ 攻撃者は，証明者/署名者によって生成

された x から，logg(x) = r0 2 Z�q を計算できれ
ば，提案方式を破ることができる．r0 を計算する

効率的なアルゴリズムの一つに，計算量が O(
p
q)

となる baby-step giant-step 法9)がある．qのサ

イズは，このような攻撃を考慮して設定する．推

奨値は，jqj = 160 である．

6.2 nのサイズと素因数の数

提案方式を破るために，公開鍵 n を素因数分解する

攻撃が考えられる．現在報告されている最高速の素因

数分解アルゴリズムは，数体ふるい法10) であり，計

算量は，n のサイズに依存する．一方，素因数のサイ

ズに依存する効率的なアルゴリズムとして，楕円曲線

法11) がある．合成数を素因数分解したとき，どちら

が高速になるかは，合成数のサイズと素因数の数の関

係によって異なる．アルゴリズムの計算量やその他の

条件を，文献 23) のように設定した場合，合成数のサ

イズが 1024 ビット，素因数の数が 3 ならば，数体ふ

るい法の方が高速である．しかしながら素因数の数が

4 になると，逆転が起こる．このことから，提案方式

を jnj = 1024; t = 3 ，PS方式を jnj = 1024 と設定

すると，それぞれの n を素因数分解するアルゴリズ

ムの中で最も高速なのは，両者とも数体ふるい法とな

り，両者の計算量は同程度になる．

6.3 鍵とハッシュ関数の選択

g の選択 以下のアルゴリズムにより，g を選択す

る．最初に，Z�n から 乱数 � を選択する．この

とき，� の位数が，
Qt

i=i
qi の倍数となるまで繰

り返す．1 回の試行でこのような条件を満たす

確率は，2t'(
Qt

i=i
qi)='(n) � 1 � t

t
p
n
となる．

ordn(�) = u とすると，�u=q mod n を計算し，

その結果を g とする．

Hの選択 H がランダム関数であると仮定した場合，
素因数分解が困難ならば，提案する署名方式は 5.1

章に記述した安全性を満たす．しかしながら，こ

のような関数は実際には存在しないため，実装環

境においては，衝突困難性2) を満たすことを目標

に設計された MD520) や SHA-114) を利用する．

7. データサイズの効率化

本章では，提案方式の鍵生成アルゴリズムを変更す
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ることにより，公開鍵のサイズを削減する方法を述べ

る．ここで，H0 は H0 :f0; 1g� ! f0; 1gc となるハッ
シュ関数である．

鍵生成アルゴリズム Step1と Step2は従来の提案方

式と同じである．Step3から Step5を次のように

変更する．

Step3 z = H0(n; g) を計算する．

Step4 s = z mod q を計算する．

Step5 証明者/署名者の公開鍵を (n; g) ，秘密

鍵を s とする．

検証者は，H0 と 公開鍵 (n; g) から z を計算する

ことによって，検証アルゴリズムを実行することがで

きる．このとき，公開鍵は従来の (n; g; z) から (n; g)

となり，鍵のサイズは約 2=3 になる．

8. 既存方式との比較

本章では，提案する署名と既存方式を比較すること

によって，提案方式の性能を評価する．

提案方式と既存方式の性能評価を，表 1 に示す．表

に記述された計算量に関しては，いずれも原始的な

binary法9) を用いて計算しているが，これ以外の方

式を用いた場合でも，計算量の評価結果は相対的に大

きく変わらない．

表記として，M は法のサイズを 1024ビットとした

場合の乗算剰余の回数，�� � は � ビットと � ビッ

トの整数の乗算，
�
mult 


mod Æ

�
は，法のサイズを Æ とし

た場合の乗算剰余の回数 
 を表す．また，事前計算に

おいて，可能であるならば中国人剰余定理を利用して

計算量を削減している．ただしこの場合，署名者は n

の素因数を秘密情報として持つ必要がある．

以下では，提案方式と表に記述された既存方式の特

徴について考察する．最初に，これまで提案された on

the 
y 方式と提案方式を比較する．On the 
y 方式

以外については，安全性の仮定が素因数分解と離散対

数に基づく方式に分類し，それぞれの方式と提案方式

を比較する．

8.1 On the 
y 方式

提案方式と PS方式の公開鍵 n のサイズを同一にし

たとき，提案方式は素因数の数を増やすことにより，

秘密鍵のサイズをより小さくできる．これにより，提

案方式は計算処理量とデータサイズの両方を削減でき

る．例えば，提案方式を，jnj = 1024; t = 3 ，PS方

式を jnj = 1024 と設定した場合，事前計算，署名生

成，検証の計算量は，それぞれ 55%，33%，46% 削減

できる．また秘密鍵および署名のサイズは，それぞれ

33%，23% 削減できる．このとき，それぞれの方式を

n の素因数分解を用いて破る場合の計算量は，6.2章

の記述より，現在のところ同程度である．

GPS17) の安全性について，前提となる数学の問題

は，どのような攻撃を想定するかによって異なる．想

定する攻撃が提案方式と同様の場合，すなわち攻撃者

が可能性のある任意の公開鍵に対して偽造文を作成で

きるならば，法 n (RSA法)に対する離散対数問題と

の等価性が示されている17)．また，攻撃者が 1 組の

固定された公開鍵に対してのみ偽造文が作成できると

仮定した場合，安全性の証明のために g の位数と秘

密鍵のサイズを大きくする必要があり，結果として計

算処理量とデータサイズは増大する15)．

8.2 素因数分解に基づく方式

Fiege-Fiat-Shamir署名4) の安全性は，提案方式と

同様，素因数分解問題の困難性を仮定している16)．ま

た，設定を k = 80; jnj = 1024 とすると，公開鍵

のサイズは，k � jnj = 81920 となり，提案方式の

2048ビットより大きくなる．RSA署名21) とGuillou-

Quisquater署名8) の安全性は，RSA問題の困難性を

仮定しているため，提案方式より仮定が強い．また，

RSA署名は事前計算処理が不要な代わりに，署名生

成に多くの計算量が必要である．ESIGN5) は，公開

鍵 n の構造が p2q (p; q 2 Nprime) であり，この特殊

な n から素因数 p; q を計算する問題は，2 章で定義

された素因数分解問題に帰着する．しかしながら，そ

の逆は示されていない．また，安全性の仮定は e 乗

根近似と呼ばれる問題の困難性であるが，この問題は

RSA問題に帰着するため，提案方式より安全性の仮

定が強い．

上記の既存方式4),5),8),21) において，署名者あるい

は検証者は，署名時/検証時に法 n の任意点を指数演

算しなければならない．これに対し提案方式は g と

いう固定点に対して指数演算を行う．固定点の指数演

算アルゴリズムはテーブルを利用する等により計算の

高速化が可能1) なので，提案方式はこれらの既存方式

と比べて計算量を削減できる．

8.3 離散対数に基づく方式

ElGamal署名3) は，公開鍵のサイズを p = 768 と

すると，署名サイズが 2 � jpj = 1536 になり，提案

方式より大きくなる．Schnorr 署名22) と DSA13) は，

原始元の代わりに，位数が qjp� 1 (q 2 Nprime )とな

る元 g を用いることにより，署名サイズおよび計算処

理量を小さくしている．また Schnorr署名はハッシュ

関数の効率的な利用により，署名サイズのさらなる縮

小を実現している．これらの効率的な手法は提案方式



10 情報処理学会論文誌 Aug. 2101

表 1 署名方式に関する性能評価
Table 1 Performances on signature schemes

方式
前提となる
数学の問題

事前
計算
(M)

署名生成
署名
検証
(M)

公開鍵
(ビット)

秘密鍵
(ビット)

署名長
(ビット)

提案方式
jnj = 1024; t = 3

� = 80

素因数分解 171 80 � 342 873 2048 342 582

PS 方式18)

jnj = 1024; jAj = 672
素因数分解 384 80 � 512 1656 2048 513 752

GPS 方式17)

jnj = 1024

離散対数
法 n

384 80� 1024 1796 3072 1024 1264

Feige-Fiat-Shamir4)

jnj = 1024; k = 80
素因数分解 1

mult 41

mod 1024
24 82944 81920 1104

RSA21)

jnj = 1024; e = 3
RSA 0

mult 1536

mod 1024
2 1024 1024 1024

ESIGN5)

jnj = 1024
e 乗根近似 1

mult 1

mod 342
3 1024 1024 1024

Guillou-Quisquater8)

jnj = 1024; k = 80
RSA 48

mult 121

mod 1024
313 2176 1024 1104

El Gamal3)

jpj = 768

離散対数
法 p

648
mult 2

mod 768
1945 2304 768 1536

Schnorr22)

jpj = 768; jqj = 160

離散対数
法 p

135
mult 1

mod 160
203 2464 160 240

DSA13)

jpj = 768; jqj = 160

離散対数
法 p

135
mult 2

mod 160
270 2464 160 320

においても利用されている．

上記の既存方式3),13),22) において，公開鍵のパラ

メータ数は提案方式より多い，このため，署名者が単

独で鍵を用いる場合，公開鍵のサイズは提案方式より

大きくなる．

9. ま と め

今後，さらに発展が予想される情報化社会に対応す

るため，安全でかつ効率的な署名技術は不可欠である．

これらの要求に対応するため，本論文では on the 
y

という機能を持った，効率的な署名方式を提案した．

これは，Poupard-Stern署名を改良することによって

得られた方式であり，PS方式と同程度の安全性を持

ちながら，計算処理とデータサイズの点で，PS方式

より優れた性能をもつ．

本論文では，最初に PS方式の特徴を解析し，この

方式が持つ本質的な問題点を指摘した．次に，この問

題点を解決するため，どのような特徴が望まれるかに

ついて検討した後，これらの問題点が改善された新し

い署名方式を提案した．また，この署名方式は認証を

変換した方式なので，新しい認証方式についても提案

している．安全性については，これまでに研究されて

きた成果を踏まえ，考察を行なった．また，提案方式

で用いられるパラメータが満たすべき条件や，生成方

法についても検討した．次に，現在報告されている高

速な素因数分解アルゴリズムの特徴を説明し，これら

アルゴリズムの特徴を考慮して，パラメータを設定す

ることにより，提案方式が PS方式と同程度の安全性

を持ち，かつ計算処理，伝送量の点で優れた方式を構

築できることを示した．最後に，これまで提案された

主要な署名方式と比較することによって，提案方式が

安全性と実用性を兼ね備えていることを示した．
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