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Public-key cryptography

-Introduced by Diffie and Hellman in [DH76]  
 

-Many candidates over the years 

-The quest in the recent years has shifted to advanced primitives 

-In this work, we propose an arguably simpler PKC scheme. 
                -We also believe it is secure against quantum attacks. 

Mersenne cryptosystem
- Belongs to the Ring and Noise family with 

- NTRU 
- Code-based crypto 
- Ring LWE based crypto 

- With a different Ring: Z/pZ (p Mersenne prime), 
and  

- a different Noise: Hamming weight mod p.

Mersenne cryptosystem

Mersenne primes: They are primes of the form 
p=2n-1, where n is a prime, and is named after Marin 
Mersenne, a French mathematician, who studied them 
in the early 17th century.  (Wikipedia) 

Main advantage of the cryptosystem: Simplicity 
  



Mersenne ring and 
distance

- Ring Z/pZ 
- p a Mersenne prime, i.e., 2n-1 

Let : 
- Rp(X)=rep of X in [0,p-1] 

- HW(X)=num of 1 in binary rep of X mod p 

Some properties of arithmetic mod p
1) HW(X+Y) ≤ HW(X) + HW(Y) 
        11010100111001 

       +00000000001000 

      ————————————————— 

       =11010101000001  

2) For all i, HW(X 2i) = HW(X) 

3) HW(XY) ≤ HW(X) x HW(Y) 
   Induction  

4) HW(-X) = n-HW(X) 

Warm Up
Single bit version

Hard problem

 p = 2^n - 1,     h << n  

f, g are numbers mod p with few (< h) 1s in binary rep.  
 

H=f/g [mod p] 

Assumption: Given H,  obtain f, g.



Single bit version
H=f/g [mod p],    PK = H,   SK = g 
(f and g containing few 1s, i.e. ≤h)

Encryption 

a and b with few 1s 

C0 = Enc(0) = (a H + b) 
C1 = Enc(1) = -(a H + b)

Decryption 

gC = ± [a f + b g] 
Compute HW(gC)  

Small => 0 
Large => 1 

Toy Example

p=231-1= 2147483647 = 0x7FFFFFFF 
H=f/g=0x8002000/0x20000008 
=0x42E8BE0F

Encryption 
a=0x80800 

b=0x40000080 
C = Enc(0) = (a H + b) 

=Ox766CAB3A

Decryption 

gC = 0x110084A6 
HW(gC) = 8 (< 15) => 0

Correctness of decryption

g(aH+b) ≡ af+bg [mod p] 

HW(Rp(af+bg)) ≤ HW(a)HW(f)+HW(b)HW(g) 

HW(Rp(-(af+bg))) = n - HW(Rp(af+bg)) 

≤ 2 h2 ≤ n/2

≥ n/2

For correctness, we need n > 4 h2

Multi-bit version
underlying encryption



Change public/private key

H=f/g [mod p]   ⇔   f (-1/H) + g = 0 [mod p]

I.e. f R + g = 0 

T=f R + g [mod p] (R fully random)

Mersenne 
(basic multi-bit encrypt)

T=fR+g [mod p] (R fully random)

Encryption 

C1=a R + b1 
C2=a T + b2 
Z = C2⊕E(m) 

Enc(m)=(C1, Z)

Decryption of (C1,Z) 

C2’=f C1 

m=D(C2’⊕Z) 

E and D : Error correction code

Multi-bit encryption
Analysis of decryption

C2 = a T + b2 = afR + (ag+b2) 
C2’= f C1 = f (a R + b1) = afR + b1 f 

HW(C2⊕C2’) ≤ Hdist(C2,afR) + Hdist(C2’,afR)

Thus Dec(Enc(m) ⊕ small error) = m

Heuristic : Error is well distributed 
Allows to use simple repetition code

Analysis of decryption
LEMMA: Let U be a random n-bit string and let x 
be an n-bit string of Hamming weight h.  Then 

Pr[Hdist(U, U + x)  >  2 h (1 + c)]   <   negligible  
                  

EXAMPLE: 
11001010101011110101110101000111110100101 

+000010000001000100000000100010000100010 
 

11010010101101111101110101101001111000111



Choice of error-correcting code
-Thus, the total number of errors we expect is at most 
e = 2 (2 h2 + h)  

-We need an ECC correcting e out of n errors  

-Can use Reed Muller codes, and n =  O(h2) 

-The number e is clearly an overestimate of the no. of 
errors in practice 

-Also, we expect the errors to be distributed randomly 

Recommended parameters

n = 756839 

Low HW parameter h=256 

Encode 256 bits: 
with 2048-repetition coding

Heuristics Hard Problem
Distinguish

Random tuple 

(R1, R2, R3, R4)

Hidden low weight 

(R1, R2, aR1+b1, a R2+b2) 

a, b1, b2 with low HW



Multi-bit Mersenne
CCA-KEM

CCA-KEM

Alice’s PK

BobAlice

Encaps

Shared Key

Decaps

Shared Key

Ciphertext
Alice’s SK

CCA-KEM under 
active attack

Alice’s PK

Eve

Alice

Decaps
Invalid Ciphertext

⊥

Alice’s SK

Mersenne KEM encaps 
(with CCA security)

S = Random seed 

1) Initialize PRG from s 
2) Produce pseudo random shared secret 
3) Run basic encryption of s 
      (getting a, b1, b2 from PRG) 
4) Output (C1, Z)



Mersenne KEM decaps 
(with CCA security)

1) Run basic decryption on (C1, Z) 
2) Re-encapsulate from s 
3) Compare and Output 

a) Shared secret 
b) or ⊥

Best Known attacks [BCGN17, BDJW18]  
(for proposed params)

Best Classical : At least 22h

Best Quantum : At least 2h

n
h( (Trivial :

Future Work

-Cryptanalysis  
 

-Improve efficiency without compromising security 
Thank You


