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◮ Secret keys are isogenies between elliptic curves defined
over finite fields

◮ Both protocols mentioned above use supersingular elliptic
curves, but the problems considered in this talk pertain to
SIDH, or the hash function of Charles-Goren-Lauter,
rather than CSIDH

Isogenies

Let k be a finite field of characteristic p > 3, and let E ,E ′ be
two elliptic curves over k .

◮ An isogeny over k is a surjective morphism

φ : E → E ′,

defined over k , which induces a group homomorphism
from E (k) → E ′(k).

◮ Every finite subgroup K ⊆ E (k) determines a separable
isogeny φ : E → E/K , unique up to isomorphism

The endomorphism ring

◮ An endomorphism of E is an isogeny φ : E → E , possibly
defined over an extension of k .

◮ Let End(E ) (= Endk(E )) be the set of endomorphisms of
E , together with the zero map on E .

◮ End(E ) is a ring: addition is defined pointwise, and
multiplication is given by composition.

◮ End(E ) always contains Z: let n ∈ Z, then the
multiplication-by-n map

[n] : E → E

P 7→ P + · · ·+ P︸ ︷︷ ︸
n times

is an endomorphism of E .



Supersingular elliptic curves

Definition

E/k is supersingular if its endomorphism algebra

B := End(E )⊗Q
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Definition

E/k is supersingular if its endomorphism algebra

B := End(E )⊗Q

is a quaternion algebra over Q, i.e. a central simple Q-algebra
of dimension 4 over Q.

◮ The j-invariant of a supersingular elliptic curve defined
over Fp is in Fp2 .

◮ There are ⌊p−1
12

⌋+ ǫ supersingular j-invariants in Fp2 ,
where ǫ ∈ {0, 1, 2}.
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SIDH and the CGL hash function

◮ A private key in SIDH or the CGL hash is an ℓ-power
isogeny φ : E → E ′ between two supersingular curves
E ,E ′/Fp2 , for distinct primes p, ℓ.

◮ Computing such an isogeny amounts to path finding in
supersingular isogeny graphs.
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Let Φℓ(X ,Y ) be the ℓth modular polynomial.

Definition

Let p, ℓ be distinct primes. The graph G (p, ℓ) has as its
vertices supersingular j-invariants, and the number of edges
from j to j ′ is the multiplicity of j ′ as a root of Φℓ(j ,Y ).

Another way to think about G (p, ℓ):

◮ vertices are a complete set of representaives of the
isomorphism classes of supersingular elliptic curves,

◮ the edges from E to E ′ are ℓ-isogenies φ : E → E ′

◮ (we identify two isogenies φ1, φ2 if φ1 = u ◦ φ2 for some
u ∈ Aut(E ′).)
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◮ G (p, ℓ) has O(p) vertices, and every vertex has
out-degree ℓ+ 1

◮ G (p, ℓ) is connected and its diameter is O(log p)

◮ If p ≡ 1 (mod 12), the graph is an undirected
(ℓ+ 1)-regular Ramanujan graph

Pathfinding in G (p, ℓ) is equivalent to computing an ℓ-power
isogeny between two given supersingular elliptic curves.



The isogeny graph G (157, 3)

Figure: G (157, 3)

Pathfinding in G (p, ℓ) and computing

endomorphisms
Kohel gave an algorithm which, given a supersingular elliptic
curve E/Fp2 , computes an order Λ ⊆ End(E ).
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Figure: 〈1, α, β, αβ〉 = Λ ⊆ End(E ) is an order
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◮ Pathfinding in G (p, ℓ) lets one compute endomorphisms
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Theorem (Eisenträger, Hallgren, Lauter, M-, Petit)

Assume ℓ = O(log p). Then there are polynomial-time (in
log p) reductions between the problem of pathfinding in
G (p, ℓ) and computing endomorphism rings of supersingular
elliptic curves, assuming some heuristics.

Quaternion algebras

◮ Every quaternion algebra over Q is of the form, for some
a, b ∈ Q×,

H(a, b) := Q⊕Qi ⊕Qj ⊕Qij

where i2 = a, j2 = b, and ij = −ji .

Quaternion algebras

◮ Every quaternion algebra over Q is of the form, for some
a, b ∈ Q×,

H(a, b) := Q⊕Qi ⊕Qj ⊕Qij

where i2 = a, j2 = b, and ij = −ji .

◮ H(a, b) has an involution sending

α = w + xi + yj + ziz 7→ α := w − xi − yj − zij .

This lets us define the reduced norm and reduced trace of
an element α:

nrd(α) := αα = w 2 − ax2 − by 2 + abz2

trd(α) := α + α = 2w .
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For example:

◮ H(−1,−1) is ramified at {2,∞}.
◮ Let p ≡ 3 (mod 4) be a prime. Then H(−1,−p) is

ramified at {p,∞}.
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The endomorphism algebra

Again, let k be a finite field, char(K ) = p > 3.

◮ Assume E/k is supersingular. Then End(E )⊗Q is a
quaternion algebra ramified exactly at {p,∞}, and the
standard involution is given by taking duals, so nrd = deg.

◮ We can say more: End(E ) is a maximal order in
End(E )⊗Q.

◮ If E/k is ordinary, End(E ) is a quadratic (but not
necessarily maximal) order in its endomorphism algebra, a
quadratic imaginary extension of Q

An example

Let p ≡ 3 (mod 4) be a prime. Let E/Fp be the elliptic curve
E : y 2 = x3 + x . We have the endomorphisms

φ : (x , y) 7→ (−x ,
√
−1y)

π : (x , y) 7→ (xp, yp).

◮ The map φ 7→ i , π 7→ j extends linearly to an
isomorphism of quaternion algebras
End(E )⊗Q ≃ H(−1,−p).

◮ However: 〈1, φ, π, φπ〉 ( End(E ).
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Work of Waterhouse connects the arithmetic of End(E ) to
isogenies φ : E → E ′. Let E/Fp2 be supersingular.
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ι : End(E ′) →֒ End(E )⊗Q

ρ 7→
(
φ̂ ◦ ρ ◦ φ

)
⊗ 1

deg φ

embeds End(E ′) as a maximal order in End(E )⊗Q.
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◮ Suppose that φ : E → E ′ is an isogeny. Then

ι : End(E ′) →֒ End(E )⊗Q

ρ 7→
(
φ̂ ◦ ρ ◦ φ

)
⊗ 1

deg φ

embeds End(E ′) as a maximal order in End(E )⊗Q.

◮ Set I := {α ∈ End(E ) : α(ker φ) = {0}}. This is a left
ideal of End(E ), and deg(φ) = nrd(I ).

◮ Then End(E ′) is isomorphic to the right order of I :

OR(I ) := {γ ∈ End(E )⊗Q : Iγ ⊆ I} = ι(End(E ′))

Arithmetic of endomorphism rings and isogenies

◮ Conversely, given a left ideal I ⊆ End(E ) such that nrd(I )
is coprime to p, define

E [I ] :=
⋂

α∈I

kerα.
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◮ E [I ] is a finite subgroup of E (Fp2) and thus determines
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φI : E → EI := E/E [I ].
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◮ Conversely, given a left ideal I ⊆ End(E ) such that nrd(I )
is coprime to p, define

E [I ] :=
⋂

α∈I

kerα.

◮ E [I ] is a finite subgroup of E (Fp2) and thus determines
an isogeny

φI : E → EI := E/E [I ].

◮ We have nrd(I ) = |E [I ]| = deg(φI ).

Computing ℓ-power isogenies

Problem

Given distinct primes p, ℓ and supersingular elliptic curves
E/Fp2 and E ′/Fp2 , compute an isogeny φ : E → E ′ whose
degree is ℓe for some e.

Computing ℓ-power isogenies

Problem

Given distinct primes p, ℓ and supersingular elliptic curves
E/Fp2 and E ′/Fp2 , compute an isogeny φ : E → E ′ whose
degree is ℓe for some e.

◮ This problem can return an isogeny of size polynomial in
log p if ℓ = O(log p): we can represent φ by a sequence
of ℓ-isogenies, and the diameter of G (p, ℓ) is O(log p).

◮ This is the problem of pathfinding in G (p, ℓ).

Computing endomorphism rings

We can interpret the problem of “computing the
endomorphism ring” in different ways: for example, we could
ask for the geometric object End(E ). We will simply ask for
an order in Bp,∞ isomorphic to End(E ). Here Bp,∞ denotes
the quaternion algebra ramified at {p,∞}.
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Computing endomorphism rings

We can interpret the problem of “computing the
endomorphism ring” in different ways: for example, we could
ask for the geometric object End(E ). We will simply ask for
an order in Bp,∞ isomorphic to End(E ). Here Bp,∞ denotes
the quaternion algebra ramified at {p,∞}.

Problem

Given a supersingular elliptic curve E/Fp2 , compute an order
O ⊆ Bp,∞ such that End(E ) ≃ O.

For a polynomial-time reduction from computing isogenies to
this problem to make sense, we need to know that such an
order O of polynomial size exists.

Endomorphism rings have polynomial size

Theorem (Eisenträger, Hallgren, Lauter, M-, Petit)

Every isomorphism class (i.e. conjugacy class) of maximal
orders in Bp,∞ contains an order O of size polynomial in log p.
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Endomorphism rings have polynomial size

Theorem (Eisenträger, Hallgren, Lauter, M-, Petit)

Every isomorphism class (i.e. conjugacy class) of maximal
orders in Bp,∞ contains an order O of size polynomial in log p.

Sketch of proof:

◮ Pizer shows Bp,∞ and at least one maximal order
O0 ⊆ Bp,∞ have polynomial in log p size

◮ The map [I ] 7→ [OR(I )] from left ideal classes of O to
isomorphism classes of maximal orders is surjective

◮ Every left ideal class contains a representative J such that
nrd(J) = O(p2)

Almost equivalent problems, categorically

Let Bp,∞ be the quaternion algebra over Q ramified at {p,∞}.

Problem

Let O,O′ ⊆ Bp,∞ be maximal orders. Let ℓ 6= p be a prime.
Compute a left ideal I ⊆ O such that OR(I ) ≃ O′.

◮ If O,O′ have size polynomial in log p, and ℓ = O(log p),
then an algorithm of Kohel-Lauter-Petit-Tignol solves this
problem in time polynomial in log p

◮ Why almost? If E/Fp,E
′/Fp are supersingular, then

End(E ) ≃ End(E ′) if and only if j(E )p = j(E ′).

Computing isogenies reduces to computing

endomorphism rings

Assume we have an oracle which, on input E/Fp2

supersingular, computes a maximal order O ⊂ Bp,∞ such that
O ≃ End(E ). Suppose we are given two supersingular elliptic
curves E ,E ′/Fp2 and a prime ℓ = O(log p). We sketch an
algorithm for computing an ℓ-power isogeny φ : E → E ′.
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Computing isogenies reduces to computing

endomorphism rings

1. Compute O ≃ End(E ),O′ ≃ End(E ′)

2. Compute a left ideal I ⊆ O such that OR(I ) ≃ O′,
nrd(I ) = ℓe using KLPT

3. Compute the ideals Ik := I + ℓkO; nrd(Ik) = ℓk .

4. Compute the orders Ok := OR(Ik)

Now we want to translate the orders Ok into a sequence of
ℓ-isogenies.

Translating O1, . . . ,Oe to isogenies
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φ3

φ2
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Translating O1, . . . ,Oe to isogenies

E EI

φ1

φ3

φ2

◮ At step k , we compute the neighbors

◮ Then we check which neighbor’s endomorphism ring is
isomorphic to OR(Ik)

Translating O1, . . . ,Oe to isogenies

E EI

φ1

φ3

φ2

◮ At step k , we compute the neighbors

◮ Then we check which neighbor’s endomorphism ring is
isomorphic to OR(Ik)

◮ Return the sequence of isogenies φ1, . . . , φe .

One issue: let φI : E → EI be the isogeny corresponding to
the path in G (p, ℓ) constructed in the reduction. We have
End(EI ) ≃ End(E ′), but it could be that EI ≃ (E ′)(p) (i.e.
j(EI )

p = j(E ′) 6= j(EI )).
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◮ In this case, we replace I with I · P , where P ⊆ OR(I ) is
the unique 2-sided ideal of norm p.



One issue: let φI : E → EI be the isogeny corresponding to
the path in G (p, ℓ) constructed in the reduction. We have
End(EI ) ≃ End(E ′), but it could be that EI ≃ (E ′)(p) (i.e.
j(EI )

p = j(E ′) 6= j(EI )).

◮ In this case, we replace I with I · P , where P ⊆ OR(I ) is
the unique 2-sided ideal of norm p.

◮ Compute an ideal of ℓ-power norm equivalent to IP and
repeat the algorithm.

Thank you!


