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SIDH overview

1. Public parameters: Supersingular elliptic curve E over Fp2 .

2. Alice chooses a kernel A ⊂ E (Fp2) and sends E/A to Bob.

3. Bob chooses a kernel B ⊂ E (Fp2) and sends E/B to Alice.

4. The shared secret is

E/〈A,B〉 = (E/A)/φA(B) = (E/B)/φB(A).
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The core operation in SIDH is to compute φA : E → E/A given A.

Vélu’s formulas for constructing isogenies (1971)

Set S = (A \ {∞})/± (i.e. “A excluding identity, modulo ±”).
Then φA = (φx , φy ) where
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SIDH strategies

In SIDH, we use isogenies of degree ℓe , where ℓ is a small prime.
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Basic constraints:

We can compute
point multiplication
freely, at will.

However, in order
to evaluate an
isogeny φi , we need
to compute the
point [ℓe−i ]Ri first.

Optimization #0: Use smaller parameters

Adj et al., https://ia.cr/2018/313:

We conclude that using SIDH parameters with p ≈ 2448

offers CSSI security of at least 128 bits against known

classical and quantum attacks, and thus meet the

security requirements in NIST’s Category 2. . .

SIDH operations are about 4.8 times faster when p434 is

used instead of p751.

Optimization #1: SIMD instructions

Koziel et al., https://ia.cr/2016/669:

◮ SIMD (Single Instruction Multiple Data) allows multiple
operations to be performed in a single cycle.

◮ The catch: one operand must be constant
◮ We can parallelize a · b and a · c , but not a · b and c · d

◮ Since our numbers are so large (512 bits and up), we can take
advantage of SIMD to parallelize just a single multiplication.

Our approach (on 32-bit ARM):

◮ Use SIMD to multiply 256-bit blocks using parallel operations

◮ Use Karatsuba multiplication to multiply larger numbers (e.g.
1024-bit numbers) using smaller 256-bit blocks

NEON-SIMD multiplication example: 256× 32 bit
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Optimization #2: parallelized isogeny evaluations

Aaron Hutchinson and Koray Karabina, Constructing canonical

strategies for parallel implementation of isogeny based

cryptography, Indocrypt 2018

Optimization #3: FPGA implementations

◮ B. Koziel, R. Azarderakhsh, M. M. Kermani, Fast hardware
architectures for Supersingular Isogeny Diffie-Hellman key

exchange on FPGA, Indocrypt 2016.

◮ B. Koziel, R. Azarderakhsh, M. M. Kermani, D. Jao,
Post-quantum cryptography on FPGA based on isogenies on

elliptic curves, IEEE TCAS (2017).

◮ B. Koziel, R. Azarderakhsh, M. M. Kermani, A
high-performance and scalable hardware architecture for

isogeny-based cryptography, IEEE TC 67 (11), 2018.

Parallelism in FPGA implementations

◮ Fp2 multiplication → 3 Fp multiplications

◮ Perform isogeny evaluations in parallel (as in Hutchinson and
Karabina, Indocrypt 2018)



Results

◮ 4x more area, 10x less speed, 6x smaller keys (vs. NewHope)

◮ Finite field exponentiation (needed for constant-time field
inversion) remains a bottleneck, as it is difficult to parallelize

Optimization #4: ECC hardware acceleration

J. D. Calhoun, “Optimization of supersingular isogeny
cryptography for deeply embedded systems,”
https://digitalrepository.unm.edu/ece_etds/420

◮ 6.3-7.5x speed improvement using instruction set extensions
for finite field arithmetic

◮ (Further) 6.0-6.1x speed improvement using an existing finite
field arithmetic coprocessor design with a 32-bit datapath

◮ (Further) 2.6-2.9x speed improvement using a slightly
modified finite field coprocessor with a 64-bit datapath

Target platforms

Baseline platform: Targhetta et al., “The design space of ultra-low
energy asymmetric cryptography.”
http://ieeexplore.ieee.org/document/6844461/

1. “Pete” — 5-stage pipelined RISC (MIPS) processor, 256kB
program ROM, 16kB RAM

2. “PeteISE” — Pete with instruction set extensions for prime
fields

3. “PM32” — Pete with “Monte” GF(p) arithmetic accelerator

4. “PM64” — Modified Monte accelerator with 64-bit word size

All (except PM64) were originally designed for ECC (not SIDH).

Results

Work Platform
Key gen. Secr. gen.

Alice Bob Alice Bob

[1] Cortex-M4 1025 1148 967 1112

[2]

Pete 4259 4814 4012 4197
PeteISE 617 679 494 556
PM32 99 113 85 101
PM64 33 37 28 34

[3] x64 27 31 25 29
[4] Virtex-7 1.61 1.74 1.44 1.59

Table: Clock cycle count [×106] for SIDH on p751

1. Koppermann et al., https://ia.cr/2018/932

2. Calhoun, https://digitalrepository.unm.edu/ece_etds/420

3. Faz-Hernández et al., https://ia.cr/2017/1015

4. Koziel et al., IEEE TC 67 (11), 2018.



Size comparison

Bytes FF LUT DSP BRAM

[1] NewHope Artix-7 2178 4452 5142 2 4

[2]
PeteISE

Zynq 7Z020 378
2944 4658 1 33.5

PM32 3426 5403 5 44.5
PM64 3700 6074 17 47.5

[3] SIDH Virtex-7 378 24908 18820 192 43.5

FF — flip flops

LUT — lookup tables

DSP — digital signal processing slices

BRAM — Block RAM

1. Oder and Güneysu, LatinCrypt 2017

2. Calhoun, https://digitalrepository.unm.edu/ece_etds/420

3. Koziel et al., IEEE TC 67 (11), 2018.

Note: The design in [2] is software-configurable for any field size.

Conclusions

◮ SIDH with NewHope-like hardware acceleration resources is
clock-for-clock comparable to SIDH on x64 in speed.

◮ SIDH on IoT likely requires hardware acceleration.

◮ Taking into account cost of communication, SIDH may be of
interest to IoT implementors.

◮ Future work: Authenticated key exchange, signatures, CSIDH.


