Implementing supersingular isogeny cryptography

David Jao

Department of Combinatorics & Optimization
Centre for Applied Cryptographic Research

UNIVERSITY OF

CryptoWorks2l \WATERLOO evo|u’rionl’J

November 19, 2018

SIDH overview

. Public parameters: Supersingular elliptic curve E over [..
. Alice chooses a kernel A C E([2) and sends E/A to Bob.
. Bob chooses a kernel B C E([F2) and sends E/B to Alice.

. The shared secret is

E/(A,B) = (E/A)/¢a(B) = (E/B)/¢B(A).

A W =

E— " L E/A

m{ l

E/B —— E/(A,B)

The core operation in SIDH is to compute ¢4: E — E/A given A.

https://ia.cr/2018/932

18 Seconds to Key Exchange: Limitations of
Supersingular Isogeny Diffie-Hellman on
Embedded Devices

Philipp Koppermann!, Eduard Pop', Johann Heyszl', and Georg Sigl"2

ephemeral key exchange still requires more than 18 seconds on a 32-bit
Cortex-M4 and more than 11 minutes on a 16-bit MSP430. Those results
show that even with an improvement by a factor of 4, SIDH is in-fact
impractical for small embedded devices, regardless of further possible im-

Vélu's formulas for constructing isogenies (1971)

Set S = (A\ {o0})/=% (i.e. “A excluding identity, modulo +").
Then ¢4 = (¢x, ¢y) where

¢x(x,y)—x+2[o, Y

X — X, X — x0)?
o Q)

QeS
2y Y —YQ 8584
d)(Xa)/):y_ uQ +tQ -
g (%:5 (x=x@)* T(x—x)* (x—xq)?
Q = (xq@:¥q)
g6 = 3X(2;, + a4
85 =-2q
X ifO=—
to = 2{6) | Q Q
25 IfQR#-Q

SIDH strategies

In SIDH, we use isogenies of degree £¢, where /£ is a small prime.

Point mult, Evaluate
by ¢ Isogeny

1Ry

Ry

Isogeny

@ computation using Basic constraints:
%o Velu’s formulas

We can compute
point multiplication
freely, at will.

However, in order

[4]Ro : to evaluate an
isogeny ¢;, we need
[¢°)Ro to compute the
: 5 point [(¢~|R; first.

[(°| Ry [(°)R1 [(*] Ro [} R3 [(?) Ry [()Rs R

Optimization #1: SIMD instructions

Koziel et al., https://ia.cr/2016/669:

» SIMD (Single Instruction Multiple Data) allows multiple
operations to be performed in a single cycle.

» The catch: one operand must be constant

» We can parallelize a- b and a- ¢, but not a-band c-d

» Since our numbers are so large (512 bits and up), we can take

advantage of SIMD to parallelize just a single multiplication.
Our approach (on 32-bit ARM):
» Use SIMD to multiply 256-bit blocks using parallel operations

» Use Karatsuba multiplication to multiply larger numbers (e.g.
1024-bit numbers) using smaller 256-bit blocks

Optimization #0: Use smaller parameters

Adj et al., https://ia.cr/2018/313:

We conclude that using SIDH parameters with p ~ 2*48

offers CSSI security of at least 128 bits against known
classical and quantum attacks, and thus meet the
security requirements in NIST's Category 2. ..

SIDH operations are about 4.8 times faster when py3q is
used instead of pys1.

NEON-SIMD multiplication example: 256 x 32 bit

Quad Register 1 Quad Register 0
A; As As Ay As A, AL Ay
s 7

Transpose

S |
N A4 x Bg Ao X By Bo By
Carry Chains
I
| | X
Stepl: A xB, A1 xBo
N\ N\
Multiplication
and Carry Step 2: Ae X Bo A X Bo

N N

Step3: A;xBp A3 x Bg

AW AW

Step 4: 1
Ay x By

Optimization #2: parallelized isogeny evaluations Optimization #3: FPGA implementations
Aaron Hutchinson and Koray Karabina, Constructing canonical
strategies for parallel implementation of isogeny based

cryptography, Indocrypt 2018
» B. Koziel, R. Azarderakhsh, M. M. Kermani, Fast hardware

architectures for Supersingular Isogeny Diffie-Hellman key
exchange on FPGA, Indocrypt 2016.

» B. Koziel, R. Azarderakhsh, M. M. Kermani, D. Jao,
Post-quantum cryptography on FPGA based on isogenies on
elliptic curves, IEEE TCAS (2017).

» B. Koziel, R. Azarderakhsh, M. M. Kermani, A
high-performance and scalable hardware architecture for
isogeny-based cryptography, |IEEE TC 67 (11), 2018.

n = 239 | K=2| K=38
% speedup over Serial | 30.26 | 55.35

Parallelism in FPGA implementations

Step 14 S \/(9 ‘z;* ' G }—» A
Step 13 Z362X5-9X1
kN T . T .
o » [, multiplication — 3 [, multiplications
© ‘Z; o » Perform isogeny evaluations in parallel (as in Hutchinson and
Step 10 X#a X5 .
= — . o Karabina, Indocrypt 2018)
seps \/@l /’ axgezi
s ® | iz to a new curve. In software implementations such as [6], [7],
o & / ox [15], these isogeny evaluations are computed serially. As a
sops 4 | e contrast, we emphasize that our hardware architecture can
s / D i /r’ 2 compute each of these isogeny evaluations in parallel, as
. | Xz there are no data dependencies between pivot points. Essen-
_” NIWARNES EE
o Lo é s * the total time in SIDH. By parallelizing the isogeny evalu-
& ations, we reduced the total time of Bob’s first round from
Brasir Qrivcier. @ sais () e 2.9 million cycles to 1.9 million cycles for this example, a

speed improvement of 1.53. The only downside to including

Results

Prime Area Time
Work # # # # # Freq. Latency Total
(bits) FFs | LUTs | Slices | DSPs | BRAMs | (MHz) | (ce x 10%) | time (ms)
Koziel et al. [16] 511 30,031 | 24,499 | 10,298 192 27 177 5.967 33.7
Koziel et al. [17] 503 26,659 | 19,882 [8918 192 40 181.4 3.80 20.9
This Work 503 24,908 | 18,820 7,491 192 43.5 202.1 3.34 16.5
Improvement over [17] - -7.0% -5.6% -19% - +8.1% +10.3% -13.8% -27%

> 4x more area, 10x less speed, 6x smaller keys (vs. NewHope)

» Finite field exponentiation (needed for constant-time field

inversion) remains a bottleneck, as it is difficult to parallelize

Target platforms

Baseline platform: Targhetta et al., “The design space of ultra-low
energy asymmetric cryptography.”
http://ieeexplore.ieee.org/document/6844461/

1.

3.
4.

“Pete” — 5-stage pipelined RISC (MIPS) processor, 256kB
program ROM, 16kB RAM

“Peteisg” — Pete with instruction set extensions for prime
fields

“PM32" — Pete with “Monte” GF(p) arithmetic accelerator
“PM64" — Modified Monte accelerator with 64-bit word size

All (except PM64) were originally designed for ECC (not SIDH).

Optimization #4: ECC hardware acceleration

J. D. Calhoun, “Optimization of supersingular isogeny
cryptography for deeply embedded systems,”
https://digitalrepository.unm.edu/ece_etds/420

> 6.3-7.5x speed improvement using instruction set extensions

for finite field arithmetic

(Further) 6.0-6.1x speed improvement using an existing finite
field arithmetic coprocessor design with a 32-bit datapath

(Further) 2.6-2.9x speed improvement using a slightly
modified finite field coprocessor with a 64-bit datapath

Results
Key gen. Secr. gen.
Work Platform e "Bob Alice Bob
[1] Cortex-M4 1025 1148 967 1112
Pete 4259 4814 4012 4197
2] Petese 617 679 494 556
PM32 99 113 85 101
PM64 33 37 28 34
3] x64 27 31 25 29
[4] Virtex-7 161 174 144 159
Table: Clock cycle count [x10°] for SIDH on pys;
1. Koppermann et al., https://ia.cr/2018/932
2. Calhoun, https://digitalrepository.unm.edu/ece_etds/420
3. Faz-Hernandez et al., https://ia.cr/2017/1015
4. Koziel et al., IEEE TC 67 (11), 2018.

Size comparison Conclusions

Bytes FF LUT DSP BRAM

[1] NewHope Artix-7 2178 4452 5142 2 4
Pete|se 2944 4658 1 335
[2] PM32 Zynq 72020 378 3426 5403 5 445
PMo64 3700 6074 17 475
3] SIDH Virtex-7 378 24908 18820 192 43.5 » SIDH with NewHope-like hardware acceleration resources is
clock-for-clock comparable to SIDH on x64 in speed.
FF — flip flops » SIDH on loT likely requires hardware acceleration.
LUT — lookup tables » Taking into account cost of communication, SIDH may be of
DSP — digital signal processing slices interest to loT implementors.
BRAM — Block RAM » Future work: Authenticated key exchange, signatures, CSIDH.

1. Oder and Guineysu, LatinCrypt 2017
2. Calhoun, https://digitalrepository.unm.edu/ece_etds/420
3. Koziel et al., IEEE TC 67 (11), 2018.

Note: The design in [2] is software-configurable for any field size.

