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History

1976 Diffie-Hellman: Key exchange using exponentiation in
groups (DH)

1985 Koblitz-Miller: Diffie-Hellman style key exchange using
multiplication in elliptic curve groups (ECDH)

1990 Brassard-Yung: Generalizes ‘group exponentiation’ to
‘groups acting on sets’ in a crypto context

1994 Shor: Polynomial-time quantum algorithm to break the
discrete logarithm problem in any group, quantumly
breaking DH and ECDH

1997 Couveignes: Post-quantum isogeny-based
Diffie-Hellman-style key exchange using commutative
group actions (not published at the time)

2003 Kuperberg: Subexponential-time quantum algorithm to
attack cryptosystems based on a hidden shift

3 / 37

History

2004 Stolbunov-Rostovtsev independently rediscover
Couveignes’ scheme (CRS)

2006 Charles-Goren-Lauter: Build hash function from
supersingular isogeny graph

2010 Childs-Jao-Soukharev: Apply Kuperberg’s (and Regev’s)
hidden shift subexponential quantum algorithm to CRS

2011 Jao-De Feo: Build Diffie-Hellman style key exchange from
supersingular isogeny graph (SIDH)

2018 De Feo-Kieffer-Smith: Apply new ideas to speed up CRS

2018 Castryck-Lange-Martindale-Panny-Renes: Apply ideas of
De Feo, Kieffer, Smith to supersingular curves over Fp

(CSIDH)

(History slides mostly stolen from Wouter Castryck)
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Why CSIDH?

◮ Drop-in post-quantum replacement for (EC)DH

◮ Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

◮ Small keys: 64 bytes at conjectured AES-128 security level

◮ Competitive speed: ∼ 85 ms for a full key exchange
◮ Flexible:

◮ Compatible with 0-RTT protocols such as QUIC
◮ [DG] uses CSIDH for ‘SeaSign’ signatures
◮ [DGOPS] uses CSIDH for oblivious transfer
◮ [FTY] uses CSIDH for authenticated group key exchange
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CSIDH vs SIDH?

Apart from mathematical background, SIDH and CSIDH actually have very

little in common, and are likely to be useful for different applications.

Here is a comparison (mostly stolen from Luca de Feo):

CSIDH SIDH

Speed (NIST 1) 85ms ≈ 10ms1

Public key size (NIST 1) 64B 378B
Key compression (speed) ≈ 15ms
Key compression (size) 222B

Constant time implementation yes (quick and dirty) yes
Submitted to NIST no yes

Maturity 7 months 7 years

Best classical attack p1/4 p1/4

Best quantum attack subexponential p1/6

Key size scales quadratically linearly
Security assumption isogeny walk problem ad hoc

CPA security yes yes
CCA security yes Fujisaki-Okamoto

Non-interactive key exchange yes unbearably slow
Signatures (classical) unbearably slow seconds
Signatures (quantum) seconds still seconds?

1
This is a very conservative estimate!
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Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.
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Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Shor’s algorithm quantumly computes x from gx in any group
in polynomial time.

 Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S → S.
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Cycles are compatible: [right, then left] = [left, then right], etc.
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Union of cycles: rapid mixing
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Union of cycles: rapid mixing

CSIDH: Nodes are now elliptic curves and edges are isogenies.
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Nodes: Supersingular curves EA : y2
= x3

+ Ax2
+ x over F419.

Edges: 3-, 5-, and 7-isogenies.
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Quantumifying Exponentiation

◮ We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.

◮ Replace G by the set S of supersingular elliptic curves
EA : y2 = x3 + Ax2 + x over F419.

◮ Replace Z by a commutative group H... more details to
come!

◮ The action of a well-chosen h ∈ H on S moves the elliptic
curves one step around one of the cycles.
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A 3-isogeny

(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)

(

97x3
−183x2+x

x2
−183x+97 ,

y· 133x3+154x2
−5x+97

−x3+65x2+128x−133

)
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A walkable graph

◮ Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x
over F419.

◮ Edges: 3-, 5-, and 7-isogenies (more details to come).

Important properties for such a walk:

IP1 ◮ The graph is a composition of compatible cycles.

IP2 ◮ We can compute neighbours in given directions.
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Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

◮ An elliptic curve E/Fp (for p ≥ 5) is supersingular if
#E(Fp) = p + 1.
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#E(Fp) = p + 1.

◮ An isogeny between two elliptic curves E → E′ is a
surjective morphism (of abelian varieties) that preserves
the identity.

◮ For elliptic curves E,E′/Fp and a prime ℓ 6= p, an ℓ-isogeny
f : E → E′ is an isogeny with # ker(f ) = ℓ.

◮ If f : E → E′ is an ℓ-isogeny, there is a unique dual isogeny
f∨ : E′ → E such that f∨ ◦ f = [ℓ] is the multiplication-by-ℓ
map on E.

◮ The dual isogeny is also an ℓ-isogeny.
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Towards IP1: Isogeny graphs

Definition
Let p and ℓ be distinct primes. The isogeny graph Gℓ containing
E/Fp is the graph with:

◮ Nodes: elliptic curves E′/Fp with #E(Fp) = #E′(Fp) (up to
Fp-isomorphism).

◮ Edges: we draw an edge E − E′ to represent an ℓ-isogeny
f : E → E′ together with its dual ℓ-isogeny.
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Definition
Let p and ℓ be distinct primes. The isogeny graph Gℓ containing
E/Fp is the graph with:

◮ Nodes: elliptic curves E′/Fp with #E(Fp) = #E′(Fp) (up to
Fp-isomorphism).

◮ Edges: we draw an edge E − E′ to represent an ℓ-isogeny
f : E → E′ together with its dual ℓ-isogeny.

◮ In our example, these are

G7:
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Towards IP1: Isogeny graphs

Definition
Let p and ℓ be distinct primes. The isogeny graph Gℓ containing
E/Fp is the graph with:

◮ Nodes: elliptic curves E′/Fp with #E(Fp) = #E′(Fp) (up to
Fp-isomorphism).

◮ Edges: we draw an edge E − E′ to represent an ℓ-isogeny
f : E → E′ together with its dual ℓ-isogeny.

◮ In our example, these are

G3∪G5∪G7:
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Towards IP1: Isogeny graphs

Definition
Let p and ℓ be distinct primes. The isogeny graph Gℓ containing
E/Fp is the graph with:

◮ Nodes: elliptic curves E′/Fp with #E(Fp) = #E′(Fp) (up to
Fp-isomorphism).

◮ Edges: we draw an edge E − E′ to represent an ℓ-isogeny
f : E → E′ together with its dual ℓ-isogeny.

◮ Generally, the Gℓ look something like

G3: G5:
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Towards IP1: Endomorphism rings

◮ We want to make sure Gℓ is a cycle.
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Towards IP1: Endomorphism rings

◮ We want to make sure Gℓ is a cycle.

◮ Equivalently: every node in Gℓ should be distance zero
from the cycle.

◮ Two nodes are at different distances from the cycle if and
only if they have different endomorphism rings.
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Towards IP1: Endomorphism rings

Definition
An endomorphism of an elliptic curve E is a morphism E → E
(as abelian varieties).
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Definition
An endomorphism of an elliptic curve E is a morphism E → E
(as abelian varieties).

Example

Let E/Fp be an elliptic curve.

◮ For n ∈ Z, the mulitplication-by-n map

[n] : E → E
P 7→ nP

is an endomorphism.

◮ The Frobenius map

π : E → E
(x, y) 7→ (xp, yp)

is an endomorphism.
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Towards IP1: Endomorphism rings

Definition
The Fp-rational endomorphism ring EndFp(E) of an elliptic
curve E/Fp is the set of Fp-rational endomorphisms.
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Towards IP1: Endomorphism rings

Definition
The Fp-rational endomorphism ring EndFp(E) of an elliptic
curve E/Fp is the set of Fp-rational endomorphisms.

Example

Let p > 3, let E/Fp : y2 = x3 + Ax2 + x be a supersingular elliptic
curve, and let π be the Frobenius endomorphism. Then

π ◦ π = [−p]

and
Z[
√−p] → EndFp(E)

n 7→ [n]√−p 7→ π

extends Z-linearly to a ring homomorphism.
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Towards IP1: Group action

For p ≡ 3 (mod 8) and p ≥ 5, if EA/Fp : y2 = x3 + Ax2 + x is
supersingular, then EndFp(EA) ∼= Z[

√−p].
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Towards IP1: Group action

For p ≡ 3 (mod 8) and p ≥ 5, if EA/Fp : y2 = x3 + Ax2 + x is
supersingular, then EndFp(EA) ∼= Z[

√−p].
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◮ Then

HI =
⋂

α∈I

ker(α)

is a subgroup of E(Fp).
◮ Recall that isogenies are uniquely defined by their kernels

(cf. First Isomorphism Theorem of Groups).
◮ Define

fI : E → E/HI

to be the isogeny from E with kernel HI.
◮ For [I] ∈ Cl(Z[

√−p]), let Ĩ be an integral representative of
the ideal class [I]. Then

Cl(Z[
√−p])× S → S
([I],E) 7→ fHĨ

(E)

is a free, transitive group action!
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 there is a choice of ℓ1, . . . , ℓn such that Gℓ1
∪ · · · ∪ Gℓn is a

composition of compatible cycles (IP1).
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◮ Our group action was:

Cl(Z[
√−p])× S → S
([I],E) 7→ fHĨ

(E) =: [I] ∗ E.

◮ For ℓ ∈ {ℓ1, · · · , ℓn} as before and [I] ∈ Cl(Z[
√−p]), the

isogeny fHĨ
(E) is an ℓ-isogeny if and only if

[I] = [〈ℓ, π ± 1〉].

◮ Choosing the direction in the graph corresponds to
choosing this sign.
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◮ Find a point P of order ℓ on E.

◮ Compute the isogeny with kernel {P, 2P, . . . , ℓP} using
Vélu’s formulas (implemented in Sage).

◮ Let E/Fp be supersingular and p ≥ 5. Then E(Fp) ∼= Cp+1 or
C2 × C(p+1)/2.

◮ Suppose we have found P = E(Fp) of order p + 1 or
(p + 1)/2.

◮ For every odd prime ℓ|(p + 1), the point
p+1
ℓ P is a point of

order ℓ.

◮ Given a Fp-rational point of order ℓ, the isogeny
computations can be done over Fp.
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To compute the neighbours of supersingular E/Fp with p ≥ 5 in
its ℓ-isogeny graph Gℓ for odd ℓ|(p + 1):

◮ Fix conditions as before so that Gℓ is a cycle, i.e., E has two
neighbours.

◮ Find a basis {P,Q} of the ℓ-torsion with P ∈ Fp.

◮ 1 ∈ Z/ℓZ is an eigenvalue of Frobenius on the ℓ-torsion; the
action [〈ℓ, π − 1〉] ∗ E gives an ℓ-isogeny in the ’+’ direction.

◮ The other eigenvalue of Frobenius is p/ℓ ∈ Z/ℓZ.

◮ If p ≡ −1 (mod ℓ) then the action [〈ℓ, π + 1〉] ∗ E gives an
ℓ-isogeny in the ’−’ direction.
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supersingular E/Fp in its ℓ-isogeny graph Gℓ for odd ℓ|(p + 1)?
Choosing p = 4ℓ1 · · · ℓn − 1 ensures:

◮ Every ℓi|(p + 1), so there is a rational basis point of the
ℓi-torsion

◮ p ≡ 3 (mod 8), so Gℓi
is a cycle (we have our group action)

◮ p ≡ 1 (mod ℓi), so ℓi-isogenies come from action of
[〈ℓi, π ± 1〉].

Given the group action as above, Vélu’s formulas give actual
isogenies!
With our design choices all isogeny computations are over Fp. 2

2You still need a little more to get computations for both the + and −

directions to be over Fp
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Representing nodes of the graph

◮ Every node of Gℓi
is

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.

⇒ Tiny keys!
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Does any A work?

No.

◮ About
√

p of all A ∈ Fp are valid keys.

◮ Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P = ∞.3

3This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.
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knows the path, so can do only small degree isogeny
computations, giving complexity O(

∑
eiℓi). An attacker

has to compute one isogeny of degree
∏

ℓei

i (cf. isogeny
evaluation complexity from David Jao’s talk).

◮ Alternative way of thinking about it: Alice has to compute
the isogeny corresponding to one path from E0 to EA,
whereas an attacker has compute all the possible paths
from E0 to EA.

◮ Best classical attacks are (variants of) meet-in-the-middle:
Time O( 4

√
p).
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◮ Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

◮ Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

◮ Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

◮ Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to
CRS – their attack also applies to CSIDH.

◮ Part of CJS attack computes many paths in superposition.
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◮ Choice of time/memory trade-off (Regev/Kuperberg)
◮ Quantum evaluation of isogenies

(and much more).

4From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

32 / 37



Quantum Security

◮ The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

◮ Choice of time/memory trade-off (Regev/Kuperberg)
◮ Quantum evaluation of isogenies

(and much more).

◮ Most previous analysis focussed on asymptotics

4From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

32 / 37

Quantum Security

◮ The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

◮ Choice of time/memory trade-off (Regev/Kuperberg)
◮ Quantum evaluation of isogenies

(and much more).

◮ Most previous analysis focussed on asymptotics

◮ Recent preprint [BLMP] gives full computer-verified
simulation of quantum evaluation of isogenies. Computes
one query (i.e. CSIDH-512 group action) using
765325228976 ≈ 0.7 · 240 nonlinear bit operations.

4From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

32 / 37

Quantum Security

◮ The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

◮ Choice of time/memory trade-off (Regev/Kuperberg)
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(and much more).

◮ Most previous analysis focussed on asymptotics

◮ Recent preprint [BLMP] gives full computer-verified
simulation of quantum evaluation of isogenies. Computes
one query (i.e. CSIDH-512 group action) using
765325228976 ≈ 0.7 · 240 nonlinear bit operations.

◮ For fastest variant of Kuperberg (uses billions of qubits),
total cost of CSIDH-512 attack is about 281 qubit
operations.4

4From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.
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CSIDH-512 1 64 b 32 b 85 ms 212e6 4368 b 128

CSIDH-1024 3 128 b 64 b 256

CSIDH-1792 5 224 b 112 b 448
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◮ Fast and constant-time implementation. (For ideas on
constant-time optimization, see [BLMP], [MR]).

◮ Hardware implementation.

◮ More applications.

◮ [Your paper here!]
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Thank you!
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