CSIDH:

An Efficient Post-Quantum
Commutative Group Action

https:/ /csidh.isogeny.org

Wouter Castryck!  Tanja Lange’ Chloe Martindale”

Lorenz Pamny2 Joost Renes®
KU Leuven 2TU Eindhoven *RU Nijmegen

ECC, Osaka, Japan, 21st November 2018

History

1976 Diffie-Hellman: Key exchange using exponentiation in
groups (DH)

1985 Koblitz-Miller: Diffie-Hellman style key exchange using
multiplication in elliptic curve groups (ECDH)

1990 Brassard-Yung: Generalizes ‘group exponentiation” to
‘groups acting on sets’ in a crypto context

1994 Shor: Polynomial-time quantum algorithm to break the
discrete logarithm problem in any group, quantumly
breaking DH and ECDH

1997 Couveignes: Post-quantum isogeny-based
Diffie-Hellman-style key exchange using commutative
group actions (not published at the time)

2003 Kuperberg: Subexponential-time quantum algorithm to
attack cryptosystems based on a hidden shift

History

2004 Stolbunov-Rostovtsev independently rediscover
Couveignes’ scheme (CRS)

2006 Charles-Goren-Lauter: Build hash function from
supersingular isogeny graph

2010 Childs-Jao-Soukharev: Apply Kuperberg’s (and Regev’s)
hidden shift subexponential quantum algorithm to CRS

2011 Jao-De Feo: Build Diffie-Hellman style key exchange from
supersingular isogeny graph (SIDH)

2018 De Feo-Kieffer-Smith: Apply new ideas to speed up CRS

2018 Castryck-Lange-Martindale-Panny-Renes: Apply ideas of

De Feo, Kieffer, Smith to supersingular curves over I,
(CSIDH)

(History slides mostly stolen from Wouter Castryck)



Why CSIDH? Why CSIDH?

» Drop-in post-quantum replacement for (EC)DH » Drop-in post-quantum replacement for (EC)DH

» Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

Why CSIDH? Why CSIDH?

v

» Drop-in post-quantum replacement for (EC)DH Drop-in post-quantum replacement for (EC)DH

v

» Non-interactive key exchange (full public-key validation); Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly previously an open problem post-quantumly

v

» Small keys: 64 bytes at conjectured AES-128 security level Small keys: 64 bytes at conjectured AES-128 security level

v

Competitive speed: ~ 85ms for a full key exchange



Why CSIDH?

v

v

v

vV Yy

Drop-in post-quantum replacement for (EC)DH

Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

Small keys: 64 bytes at conjectured AES-128 security level
Competitive speed: ~ 85ms for a full key exchange

Flexible:

v

vyYyy

Compatible with 0-RTT protocols such as QUIC

[DG] uses CSIDH for ‘SeaSign’ signatures

[DGOPS] uses CSIDH for oblivious transfer

[FTY] uses CSIDH for authenticated group key exchange

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

7ZxG —= G
(x,8) = g~

CSIDH vs SIDH?

Apart from mathematical background, SIDH and CSIDH actually have very

little in common, and are likely to be useful for different applications.

Here is a comparison (mostly stolen from Luca de Feo):

CSIDH SIDH
Speed (NIST 1) 85ms ~ 10ms!
Public key size (NIST 1) 64B 378B
Key compression (speed) ~ 15ms
Key compression (size) 222B
Constant time implementation | yes (quick and dirty) yes
Submitted to NIST no yes
Maturity 7 months 7 years
Best classical attack pl/* p/*
Best quantum attack subexponential 1/6
Key size scales quadratically linearly
Security assumption isogeny walk problem ad hoc
CPA security yes yes
CCA security yes Fujisaki-Okamoto
Non-interactive key exchange yes unbearably slow
Signatures (classical) unbearably slow seconds
Signatures (quantum) seconds still seconds?

1. . . .
This is a very conservative estimate!

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

ZxG — G
(x,g) — g~

Shor’s algorithm quantumly computes x from ¢* in any group
in polynomial time.

~



Post-quantum Diffie-Hellman! Square-and-multiply

~ : 13
Traditionally, Diffie-Hellman works in a group G via the map Suppose G = Z/23 and that Alice computes g™.

0

ZxG — G , & 8
g - S
(X 8 ) = g P ) : : .gzo
8. ¥ o
Shor’s algorithm quantumly computes x from ¢* in any group .
in polynomial time. & &
g6 . gl7
~ Idea: g * g16
Replace exponentiation on the group G by a group action of a & e
group H on a set S: g . L e
HxS—S. 0 e e o1
Xo = g g g 8
Square-and-multiply Square-and-multiply
Suppose G = Z/23 and that Alice computes ¢g'°. Suppose G 2 Z/23 and that Alice computes g'3.
g g° 2 P g 2

2 i—* . 1 2 —" . 21
- g’ g

g =
. . X . . < .
¢ s e IS

\

g .8

g / |

2
g
8
& / g & g
g
ge \48 g17 ge .\(_gl g17
g -\‘g g6 g i g
&
PN q P & 2 ok
INS g < 14 0 ¢ 14
8 . 8 8 8 D 8
10 e 13 X‘-/’ 13
8 1 12 8 11 27 8§



Square-and-multiply

Suppose G = Z/23 and that Alice computes g'°.

Square-and-multiply

1

Suppose G = Z/23 and that Alice computes g'°.

0
8 2
" . 21
g g
P
19
o8
18
8
. ol7
8
. 16
8
.15
8
‘i
8
8/37 8/37
Square-and-multiply Square-and-multiply
1 0 2 2 0 21 1 0 2 0 21
28‘_%81 48‘}.819 gzgg.gzn 4325:8219
3§ S 6t S8 2SS 0 68t
£ g8 RS [P ER SO Y $ ¥ $°
& ¥ . N &0 S ¥ QZ-Q g.qz\ g5 &/ \.8" B/
& ¥ <g’(.g18 0¥y ‘.gZ’(.gls F / \le
s V8 Ay 2Ys <3 Ls l
£ I 2f8 £ 3
788 8 & o106 149 .2 029 7 e
&N, 478 g\“z \2*7‘3 &\
8N ¢ A 15 1698 847
8 s A N Lo Q2
8 N, 888 14g 18" 32'22‘32!\)’. Sg
8 g Fe>eT 8 g gzt;\)""”.s
g0 1 g2 8 PR
0
16 gS g 15 ;
18t S8 »
L R W &
9 g g 14
$ 8 Ng
§ ° .8
Y !88 £ g
e *38 21 21
1045 5
g gxs
18 33‘:

137
9/37

9/37



Square-and-multiply

0
gl g 822

Cycles are compatible: [right, then left] = [left, then right], etc.

9/37 9/37

Union of cycles: rapid mixing

CSIDH: Nodes are now elliptic curves and edges are isogenies.

10 /37 10 /37



Graphs of elliptic curves

‘-’." e

1225
177

y,/
TN\

\.
B> “:’"";.'.
K7

O

Nodes: Supersingular curves E: y* = x° + Ax* + x over Fago.

Edges: 3-, 5-, and 7-isogenies.

"0293““ 1/
S v

11/37

11/37

Graphs of elliptic curves

X
S
N

Nodes: Supersingular curves Ex: y* = x° + Ax* + x over Fao.

Quantumifying Exponentiation

>

>

We want to replace the exponentiation map

ZxG — G
(x,8) — &

by a group action on a set.

Replace G by the set S of supersingular elliptic curves
Ex: yz = x3 + Ax? + x over Fyjo.

Replace Z by a commutative group H... more details to
come!

The action of a well-chosen i € H on S moves the elliptic
curves one step around one of the cycles.

11/37

12 /37



Graphs of elliptic curves Diffie-Hellman on ‘nice” graphs

A 3-isogeny Alice Bob

Esp: 2 =2 4512 +x ——— Eg: =249 4x . ' /
LY ) R
. Eass N !. / ‘A“‘! s
104 / b ““,‘, . ',““‘-‘/ .
i N i RS |
b i o Lol -
Eqg1 Eng N\ BT >
! Y -m!’i”"”..\ % J
Ei7s \ /5245 ‘1 ' ’ <\
\ Y = X A A K o
Eq13 \| / Ee hTx ./
5379.\. e .
Eipg =7 Epos
199 Fro0 Epg 0220
13/37 14 /37
Diffie-Hellman on ‘nice’ graphs Diffie-Hellman on ‘nice” graphs
Alice Bob Alice Bob
[+a 7+> ] [*743 7+] [+7ia+7_] [+a+7 a+]
14 /37

14 /37



Diffie-Hellman on ‘nice’ graphs Diffie-Hellman on ‘nice” graphs

14 /37 14 /37

14 /37 14 /37



Diffie-Hellman on ‘nice’ graphs

Diffie-Hellman on ‘nice” graphs

14 /37

AKX

14 /37

14 /37

14 /37



A walkable graph

» Nodes: Supersingular elliptic curves E4: y? = x> + Ax? + x
over [Fyq9.

A walkable graph

» Nodes: Supersingular elliptic curves E4: y? = x> + Ax? + x
over [Fyq9.

» Edges: 3-, 5-, and 7-isogenies (more details to come).

Important properties for such a walk:

IP1» The graph is a composition of compatible cycles.

IP2» We can compute neighbours in given directions.

A walkable graph

» Nodes: Supersingular elliptic curves E4: y? = x> + Ax* + x
over Fyq9.

» Edges: 3-, 5-, and 7-isogenies (more details to come).

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

» An elliptic curve E/F, (for p > 5) is supersingular if
#EF,) =p+1.

15 / 37

16 / 37



Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):
» An elliptic curve E/F, (for p > 5) is supersingular if
#E(F,) =p+1.
» Anisogeny between two elliptic curves E — E’ is a

surjective morphism (of abelian varieties) that preserves
the identity.

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

» An elliptic curve E/F, (for p > 5) is supersingular if
#EF,) =p+1.

» Anisogeny between two elliptic curves E — E’ is a
surjective morphism (of abelian varieties) that preserves
the identity.

» For elliptic curves E, E'/F, and a prime ¢ # p, an (-isogeny
f : E — E'is an isogeny with # ker(f) = £.

» Iff : E — E’ is an (-isogeny, there is a unique dual isogeny
fY:E' — Esuch thatf¥ o f = [{] is the multiplication-by-¢
map on E.

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

» An elliptic curve E/F, (for p > 5) is supersingular if
#EF,) =p+1.

» Anisogeny between two elliptic curves E — E’is a
surjective morphism (of abelian varieties) that preserves
the identity.

» For elliptic curves E, E’'/F, and a prime ¢ # p, an /-isogeny
f : E — E’is an isogeny with # ker(f) = £.

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

» An elliptic curve E/F, (for p > 5) is supersingular if
#E(Fy) =p+1.

» Anisogeny between two elliptic curves E — E’is a
surjective morphism (of abelian varieties) that preserves
the identity.

» For elliptic curves E, E’'/F, and a prime ¢ # p, an /-isogeny
f : E — E’is an isogeny with # ker(f) = £.

» Iff : E — E’ is an {-isogeny, there is a unique dual isogeny
fY:E' — Esuch thatf¥ o f = [{] is the multiplication-by-¢
map on E.

» The dual isogeny is also an /-isogeny.

16 / 37

16 / 37



Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/F, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fp-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual /-isogeny.

Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/F, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual /-isogeny.

» In our example, these are

Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/F, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an /-isogeny
f : E — E’ together with its dual /-isogeny.

» In our example, these are

///////
A N,

------
.....

Towards IP1: Isogeny graphs

Definition
Let p and / be distinct primes. The isogeny graph G, containing
E/F, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an /-isogeny
f : E — E' together with its dual /-isogeny.

» In our example, these are




Towards IP1: Isogeny graphs

Definition

Let p and ¢ be distinct primes. The isogeny graph G, containing

E/F, is the graph with:

» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to

[Fp-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual /-isogeny.

» In our example, these are

B3
G3UG5UGy: l:

o
e

1
QU=

Towards IP1: Endomorphism rings

» We want to make sure Gy is a cycle.

Towards IP1: Isogeny graphs

Definition

Let p and ¢ be distinct primes. The isogeny graph G, containing

E/F, is the graph with:

» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to

[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an /-isogeny
f : E — E’ together with its dual /-isogeny.

» Generally, the G, look something like

...........

| .\\-/ \-(/ 5 ...’
sk W2
< / \ P o Sz
G3 [ S P <: GS' . i i
—\ /s .7 . A S
LTIy N
L AN A\

.
.........

Towards IP1: Endomorphism rings

» We want to make sure Gy is a cycle.

» Equivalently: every node in G, should be distance zero
from the cycle.



Towards IP1: Endomorphism rings

» We want to make sure Gy is a cycle.

» Equivalently: every node in G, should be distance zero
from the cycle.

» Two nodes are at different distances from the cycle if and
only if they have different endomorphism rings.

Towards IP1: Endomorphism rings
Definition
An endomorphism of an elliptic curve E is a morphism E — E
(as abelian varieties).
Example
Let E/IF,, be an elliptic curve.
» For n € Z, the mulitplication-by-n map

m: E — E
P — nP

is an endomorphism.

19/37

Towards IP1: Endomorphism rings

Definition
An endomorphism of an elliptic curve E is a morphism E — E
(as abelian varieties).

Towards IP1: Endomorphism rings
Definition
An endomorphism of an elliptic curve E is a morphism E — E
(as abelian varieties).
Example
Let E/IF, be an elliptic curve.
» For n € Z, the mulitplication-by-n map

m: E — E
P — nP
is an endomorphism.
» The Frobenius map
s E - E
(xy) = ()

is an endomorphism.

19 /37

19 /37



Towards IP1: Endomorphism rings

Definition
The [F)-rational endomorphism ring Endp, (E) of an elliptic
curve E/IF, is the set of [F)-rational endomorphisms.

Towards IP1: Group action

Forp =3 (mod 8) and p > 5,if E4/F, : y* = x> + Ax* + x is
supersingular, then Endp, (E4) = Z[\/=p].

20/37

Towards IP1: Endomorphism rings

Definition
The F)-rational endomorphism ring Endp, (E) of an elliptic
curve E/F, is the set of [F,-rational endomorphisms.

Example

Letp > 3, let E/F) : y* = x> + Ax? + x be a supersingular elliptic
curve, and let 7 be the Frobenius endomorphism. Then

o= [~
and
Zl/=p] — Endg,(E)
n — [n]
VF oo

extends Z-linearly to a ring homomorphism.

Towards IP1: Group action

Forp =3 (mod 8) and p > 5,if E4/F, : y* = x> + Ax* + x is
supersingular, then Endr, (Ea) = Z[/~p].

» Remember: we want to replace exponentiation Z x G — G
with a commutative group action H x S — S.

21/ 37



Towards IP1: Group action

Forp =3 (mod 8) and p > 5,if E4/F, : y* = x> + Ax*> + x is
supersingular, then Endp, (E4) = Z[\/=p].

» Remember: we want to replace exponentiation Z x G — G
with a commutative group action H x S — S.

» The set S is the set of supersingular elliptic curves
Ea/Fy: y* = x° + Ax? + x withp =3 (mod 8) and p > 5.

Towards IP1: Group action

Forp =3 (mod 8) and p > 5,if E4/F, : y* = x> + Ax* + x is
supersingular, then Endp, (E4) = Z[\/=p].

» Remember: we want to replace exponentiation Z x G — G
with a commutative group action H x S — S.

» The set S is the set of supersingular elliptic curves
Ea/Fy: y* = x° 4+ Ax? + x withp =3 (mod 8) and p > 5.

» The group H = CI(Z[\/—p]) is the class group of Endy, (E4)
for (every) E4 € S.

» What is the action?

Towards IP1: Group action

Forp =3 (mod 8) and p > 5,if E4/F, : y* = x> + Ax* + x is
supersingular, then Endy, (Ea) = Z[/~p].

» Remember: we want to replace exponentiation Z x G — G
with a commutative group action H x S — S.

» The set S is the set of supersingular elliptic curves
Ea/F,: y* = x° + Ax* + x withp =3 (mod 8) and p > 5.

» The group H = CI(Z[,/~p]) is the class group of Endp,(E4)
for (every) E4 € S.

Towards IP1: Group action

» Let! C Endp,(Z) be an ideal.




Towards IP1: Group action

» Let ! C Endy,(Z) be an ideal.
» Then

is a subgroup of E(F,,).

9
1

Towards IP1: Group action

» LetI C Endp,(Z) be an ideal.
» Then
Hr = ﬂ ker(«)
acl
is a subgroup of E(F,,).
» Recall that isogenies are uniquely defined by their kernels
(cf. First Isomorphism Theorem of Groups).
» Define
fr-E— E/H;

to be the isogeny from E with kernel Hj.

Towards IP1: Group action

» Let! C Endy,(Z) be an ideal.
» Then

is a subgroup of E(F,).
» Recall that isogenies are uniquely defined by their kernels
(cf. First Isomorphism Theorem of Groups).

Towards IP1: Group action

» Let! C Endp,(Z) be an ideal.
» Then

Hi = ﬂ ker(a)

is a subgroup of E(F,).
» Recall that isogenies are uniquely defined by their kernels
(cf. First Isomorphism Theorem of Groups).
» Define
fr-E— E/H;
to be the isogeny from E with kernel H;.
» For [I] € CI(Z],/=p]), let I be an integral representative of
the ideal class [I]. Then

ClZ[/=p]) xS — S
(I,E) — fu,(E)

is a free, transitive group action!



IP1: The graph is a composition of compatible cycles IP1: The graph is a composition of compatible cycles

» The nodes of the graph are the set S of supersingular » The nodes of the graph are the set S of supersingular
elliptic curves E/F, : y* = x® + Ax? + x with p = 3 (mod 8) elliptic curves E/F,, : y* = x* + Ax? + x with p =3 (mod 8)
and p > 5. and p > 5.

» The map

CUZ[/=p]) xS — S
(1. E) = fi,(E)

is a free, transitive group action.

N
o]
1

IP1: The graph is a composition of compatible cycles IP1: The graph is a composition of compatible cycles
» The nodes of the graph are the set S of supersingular » The nodes of the graph are the set S of supersingular
elliptic curves E/F, : y* = x® + Ax? + x with p = 3 (mod 8) elliptic curves E/F, : y* = x* + Ax? + x withp =3 (mod 8)
and p > 5. and p > 5.
» The map » The map
Clzy/=p])) xS — S ClZ[\/=p]) xS — S
is a free, transitive group action. is a free, transitive group action.
» Edges are the isogenies fp. (together with their duals). » Edges are the isogenies fy. (together with their duals).

~+ there is a choice of /1, ..., ¢, such that G, U--- UGy, isa
composition of compatible cycles (IP1).

N
o]
1



Towards IP2: Choosing a direction Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions. IP2: Compute neighbours in given directions.

» Our group action was:

ClHZ[/—p]) xS — S
([, E) = fu,(E) = [[] + E.
24 /37 24
Towards IP2: Choosing a direction Towards IP2: Choosing a direction
IP2: Compute neighbours in given directions. IP2: Compute neighbours in given directions.
» Our group action was: » Our group action was:
ClZ[/=p]) xS — S ClHZ[/—p]) xS — S
(I, E) = fu,(E) =: [} x E. ([1], E) = fu,(E) = [[] + E.
» For ¢ e {¢1,---,¢,} as before and [I] € Cl(Z],/=p]), the » For (e {¢1,---,¢,} as before and [I] € CI(Z[,/=p]), the
isogeny fp.(E) is an /-isogeny if and only if isogeny fp.(E) is an ¢-isogeny if and only if
1] = [{6,m £ 1)]. [ = [(6, = £ 1)].

» Choosing the direction in the graph corresponds to
choosing this sign.



Towards IP2: Computing the neighbours Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an /-isogeny To compute a neighbour of E, we have to compute an ¢-isogeny
from a given elliptic curve. To do this: from a given elliptic curve. To do this:
» Find a point P of order ¢ on E. » Find a point P of order ¢ on E.

» Compute the isogeny with kernel {P,2P, ..., (P} using
Vélu’s formulas (implemented in Sage).

N
a1
1

Towards IP2: Computing the neighbours Towards IP2: Computing the neighbours
To compute a neighbour of E, we have to compute an /-isogeny To compute a neighbour of E, we have to compute an /-isogeny
from a given elliptic curve. To do this: from a given elliptic curve. To do this:
» Find a point P of order ¢ on E. » Find a point P of order ¢ on E.
» Compute the isogeny with kernel {P,2P, ..., (P} using » Compute the isogeny with kernel {P,2P, ..., (P} using
Vélu’s formulas (implemented in Sage). Vélu’s formulas (implemented in Sage).
» Let E/IF, be supersingular and p > 5. » Let E/IF, be supersingular and p > 5. Then E(F,) = Cp;1 or

C2 % Cpry 2

N
a1
1



Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an /-isogeny
from a given elliptic curve. To do this:

>

>

>

>

Find a point P of order ¢ on E.

Compute the isogeny with kernel {P, 2P, ..., (P} using
Vélu’s formulas (implemented in Sage).

Let E/IF, be supersingular and p > 5. Then E(F,) = Cp1 or
Cy x C(p+1)/2.

Suppose we have found P = E(FF,) of order p + 1 or
(r+1)/2.

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an /-isogeny
from a given elliptic curve. To do this:

>

>

Find a point P of order ¢/ on E.

Compute the isogeny with kernel {P, 2P, ..., (P} using
Vélu’s formulas (implemented in Sage).

Let E/IF, be supersingular and p > 5. Then E(F,) = Cp1 or
Cy x C(p+1)/2.

Suppose we have found P = E(FF,) of order p + 1 or
(r+1)/2.

For every odd prime /|(p + 1), the point #P is a point of
order .

Given a [F-rational point of order /, the isogeny
computations can be done over F.

N
a1

N
a1

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an ¢-isogeny
from a given elliptic curve. To do this:

» Find a point P of order ¢ on E.

» Compute the isogeny with kernel {P,2P, ..., (P} using
Vélu’s formulas (implemented in Sage).

» Let E/IF, be supersingular and p > 5. Then E(F,) = Cp;1 or

Cz X C(p+1)/2.

» Suppose we have found P = E(FF,) of order p + 1 or
(p+1)/2.

» For every odd prime ¢|(p + 1), the point #P is a point of
order /.

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/F, with p > 5 in
its (-isogeny graph G, for odd ¢|(p + 1):



IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/F, withp > 5 in
its (-isogeny graph G, for odd ¢|(p + 1):

» Fix conditions as before so that G, is a cycle, i.e., E has two
neighbours.

N

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/F, with p > 5 in
its (-isogeny graph G, for odd ¢|(p + 1):
» Fix conditions as before so that G, is a cycle, i.e., E has two
neighbours.
» Find a basis {P, Q} of the (-torsion with P € F,,.

» 1 € Z/{Z is an eigenvalue of Frobenius on the /-torsion; the
action [(¢,m — 1)] % E gives an (-isogeny in the '+ direction.

N

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/F, with p > 5 in
its (-isogeny graph G, for odd ¢|(p + 1):
» Fix conditions as before so that G, is a cycle, i.e., E has two
neighbours.
» Find a basis {P, Q} of the /-torsion with P € F),.

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/F, with p > 5 in
its (-isogeny graph G, for odd ¢|(p + 1):
» Fix conditions as before so that G, is a cycle, i.e., E has two
neighbours.
» Find a basis {P, Q} of the /-torsion with P € F),.
» 1€ Z/lZ is an eigenvalue of Frobenius on the /-torsion; the
action [(¢, ™ — 1)] x E gives an (-isogeny in the '+ direction.
» The other eigenvalue of Frobenius is p/¢ € Z/lZ.



IP2: Computing neighbours in given directions IP2: Computing neighbours in given directions

For which ¢ can we (efficiently) compute the neighbours of

To compute the neighbours of supersingular E/F, withp > 5 in supersingular E/F), in its f-isogeny graph G, for odd £|(p + 1)?

its (-isogeny graph G, for odd ¢|(p + 1):
» Fix conditions as before so that G, is a cycle, i.e., E has two
neighbours.
» Find a basis {P, Q} of the (-torsion with P € F,,.
» 1 € Z/lZ is an eigenvalue of Frobenius on the /-torsion; the
action [(¢,m — 1)] % E gives an (-isogeny in the '+ direction.
» The other eigenvalue of Frobenius is p/¢ € Z/{Z.

» If p=—1 (mod /) then the action [(¢, 7 + 1)] * E gives an
(-isogeny in the '~ direction.

2You still need a little more to get computations for both the 4+ and —
directions to be over F,

IP2: Computing neighbours in given directions IP2: Computing neighbours in given directions
For which ¢ can we (efficiently) compute the neighbours of For which ¢ can we (efficiently) compute the neighbours of
supersingular E/F,, in its /-isogeny graph G, for odd ¢|(p + 1)? supersingular E/F, in its /-isogeny graph G, for odd ¢|(p +1)?
Choosing p = 4/¢; - - - £, — 1 ensures: Choosing p = 4/¢; - - - ¢, — 1 ensures:
» Every ¢;|(p + 1), so there is a rational basis point of the » Every /j|(p + 1), so there is a rational basis point of the
{;-torsion {;-torsion

» p =3 (mod 8), so G, is a cycle (we have our group action)

2You still need a little more to get computations for both the 4+ and — 2You still need a little more to get computations for both the 4+ and —
directions to be over F) directions to be over F,



IP2: Computing neighbours in given directions

For which ¢ can we (efficiently) compute the neighbours of
supersingular E/F, in its /-isogeny graph G, for odd ¢|(p +1)?
Choosing p = 4/¢; - - - £, — 1 ensures:
» Every (;|(p + 1), so there is a rational basis point of the
{;-torsion
» p =3 (mod 8), so Gy, is a cycle (we have our group action)
» p=1 (mod ¢;), so ¢;-isogenies come from action of
(€, m £ 1)].

*You still need a little more to get computations for both the + and —
directions to be over F,

Representing nodes of the graph

» Every node of Gy, is

Ea:y? =2 + Ax® +x.

IP2: Computing neighbours in given directions

For which ¢ can we (efficiently) compute the neighbours of
supersingular E/F, in its /-isogeny graph G, for odd ¢|(p +1)?
Choosing p = 4/¢; - - - ¢, — 1 ensures:
» Every /|(p + 1), so there is a rational basis point of the
l;-torsion
» p =3 (mod 8), so0 Gy, is a cycle (we have our group action)
» p=1 (mod ¢;), so {;-isogenies come from action of
({6, m £ 1)].
Given the group action as above, Vélu’s formulas give actual
isogenies!
With our design choices all isogeny computations are over F,,. ?

2You still need a little more to get computations for both the 4+ and —
directions to be over F,

Representing nodes of the graph

» Every node of Gy, is

EA:yZ:x3+Ax2+x.

= Can compress every node to a single value A € .

28 /37



Representing nodes of the graph Does any A work?

» Every node of Gy, is

EA:y2:x3—|—Ax2+x.

= Can compress every node to a single value A € ;.

= Tiny keys!
3This algorithm has a small chance of false positives, but we actually use a
variant that proves that E4 has p + 1 points.
28/37 2
Does any A work? Does any A work?
No. No.
» About ,/pofall A € F, are valid keys.
3This algorithm has a small chance of false positives, but we actually use a 3This algorithm has a small chance of false positives, but we actually use a

variant that proves that E has p + 1 points. variant that proves that E4 has p + 1 points.

29 /37 29 /37



Does any A work?

No.

» About ,/p of all A € F, are valid keys.

» Public-key validation: Check that E4 has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on E,4 and check [p + 1]P = co.?

3This algorithm has a small chance of false positives, but we actually use a
variant that proves that E4 has p + 1 points.

Classical Security

» Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

» Say Alice’s secret is isogeny is of degree /1 - - - ;' She
knows the path, so can do only small degree isogeny
computations, giving complexity O(D  e;¢;).

29/3

Classical Security

» Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

Classical Security

» Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

» Say Alice’s secret is isogeny is of degree (7' - - - £;'. She
knows the path, so can do only small degree isogeny
computations, giving complexity O() e;¢;). An attacker
has to compute one isogeny of degree [] £ (cf. isogeny
evaluation complexity from David Jao’s talk).



Classical Security

» Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

» Say Alice’s secret is isogeny is of degree /1 - - - ;' She
knows the path, so can do only small degree isogeny
computations, giving complexity O(D  ¢;¢;). An attacker
has to compute one isogeny of degree [] £ (cf. isogeny
evaluation complexity from David Jao’s talk).

» Alternative way of thinking about it: Alice has to compute
the isogeny corresponding to one path from Ej to E4,
whereas an attacker has compute all the possible paths
from Eg to E4.

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

Classical Security

» Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

» Say Alice’s secret is isogeny is of degree (7' - - - £;'. She
knows the path, so can do only small degree isogeny
computations, giving complexity O(} ¢;¢;). An attacker
has to compute one isogeny of degree [] £ (cf. isogeny
evaluation complexity from David Jao’s talk).

» Alternative way of thinking about it: Alice has to compute
the isogeny corresponding to one path from Ej to E4,
whereas an attacker has compute all the possible paths
from Ej to E4.

» Best classical attacks are (variants of) meet-in-the-middle:

Time O(y/p).

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).
» Kuperberg’s algorithm [Kup1l] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.



Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

» Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

» Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

» Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

» Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

» Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

» Childs-Jao-Soukharev [C]S] applied Kuperberg/Regev to
CRS - their attack also applies to CSIDH.

» Part of CJS attack computes many paths in superposition.

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).
» Kuperberg’s algorithm [Kup1l] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

» Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

» Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

Quantum Security

» The exact cost of the Kuperberg/Regev/C]JS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies

(and much more).

*From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

)
]



Quantum Security

» The exact cost of the Kuperberg/Regev /C]JS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies

(and much more).

» Most previous analysis focussed on asymptotics

“From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

Quantum Security

» The exact cost of the Kuperberg/Regev /C]JS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies
(and much more).
» Most previous analysis focussed on asymptotics

» Recent preprint [BLMP] gives full computer-verified
simulation of quantum evaluation of isogenies. Computes
one query (i.e. CSIDH-512 group action) using
765325228976 ~ 0.7 - 2*0 nonlinear bit operations.

» For fastest variant of Kuperberg (uses billions of qubits),
total cost of CSIDH-512 attack is about 28! qubit
operations.*

“From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

w
R

Quantum Security

» The exact cost of the Kuperberg/Regev/C]JS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies
(and much more).
» Most previous analysis focussed on asymptotics

» Recent preprint [BLMP] gives full computer-verified
simulation of quantum evaluation of isogenies. Computes
one query (i.e. CSIDH-512 group action) using
765325228976 =~ 0.7 - 2*0 nonlinear bit operations.

*From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

Parameters
2 = < >
0] <

5l 2 | S| €9 | & |3

Z @ B & 2 S g

> Q —_ = & %

ol 9 ~ = 2 9] —_

9] o =] = g [+

el o - hai (%) 9

=1 = < o Q % B7)

9] Q > 3! 3] 0N

- =} =) E (;\ [ [

CSIDH-logp || -5 . aQ, = 9 @ o
CSIDH-512 1 || 64b | 32b | 85ms | 212e6 | 4368b || 128
CSIDH-1024 || 3 || 128b | 64b 256
CSIDH-1792 || 5 || 224b | 112b 448

]



Work in progress & future work

» Fast and constant-time implementation. (For ideas on
constant-time optimization, see [BLMP], [MR]).

Work in progress & future work

» Fast and constant-time implementation. (For ideas on
constant-time optimization, see [BLMP], [MR]).

» Hardware implementation.

» More applications.

34/3

34 /37

Work in progress & future work

» Fast and constant-time implementation. (For ideas on
constant-time optimization, see [BLMP], [MR]).

» Hardware implementation.

Work in progress & future work

v

Fast and constant-time implementation. (For ideas on
constant-time optimization, see [BLMP], [MR]).

v

Hardware implementation.

v

More applications.

v

[Your paper here!]



N T

Thank yu!

,

References

Mentioned in this talk (contd.):

DOPS

FTY

MR

Kup1

Kup2

Reg

Delpech de Saint Guilhem, Orsini, Petit, and Smart:

Secure Oblivious Transfer from Semi-Commutative Masking

https://ia.cr/2018/648

Fujioka, Takashima, and Yoneyama:

One-Round Authenticated Group Key Exchange from Isogenies
https://eprint.iacr.org/2018/1033

Meyer, Reith:

A faster way to the CSIDH

https://ia.cr/2018/782

Kuperberg:

A subexponential-time quantum algorithm for the dihedral hidden subgroup problem
https://arxiv.org/abs/quant-ph/0302112

Kuperberg:

Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem
https://arxiv.org/abs/1112.3333

Regev:

A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial
space

https://arxiv.org/abs/quant-ph/0406151

References

Mentioned in this talk:

BLMP

BS

CLMPR

aJs

DG

DKS

Bernstein, Lange, Martindale, and Panny:

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies
https://quantum.isogeny.org

Bonnetain, Schrottenloher:

Quantum Security Analysis of CSIDH and Ordinary Isogeny-based Schemes
https://ia.cr/2018/537

Castryck, Lange, Martindale, Panny, Renes:

CSIDH: An Efficient Post-Quantum Commutative Group Action
https://ia.cr/2018/383

Childs, Jao, and Soukharev:

Constructing elliptic curve isogenies in quantum subexponential time
https://arxiv.org/abs/1012.4019

De Feo, Galbraith:

SeaSign: Compact isogeny signatures from class group actions
https://ia.cr/2018/824

De Feo, Kieffer, Smith:

Towards practical key exchange from ordinary isogeny graphs
https://ia.cr/2018/485

References

Further reading:

B

DPV

JLLR

Credits: thanks to Lorenz Panny for many of these slides, including all of the beautiful

Biasse, lezzi, Jacobson:

A note on the security of CSIDH
https://arxiv.org/pdf/1806.03656

Decru, Panny, and Vercauteren:

Faster SeaSign signatures through improved rejection sampling
https://eprint.iacr.org/2018/1109

Jao, LeGrow, Leonardi, Ruiz-Lopez:

A polynomial quantum space attack on CRS and CSIDH
(MathCrypt 2018)

pictures.



