
A new public-key crypto system
via Mersenne numbers

Divesh Aggarwal
joint work with Antoine Joux, Anupam Prakash and Miklos Santha

Public-key cryptography

-Introduced by Diffie and Hellman in [DH76]  
 

-Many candidates over the years

-The quest in the recent years has shifted to advanced primitives

-In this work, we propose an arguably simpler PKC scheme.
 -We also believe it is secure against quantum attacks.

Mersenne cryptosystem
- Belongs to the Ring and Noise family with

- NTRU
- Code-based crypto
- Ring LWE based crypto

- With a different Ring: Z/pZ (p Mersenne prime),
and

- a different Noise: Hamming weight mod p.

Mersenne cryptosystem

Mersenne primes: They are primes of the form
p=2n-1, where n is a prime, and is named after Marin
Mersenne, a French mathematician, who studied them
in the early 17th century. (Wikipedia)

Main advantage of the cryptosystem: Simplicity

Mersenne ring and
distance

- Ring Z/pZ
- p a Mersenne prime, i.e., 2n-1

Let :
- Rp(X)=rep of X in [0,p-1]

- HW(X)=num of 1 in binary rep of X mod p

Some properties of arithmetic mod p
1) HW(X+Y) ≤ HW(X) + HW(Y)
 11010100111001

 +00000000001000

 —————————————————

 =11010101000001  

2) For all i, HW(X 2i) = HW(X)

3) HW(XY) ≤ HW(X) x HW(Y) 
 Induction  

4) HW(-X) = n-HW(X) 

Warm Up
Single bit version

Hard problem

 p = 2^n - 1, h << n  

f, g are numbers mod p with few (< h) 1s in binary rep.  
 

H=f/g [mod p]

Assumption: Given H, obtain f, g.

Single bit version
H=f/g [mod p], PK = H, SK = g
(f and g containing few 1s, i.e. ≤h)

Encryption

a and b with few 1s

C0 = Enc(0) = (a H + b) 
C1 = Enc(1) = -(a H + b)

Decryption

gC = ± [a f + b g]
Compute HW(gC)

Small => 0
Large => 1

Toy Example

p=231-1= 2147483647 = 0x7FFFFFFF
H=f/g=0x8002000/0x20000008
=0x42E8BE0F

Encryption
a=0x80800

b=0x40000080
C = Enc(0) = (a H + b)

=Ox766CAB3A

Decryption

gC = 0x110084A6
HW(gC) = 8 (< 15) => 0

Correctness of decryption

g(aH+b) ≡ af+bg [mod p]

HW(Rp(af+bg)) ≤ HW(a)HW(f)+HW(b)HW(g)

HW(Rp(-(af+bg))) = n - HW(Rp(af+bg))

≤ 2 h2 ≤ n/2

≥ n/2

For correctness, we need n > 4 h2

Multi-bit version
underlying encryption

Change public/private key

H=f/g [mod p] ⇔ f (-1/H) + g = 0 [mod p]

I.e. f R + g = 0

T=f R + g [mod p] (R fully random)

Mersenne
(basic multi-bit encrypt)

T=fR+g [mod p] (R fully random)

Encryption

C1=a R + b1
C2=a T + b2
Z = C2⊕E(m)

Enc(m)=(C1, Z)

Decryption of (C1,Z)

C2’=f C1

m=D(C2’⊕Z)

E and D : Error correction code

Multi-bit encryption
Analysis of decryption

C2 = a T + b2 = afR + (ag+b2)
C2’= f C1 = f (a R + b1) = afR + b1 f

HW(C2⊕C2’) ≤ Hdist(C2,afR) + Hdist(C2’,afR)

Thus Dec(Enc(m) ⊕ small error) = m

Heuristic : Error is well distributed
Allows to use simple repetition code

Analysis of decryption
LEMMA: Let U be a random n-bit string and let x
be an n-bit string of Hamming weight h. Then

Pr[Hdist(U, U + x) > 2 h (1 + c)] < negligible

EXAMPLE:
11001010101011110101110101000111110100101 

+000010000001000100000000100010000100010 
 

11010010101101111101110101101001111000111

Choice of error-correcting code
-Thus, the total number of errors we expect is at most
e = 2 (2 h2 + h)

-We need an ECC correcting e out of n errors

-Can use Reed Muller codes, and n = O(h2)

-The number e is clearly an overestimate of the no. of
errors in practice

-Also, we expect the errors to be distributed randomly

Recommended parameters

n = 756839

Low HW parameter h=256

Encode 256 bits:
with 2048-repetition coding

Heuristics Hard Problem
Distinguish

Random tuple

(R1, R2, R3, R4)

Hidden low weight

(R1, R2, aR1+b1, a R2+b2)

a, b1, b2 with low HW

Multi-bit Mersenne
CCA-KEM

CCA-KEM

Alice’s PK

BobAlice

Encaps

Shared Key

Decaps

Shared Key

Ciphertext
Alice’s SK

CCA-KEM under
active attack

Alice’s PK

Eve

Alice

Decaps
Invalid Ciphertext

⊥

Alice’s SK

Mersenne KEM encaps
(with CCA security)

S = Random seed

1) Initialize PRG from s
2) Produce pseudo random shared secret
3) Run basic encryption of s
 (getting a, b1, b2 from PRG)
4) Output (C1, Z)

Mersenne KEM decaps
(with CCA security)

1) Run basic decryption on (C1, Z)
2) Re-encapsulate from s
3) Compare and Output

a) Shared secret
b) or ⊥

Best Known attacks [BCGN17, BDJW18]
(for proposed params)

Best Classical : At least 22h

Best Quantum : At least 2h

n
h((Trivial :

Future Work

-Cryptanalysis  
 

-Improve efficiency without compromising security
Thank You

