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Verification

Verification: the study of showing how something works as designed.
The discipline considers “worst cases” by design.

◮ Tries to show that there are no failure possiblities; and
◮ ideally identifies possible failures if we cannot verify correctness.

The most well-established application of verification is in chip design.

We will apply it to cryptographic software.

Verification in Practice

Usually carried out with
◮ Proof Assistants, such as Coq
◮ Satisfiability Module Theory (SMT) and SAT solvers, e.g. Minisat.
◮ Specifically designed tools

We will use SAT solvers and some home-brewed tools

Bo-Yin Yang (Academia Sinica) Verifying Lower-Level Crypto 2018.11.20 2 / 42

Cryptography and Its Software as a Subject of Study I

Cryptography has lots of real world applications from private
communication to digital currency.

Similar to formal verification, cryptography necessarily expects the
worst scenario.

Modern cryptography uses much sophisticated, complex mathematical
structures.

Secure cryptosystems must be designed and analyzed thoroughly.
◮ There is little room for trial and error in cryptography.
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Cryptography and Its Software as a Subject of Study II

The sophisticated mathematical structures in modern cryptography
often require complicated arithmetic computation over large numbers.

◮ In RSA, modulo arithmetic over n = pq where p, q are prime.
◮ In NIST P-256, modular arithmetic over 2256 − 2224 + 2192 + 296 − 1.
◮ In Curve25519, modular arithmetic over 2255 − 19.

Commodity computers only support up to 64-bit integers.
◮ This makes the program even more complicated.
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Cryptography and Its Software as a Subject of Study III

To make cryptography practical, cryptographers must design
cryptosystems for security and efficiency.

Parameters are chosen for efficiency, not for a reader’s understanding.
◮ Reduction in GF (2256 − 2224 + 2192 + 296 − 1), performed through

bitwise masking and shifting (NIST P-256);
◮ Reduction in GF (2255 − 19) performed by bitwise shifting and

multiplication (X25519).

To attain the best performance, primitive cryptographic algorithms
are even often implemented in assembly.

◮ OpenSSL and boringSSL.

Not many cryptographers also program assembly language well.
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An Ideal Research Problem for Verification

Not all programs need to be verified.

However, cryptographic programs are
◮ critical
◮ indispensable
◮ complex
◮ highly visible

Moreover, practical cryptographers do appreciate verification.
◮ See comments in OpenSSL

Colleagues recognize the importance of verification when informed of
this work.

◮ Many computer scientists know of OpenSSL.
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Challenges I

Verifying non-linear computation is hard.
◮ Cryptographic assembly programs perform such computation in

hundreds of bits.

Such programs must be proven correct for all inputs.
◮ For cryptographic assembly programs, every bit and flag count.

Assembly programs are very succinct.
◮ Abstraction is unlikely to work.
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Challenges II

An algorithm has different instantiations on different mathematical
structures.

Consider, say, modular multiplication.
◮ In NIST P-256, modular multiplication is over

GF (2256 − 2224 + 2192 + 296 − 1) (256 bits).
◮ In X25519, modular multiplication is over GF (2255 − 19) (255 bits).

Since numbers are different, reduction is computed differently.
◮ In NIST P-256, it is implemented by bitwise masks and shifts.
◮ In X25519, it is implemented by bitwise shifts and multiplication.

Each instantiation must be verified.

Bo-Yin Yang (Academia Sinica) Verifying Lower-Level Crypto 2018.11.20 8 / 42



Challenges III

Algorithm instance implement differently on different architectures.

Different architectures (x86, ARM) have different instruction sets.

Different generations of x86 64 have slightly different instructions.

In OpenSSL, two different implementations for modular multiplication
are available.

◮ In Broadwell microarchitecture, it is possible to perform two threads of
addition simultaneously with adox.

Vectorized instructions are also widely used.
◮ OpenSSL has 3 Poly1305 implementations (sequential, avx, avx2).

All implementations need to be verified.
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Related Work

Fiat (MIT) is a C program synthesis tool for cryptographic programs.

Jasmin (INRIA) is a portable assembly language with formal
semantics.

HACL* (INRIA) is a verified cryptographic library in F∗.

Vale (Microsoft Research) is a framework to write correct assembly
programs for different architectures.

None of them really addresses the cryptographic assembly program
verification problem.
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Previous Work

Our first idea is to verify cryptographic assembly programs by
SMT/SAT solvers via bit blasting.

In 2014, we use Boolector to verify an academic implementation
of modular multiplication in X25519.

◮ It took 4 days (without annotation) or 5 hours (with extensive manual
annotation).

◮ Moreover, we had to prove a simple mathematical property in Coq.

Verifying a hundred of assembly instructions in 4 days is perhaps
better than using proof assistants.

Not very useful!
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The gfverif Project

In 2015, Daniel J. Bernstein and Peter Schwabe announces their
gfverif project.

Their tool verifies algebraic properties of C programs using a
computer algebra system.

Idea:
◮ Translate a C program and its specification to an algebraic problem;
◮ Solve the algebraic problem by a computer algebra system.

It sounds reasonable.
◮ Why do we use SMT/SAT solvers to solve algebraic problems?
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An Almost Certified Automatic Verification Tool

In 2017, we extend the idea of gfverif to assembly programs and
certify algebraic results with Coq.

Unfortunately, results from SMT/SAT solvers are yet to be certified.
◮ Efficient certification implies P = coNP.

This tool verifies the same academic implementation of modular
multiplication in 1.5 minutes without annotation.

It also verifies an academic implementation of Montgomery ladderstep
(about 1300 instructions) in 5.5 days.

◮ Montgomery ladderstep is used in elliptic curve point operations.

It is probably useful.
◮ suitable for production release, not for daily development
◮ not industrial implementation
◮ we translated from qhasm (X25519), so not many instances
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More Recent Work

We further optimize our tool.

We verify industrial implementations in OpenSSL and boringSSL.

We verify the OpenSSL multi-precision Montgomery modular
multiplication for RSA, and its implementation for NIST P-256.

We also verify the boringSSL Montgomery ladderstep implementation
for X25519.

◮ Previously, we only verify an academic implementation for X25519.

We also decide not to certify the tool.
◮ Main reason: lack of manpower.
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CryptoLine

The CryptoLine tool consists of three parts:
◮ the modeling language for cryptographic assembly programs
◮ the specification language for functional properties
◮ the verification algorithm

We also provide a tool chain to
◮ extract assembly programs from execution
◮ translate assembly programs into the modeling language

The tool chain enables us to produce models for verification quickly.
◮ It is essential to tool adoption.
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The CryptoLine Modeling Language I

CryptoLine covers common assembly instructions used in
cryptographic programs.

◮ bvAssign (assignment)
◮ bvAdd, bvAddC, bvAdc, bvAdcC (addition)
◮ bvSub, bvSubC, bvSub, bvSbbC(subtraction)
◮ bvMul, bvMulf (multiplication)
◮ bvShl, bvConcatShl (left shift)
◮ bvSplit (splitting)
◮ bvCmove (condition move)
◮ bvAssert, bvAssume (assertion and assumption)

Flags must be specified explicitly.
◮ Missing flags induce under- or over-flow checks (bvAdd and bvSub).
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The CryptoLine Modeling Language II

Special instructions are added for modeling purposes.
◮ bvConcatShl (concatenate then shift), Split (split into parts), bvCmove

(conditional move)
◮ more about this in case study

Instructions for verification are available.
◮ bvAssert and bvAssume

There is no branching instruction.
◮ In practical cryptography, running time is a side channel.
◮ Cryptographic programs need be data-independent (called

constant-time).
◮ Secret-Dependent Branches are not allowed.
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The CryptoLine Specification Language I

The CryptoLine specification language specifies a conjunction of
range and algebraic properties:

◮ Range properties: E < E ′ or E ≤ E ′.
◮ Algebraic properties: E = E ′ or E ≡ E ′ mod E ′′.

We also add syntactic sugar for common expressions.

◮ For instance, [c0 : c1 : · · · : ck ] stands for
∑k

i=0 ci × 264·i .
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The CryptoLine Specification Language II

For instance, the multiplication in X25519 is specified by

{

a0 < 252 ∧ a1 < 252 ∧ a2 < 252 ∧ a3 < 252 ∧ a4 < 252∧

b0 < 252 ∧ b1 < 252 ∧ b2 < 252 ∧ b3 < 252 ∧ b4 < 252

∧∧
⊤

}

MUL([r0 : r1 : r2 : r3 : r4], [a0 : a1 : a2 : a3 : a4], [b0 : b1 : b2 : b3 : b4])

{

r0 < 252 ∧ r1 < 252 ∧ r2 < 252 ∧ r3 < 252 ∧ r4 < 252

∧∧

(a0 + a1 · 252 + a2 · 2104 + a3 · 2156 + a4 · 2208) × (b0 + b1 · 252 + b2 · 2104 + b3 · 2156 + b4 · 2208) ≡

r0 + r1 · 252 + r2 · 2104 + r3 · 2156 + r4 · 2208 mod (2255 − 19)

}

Notice that 256-bit numbers are divided into 5 51-bit limbs.
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Hybrid Verification Technique

Here is the CryptoLine verification algorithm:

{Prng ∧∧Palg}
C

{Qrng ∧∧Qalg}

{Prng}
C

{Qrng}

{Palg}
C

{Qalg}

Boolector

Singular
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Verifying Range Specifications

CryptoLine translates a program and its range specification to a
formula in the SMT quantifier-free bit vector theory.

The formula is unsatisfiable iff the program fulfills its range
specification.

We use Boolector to check the satisfiability of the formula.

Boolector+Minisat works better for most cases.

A handful of cases need Boolector+Lingeling.

Both Boolector and Z3 fail for a number of realistic assembly
programs.
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Verifying Algebraic Specifications I

CryptoLine first checks there is no overflow using SMT/SAT.

It then translates a program and its algebraic specification to the ideal
membership problem.

◮ A set I ⊆ Z[x0, x1, . . . , xn] is an ideal if f + g , p · f ∈ I for every
f , g ∈ I and p ∈ Z[x0, x1, . . . , xn].

◮ Given an ideal I and a polynomial p ∈ Z[x0, x1, . . . , xn], the ideal
membership problem asks if p ∈ I .

p ∈ I implies the program fulfills its algebraic specification.

We use Singular to solve the ideal membership problem.
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Verifying Algebraic Specifications II

To see how it works, consider a system of polynomial equations
fi (x) = 0 derived from assembly instructions.

◮ For instance, mul %rcx translates to
%rdx ′ × 264 +%rax ′ = %rax ×%rcx .

Suppose we want to prove an equality g(x) = 0.

Formally, we want to show ∀x .
∧

i fi (x) = 0 =⇒ g(x) = 0.

Then g(x) ∈ 〈f1(x), f2(x), . . . , fk(x)〉 implies
∀x .

∧

i fi (x) = 0 =⇒ g(x) = 0.
◮ g(x) =

∑

i hi (x)fi (x) = 0 for any x such that
∧

i fi (x) = 0.
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Verification Flow

Here are the verification steps:
1 Compile into a standalone program.

⋆ gcc ecp nistz256 mul.c $OPENSSLDIR/libcrypto.a

2 Extract execution trace.
⋆ itrace.py a.out ecp nistz256 mul mont >

ecp nistz256 mul mont.gas

3 Manually add x86 64 to CryptoLine translation rules.
4 Apply the translation rules.

⋆ to bvdsl.py ecp nistz256 mul mont.gas >

ecp nistz256 mul mont.cl

5 Manually add pre- and post-conditions.
6 Manually tune the CryptoLine program to match semantics.

⋆ More about this later.

7 Run the tool.
⋆ cv.native ecp nistz256 mul mont.cl
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Current Requirements

All available for stock Ubuntu server install.

O’Caml Package Manager (opam)
◮ With O’Caml 4.07.0
◮ With lwt, lwt ppx, num packages

Singular version 4

Boolector-3.0.0 with Lingeling, Minisat, Edical.
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Translation Rules

The Python script to bvdsl.py translates x86 64 assembly to
CryptoLine by rules provided by users.

Consider the following rule:

mov $1v, $2v -> bvAssign $2v (bvVar $1v)

It translates mov %rbp, %rax to bvAssign rax (bvVar rbp).

Here is another rule:

add $1v, $2v -> bvAddC carry $2v (bvVar $1v) (bvVar $2v)

It translates add %rax, %r9 to bvAddC carry r9 (bvVar rax)

(bvVar r9).

Most assembly instructions are thus translated automatically.
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Fine Tune

Consider the fragment:

mov %r8, %rbp

shl $0x20, %r8

shr $0x20, %rbp

What it does is to assign
◮ the high 32 bits of old %r8 to the low 32 bits of %rbp; and
◮ the low 32 bits of old %r8 to the high 32 bits of %r8.

Manual translation is needed.

Here is the correct translation:
bvSplit rbp r8 (bvVar r8) 32;

bvShl r8 (bvVar r8) 32;

Only 4 manual translations are needed in ecp nistz256 mul mont.

Bo-Yin Yang (Academia Sinica) Verifying Lower-Level Crypto 2018.11.20 27 / 42

Evaluation on a 2.8GHz Broadwell Xeon

library program ln assert range alg total

OpenSSL

ecp nistz256 add 89 0.44 4.17 0.03 4.63
ecp nistz256 sub 88 - 18.54 ˜0 18.55

ecp nistz256 from mont 82 - 0.41 0.02 0.45
ecp nistz256 mul mont 192 - 21.49 0.03 21.53
ecp nistz256 mul mont+ 153 - 15.43 0.03 15.47
ecp nistz256 mul by 2 49 - 0.05 0.02 0.08
ecp nistz256 sqr mont 148 - 16.43 0.03 16.47
ecp nistz256 sqr mont+ 131 - 22.50 0.03 22.54

x86 64 mont 2 228 832.60 13.41 0.03 846.05
x86 64 mont 4 490 8279.87 523.27 0.91 8804.06

boringSSL
x25519 x86 64 mul 226 - 28.73 0.03 28.78
x25519 x86 64 sqr 171 - 6.14 0.03 6.18

x25519 x86 64 ladderstep 1459 - 2921.82 107.93 3029.78

mbedTLS
mbedtls mpi mul mpi 2 76 0.46 0.42 0.03 0.92
mbedtls mpi mul mpi 4 249 12.85 9.27 0.02 22.16

Time is in seconds; + is for Broadwell architectures

In 2017, X25519 modular multiplication and Montgomery ladderstep
took 90 seconds and 5.5 days respectively.

CryptoLine is useful even for daily development!
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Recent Activity

Active Research on CryptoLine

CryptoLine now supports compositional reasoning and is
multi-threaded.

Montgomery ladderstep in boringSSL is verified in 307 seconds.
◮ was 3029 seconds

For multi-precision Montgomery modular multiplication:
◮ 256-bit version is verified in 7.5 seconds (was 8804 seconds).
◮ 1024-bit version is verified in 295 seconds.

New stuff

We are extending our efforts to postquantum crypto

We are extending verification to compiler intermediate representations
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Verification of Postquantum Crypto I

Lattice-based encryption schemes

NTT-based Ring-LWE: Kyber, NewHope

non-NTT based Ring-LWE: NTRU, NTRU Prime

Others: Frodo

NTT-based Ring-LWE

Verified n = 256 NTT and inverse NTT (mod 7681) for Kyber.

working ongoing on the similar NewHope

non-NTT-based Ring-LWE

NTRU and NTRU Prime should be doable, under study
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Verification of Postquantum Crypto II

Other classes of PQC than Lattices with Work in Progress:

Multivariates: should be doable, operations in GF (2k) or small GF (p).

Coding-bases: should be doable, operations in GF (2k).

Supersingular Isogenies: experience from ECC/RSA valuable?

Not on the docket

Hash-based: not our domain
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Verification of Compiler Intermediate Representations

Why not Assembly

We can’t have assembly for every architecture

For reference implementations, clarity and correctness are more
important than efficiency

Similarly for prototypes of algorithms.

Why not C itself?

Compcert and similar certified compilers are seldom used for
production work.

Standard compilers (gcc and clang) do strange things to your code.
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clang Strangeness on OpenSSL code I

Taken from https://github.com/openssl/openssl/blob/

OpenSSL 1 1 1-stable/crypto/ec/curve25519.

From fe51 mul121666 in curve25519.c

u128 h2 = f[2] * (u128)121666;

g2 = (uint64 t)h2 & MASK51;

Constant MASK51=0x7FFFFFFFFFFFF

clang Intermediate Representation

h2 = mul i128 f 2 121666;

conv15 = trunc h2;

g2 = and i64 conv15 0x7FFFFFFFFFFFE
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clang Strangeness on OpenSSL code II

From function fe51 mul in curve25519.c

g2 = (uint64 t)h2 & MASK51;

g2 += (uint64 t)(h1 >> 51);

g3 += g2 >> 51;

g2 &= MASK51;

clang IR output

conv109 = trunc h2 //(uint64 t)h2

...

shr122 = lshr i128 h1 51

conv123 = trunc shr122 //(uint64 t)(h1>>51)

g2 = and i64 conv109 0x7FFFFFFFFFFFF

add124 = add i64 conv123 g2

... //g3 += g2>>51

fold = add i64 conv123 conv109

and135 = and i64 fold 0x7FFFFFFFFFFFF
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What we have done with clang IR I

Identify a subset llvmCryptoLine of clang IR in use for crypto

Translate llvmCryptoLine to CryptoLine.

Add assertions and assumptions as needed.

Hand-adjust as needed.

Verify.
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What we have done with clang IR II

program function loc (IR) modified time (s)
ecp nistp224.c felem diff 128 64 30 × 0.35

felem diff 30 × 0.26
felem mul reduce 99 X 18.10

felem mul 60 × 5.34
felem neg 47 X 0.74

felem reduce 75 X 1.40
felem scalar 15 × 0.10

felem square reduce 79 X 16.40
felem square 43 × 0.97
felem sum 22 × 0.15

widefelem diff 54 × 0.77
widefelem scalar 31 × 1.19

ecp nistp521.c felem diff128 61 × 0.44
felem diff64 61 × 0.50
felem neg 43 × 0.34

felem scalar128 36 × 0.62
felem scalar64 35 × 0.21
felem scalar 43 × 0.24
felem sum64 52 × 0.19
felem reduce 144 X 1.81

felem diff 128 64 70 × -
felem mul 289 × -

felem square 158 × -

Note that the three unverified programs contain anomalies which we
suspect are possible mistakes in range specification.
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What we have done with clang IR III

program function loc (IR) modified time (s)
ecp nistp256.c felem shrink 63 X 1.33

felem small mul 111 × 10.24
felem small sum 26 × 0.14

felem sum 22 × 0.14
smallfelem mul 109 X 1.79
smallfelem neg 22 × 0.07

smallfelem square 70 X 1.80

curve25519.c fe51 add 32 × 0.06
fe51 mul121666 57 X 0.18

fe51 mul 124 X 1.88
fe51 sq 94 X 0.79
fe51 sub 37 × 0.11

x25519 scalar mult1 1235 X 871.00

1Only the part of Montgomery Ladderstep is verified.
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Conclusions

For the first time, we are able to verify industrial low-level
cryptographic programs practically.

◮ 5 minutes for 1400 assembly instructions!

This project combines several techniques:
◮ SMT/SAT solving and computer algebra

Formal verification and practical cryptography is a perfect match.
◮ Practical cryptography needs efficient and correct programs.
◮ Formal verification needs real applications.

Lots of new opportunities in high assurance cryptographic software.
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Thank you for your attention.
Question?
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