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Introduction

The Four Methods

Quasi-diagonal Hypersurfaces I

Let Fq be a finite field with q = pf elements for some prime p. A

quasi-diagonal hypersurface V in Pm−1 is a variety given by a

projective equation

∑

1≤i≤m

aix
m
i − b

∏

1≤i≤m

xi = 0 ,

with ai ∈ F∗
q and b ∈ Fq (note: the number of variables is equal

to the degree). We want to compute |V (Fq)|, its number of

(projective) points over Fq.

Important tool: we denote by ω a generator of the group of

characters of F∗
q (with values in some algebraically closed

field): recall that F∗
q is a cyclic group, so ω exists and can be

defined by ω(g) = ζq−1 for g a generator of F∗
q and ζq−1 a

primitive (q − 1)-th root of unity.
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Quasi-diagonal Hypersurfaces II

Then theorem: if gcd(m, q − 1) = 1 and b 6= 0, set

B =
∏

1≤i≤m(ai/b). We have|V (Fq)| = (A(Fq)− 1)/(q − 1) with

A(Fq) = (−1)m−1 +
∑

0≤n≤q−2

ω−n(B)Jm(ω
n, . . . , ωn) ,

Jm is an m-variable Jacobi sum defined as follows:

Jm(χ1, . . . , χm) =
∑

x1+···+xm=1

χ1(x1) · · ·χm(xm)

for characters χi of F∗
q. The proof is not difficult.
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Gauss and Jacobi Sums I

Thus, we need preliminaries on Gauss and Jacobi sums. Let χ
be a character of F∗

q. The Gauss sum is defined by

g(χ) =
∑

x∈F∗

q

χ(x) exp(2πi TrFq/Fp
(x)/p)

(TrFq/Fp
denotes the trace from Fq to Fp). If χ is the trivial

character ε, we have g(χ) = −1, otherwise it is easy to prove

that |g(χ)| = q1/2.

Gauss–Jacobi sum relation: if χi 6= ε for all i and
∏

i χi 6= ε, then

Jm(χ1, . . . , χm) =
g(χ1) · · · g(χm)

g(χ1 · · ·χm)
.

If some χi = ε or
∏

i χi = ε, there are other, simpler, formulas,

for instance, Jm(ε, . . . , ε) = qm−1.
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Gauss and Jacobi Sums II

So if everything is different from the trivial character ε, we have

an immediate recursion

Jm(χ1, . . . , χm) = Jm−1(χ1, . . . , χm−1)J2(ψ, χm)

with ψ = χ1 · · ·χm−1 (and even simpler recursions if some χi or

ψ is equal to ε).

Naive computation of Jm requires summing over (x1, . . . , xm)
such that x1 + · · ·+ xm = 1, so qm−1 operations.

Use of the recursion requires (m − 1) times computation of J2,

hence essentially (m − 1)q operations, so much faster.

We write

J(χ1, χ2) := J2(χ1, χ2) =
∑

x∈Fq

χ1(x)χ2(1 − x) .
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A Complete Example I

Recall that ω is a generator of the group of characters of F∗
q.

We write for simplicity

Jm(n1, . . . , nm) := Jm(ω
n1 , . . . , ωnm)

(since any character is a power of ω, this is the general Jacobi

sum).

We consider the quasi-diagonal hypersurface V as above, i.e.

with projective equation
∑

1≤i≤m aix
m
i − b

∏

1≤i≤m xi = 0. By the

above theorem, if gcd(m, q − 1) = 1 and b 6= 0, the number of

projective points V (Fq) is equal to (A(Fq)− 1)/(q − 1), where

A(Fq) = (−1)m−1 + S(q;B) with B =
∏

1≤i≤m

(ai/b) and

S(q;B) =
∑

0≤n≤q−2

ω−n(B)Jm(n, . . . , n) .
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A Complete Example II

We choose the reasonably nontrivial example m = 5, and we

will study several methods for computing

S(q;B) =
∑

0≤n≤q−2

ω−n(B)J5(n, n, n, n, n) :

1 A direct method using the definition of J(n, n).
2 Using the fact that all the character values are in the

cyclotomic ring Z[ζq−1], and in fact in the ring with zero

divisors R = Z[X ]/(X q−1 − 1), we can work with simple

polynomials.
3 Using theta functions.
4 Using Morita’s p-adic gamma function and the

Gross–Koblitz formula.

This last method is the most sophisticated, but by far the best,

so I will spend some time describing it in detail.
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The Direct Method

In this method we compute each J5(n, n, n, n, n) independently.

Recall that generically (in this case, exactly when (q − 1) ∤ 5n)

we have J5(n, n, n, n, n) = J(n, n)J(2n, n)J(3n, n)J(4n, n),
which thus require approximately 4q operations, so essentially

4q2 to compute S(q;B). No need to give the exact formula

since this is the slowest method.

Sample timings (all timings given in this talk are with a standard

Intel 2.4 Ghz Core i7 processor using the Pari/GP library): for q

of the order of 10k with k = 2, 3, 4, requires 0.03, 1.46, 149

seconds respectively, compatible with O(q2) time. Prohibitive.
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Working with Polynomials I

Recall that ω(x) ∈ Z[ζq−1], where ζq−1 is a primitive (q − 1)-th
root of unity, so all operations can be done in this ring. However,

slightly expensive. More efficient: work in R = Z[X ]/(X q−1 − 1),
with the natural surjective map from R to Z[ζq−1] given by

X 7→ ζq−1. The ring R has zero divisors, but no problem.

Let g be the unique generator of F∗
q such that ω(g) = ζq−1.

Generically, we have

J(n, an) =
∑

1≤u≤q−2

ωn(gu)ωan(1−gu) =
∑

1≤u≤q−2

ζ
nu+na logg(1−gu)

q−1 ,

where logg is the discrete logarithm (g logg(x) = x) modulo q − 1.
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Working with Polynomials II

Thus for 1 ≤ a ≤ 4 we define the polynomials of degree q − 2

Pa(X ) =
∑

1≤u≤q−2

X (u+a logg(1−gu)) mod q−1 ∈ Z[X ] ,

so J(n, an) = Pa(ζ
n
q−1) when (q − 1) ∤ an, and more generally

J(n, an) = Pa(ζ
n
q−1) +











0 if (q − 1) ∤ an ,

1 if (q − 1) | an but (q − 1) ∤ n ,

2 if (q − 1) | n .

Since generically we have

J5(n, n, n, n, n) = J(n, n)J(n, 2n)J(n, 3n)J(n, 4n), it follows that

if we set P(X ) = P1(X )P2(X )P3(X )P4(X ) we have (generically)

J5(n, n, n, n, n) = P(ζn
q−1).
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Working with Polynomials II

Write P(X ) =
∑

0≤j≤q−2 ajX
j , and set ℓ = logg(B). We have

ω−n(B)J5(n, n, n, n, n) = ζ−nℓ
q−1

∑

0≤j≤q−2

ajζ
nj
q−1 =

∑

0≤j≤q−2

ajζ
n(j−ℓ)
q−1 .

The whole point of this method is that when we sum on n the

expression
∑

0≤n≤q−2 ζ
n(j−ℓ)
q−1 almost always vanishes, more

precisely it vanishes if j 6= ℓ and otherwise it equals q − 1. Thus

(if all terms were generic) we would have S(q;B) = (q − 1)aℓ,

so instead of computing the J5(n, n, n, n, n) individually, we

immediately have the sum.
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We must take care of the nongeneric terms, but this is simple

bookkeeping. The final result is the following (same notation aj

and ℓ):

S(q;B) = (q − 1)(aℓ + T1 + T2 + T3 + T4)

with Tm = 0 if m ∤ (q − 1), and otherwise

T1 = 8(q2 − 2q + 2) , T2 = χ2(B)(q + 1) ,

T3 = 2ℜ(χ−1
3 (B)J(χ3, χ3)

2) , T4 = 2ℜ(χ−1
4 (B)J(χ4, χ4)

2) ,

where χm is any character of F∗
q of order exactly m. Note that

J(χm, χm) can be computed in a special very fast way.
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Working with Polynomials III

This requires essentially O(q) time, much faster than the direct

method. Main drawback of this method: although O(q) time, it

has also O(q) storage, so useless if q > 108, say. For many

applications, it is sufficient.

Sample timings: for q of the order 10k with k = 2, 3, 4, 5, 6, 7,

requires 0.002, 0.02, 0.08, 0.85, 9.9, 123 seconds respectively,

compatible with O(q) time and of course much faster than the

direct method; however already needs several gigabytes of

storage for q ≈ 107.

Henri Cohen (Talk given by Atsuko Miyaji) Point Counting on Quasi-Diagonal Hypersurfaces

Introduction

The Four Methods

Working with Polynomials III

This requires essentially O(q) time, much faster than the direct

method. Main drawback of this method: although O(q) time, it

has also O(q) storage, so useless if q > 108, say. For many

applications, it is sufficient.

Sample timings: for q of the order 10k with k = 2, 3, 4, 5, 6, 7,

requires 0.002, 0.02, 0.08, 0.85, 9.9, 123 seconds respectively,

compatible with O(q) time and of course much faster than the

direct method; however already needs several gigabytes of

storage for q ≈ 107.

Henri Cohen (Talk given by Atsuko Miyaji) Point Counting on Quasi-Diagonal Hypersurfaces



Introduction

The Four Methods

Using Theta Functions I

Assume that q = p. For χ a character on F∗
p and t > 0 we

define the theta function

Θ(χ, t) = 2
∑

m≥1

meχ(m)e−πm2t/p ,

where e = 0 or 1 is the parity of χ (χ(−1) = (−1)e).

Main properties: first, it is very rapidly convergent (essentially

O(p1/2) terms to compute numerical values). Second and most

importantly, it has a functional equation for t ∈ R>0

Θ(χ, 1/t) = W (χ)t1/2+eΘ(χ, t) , where

W (χ) = g(χ)/(iep1/2) .
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Using Theta Functions II

Thus, if for instance Θ(χ, 1) 6= 0 (otherwise use t 6= 1 or apply

L’Hospital’s rule) we have

g(χ) = iep1/2Θ(χ, 1)/Θ(χ, 1) .

Thus (for q = p) the Gauss sum g(χ) can be computed in time

essentially O(q1/2) (more precisely O(q1/2+ε) for all ε > 0, but

we ignore ε). Since Jacobi sums can be expressed in terms of

products of Gauss sums, it follows that they also can be

computed in O(q1/2). Much faster than the direct method which

requires O(q).

Henri Cohen (Talk given by Atsuko Miyaji) Point Counting on Quasi-Diagonal Hypersurfaces

Introduction

The Four Methods

Using Theta Functions II

Using this, we can compute S(q;B) (for q = p) in time O(q3/2).
Slower than the polynomial version above which was in O(q),
but big advantage: essentially no storage. For q > 108, much

too slow however.

Sample timings: for q = p of the order 10k with k = 2, 3, 4, 5,

requires 0.02, 0.4, 16.2, 663 seconds, compatible with O(q3/2)
time. Much slower than the polynomial method, but very little

storage.
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Morita’s p-adic Gamma Function I

We now come to the most efficient method, but also the most

sophisticated method to compute S(q;B). Since behind the

scenes there are variants of crystalline cohomology theories,

this is a distant cousin of Kedlaya’s algorithm for counting

points on hyperelliptic curves. But don’t be afraid of these dirty

words, you will see that at the end of the day everything is

completely elementary.

We assume some familiarity with p-adic numbers: recall simply

that in the p-adic topology pj → 0 when j → ∞. We denote by

Zp the ring of p-adic integers s = a0 + a1p + a2p2 + · · · with

0 ≤ ai ≤ p − 1.
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Morita’s p-adic Gamma Function II

We need to define the p-adic analogue of the ordinary gamma

function, called Morita’s p-adic gamma function and denoted

Γp. Its definition is very simple (all limits p-adic):

Γp(s) = lim
m→s

m∈Z>0

(−1)m
∏

0≤k<m
p∤k

k = lim
m→s−1
m∈Z>0

(−1)m+1 m!

p⌊m/p⌋(⌊m/p⌋)! .

Observe this definition: eliminating terms k such that p | k is

natural. But why the (−1)m ? this is due to Wilson’s theorem

(p − 1)! ≡ −1 (mod p). Need to show convergence:

immediately follows from the following lemma (exercise!):
∏

m≤k<m+a·pN

p∤k

k ≡ (−1)a·pN

(mod pN) .
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Morita’s p-adic Gamma Function III

Properties completely analogous (but slightly different from) the

ordinary gamma function Γ(s) (expression of Γp(m) in terms of

factorials for m ∈ Z, recursion formula giving Γp(s + 1) in terms

of Γp(s), reflection formula giving Γp(1 − s) in terms of Γp(s),
duplication and more generally distribution formula giving
∏

0≤j<N Γp(s + j/N), explicit expression for Γp(1/2), explicit

power series expansion of logp(Γp(s + 1)), Raabe’s formula).

As a consequence: easy algorithms for computing it

implemented in most computer algebra systems.

There is a more sophisticated formula for the ordinary gamma

function called the Lerch, Chowla–Selberg formula which I will

not state. The p-adic analogue is what concerns us here, called

the Gross–Koblitz formula.
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The Gross–Koblitz Formula I

We have a surprise: some natural values are algebraic: for

example one computes that

Γ5(1/4) =

√

−2 +
√
−1

for suitable signs of square roots. This is totally different from

the ordinary gamma (Γ(1/4) is known to be transcendental),

but is a special case of the Gross-Koblitz formula. More

generally, Γp(r/(p − 1)) is an algebraic number.

The general Gross–Koblitz formula says in rough terms that:

Any Gauss sum over Fpf is equal to an (explicit) product of

f values of Γp(si) at rational arguments (si)1≤i≤f , up to a

known sign and rational power of p.
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The Gross–Koblitz Formula II

Consequence: to compute Gauss sums (and Jacobi sums,

since they can be expressed in terms of Gauss sums), it is

sufficient to be able to compute Γp(s).

As mentioned, there exist efficient algorithms for this (see my

book Springer GTM 240). Can now forget about p-adic

numbers: one can obtain the result modulo p, or modulo p2,

etc... This is sufficient because of the Deligne–Weil bounds.
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A Sample Pari/GP Session

? gamma(1/4+O(5^12))

% = 1 + 4*5 + 3*5^4 + 5^6 + 5^7 + 4*5^9 + 5^10 + O(5^12)

? algdep(%,4)

% = x^4 + 4*x^2 + 5 /* algebraic number */

? gamma(1/3+O(7^20))

% = 4 + 3*7 + 5*7^2 + 7^3 + 7^4 + 2*7^5 + 7^6 + 5*7^7 + ...

? algdep(%,6)

% = x^6 - x^3 + 7 /* algebraic number */

? gamma(1/6+O(7^20))

% = 1 + 4*7 + 4*7^2 + 6*7^3 + 6*7^4 + 7^5 + 4*7^6 + ...

? algdep(%,6)

% = x^6 + 13*x^3 + 49 /* algebraic number */

? gamma(1/6+O(7^1000));

time = 96 ms. /* Very fast, even for 1000 p-adic digits. */
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The Method using Gross–Koblitz I

Using the Gross–Koblitz formula, it is easy to prove the

following result for our problem: let Hn be the nth harmonic sum

Hn =
∑

1≤j≤n 1/j . Then

S(p;B) ≡
∑

0<r≤(p−1)/5

(5r)!

r !5
(1 + 5pr(H5r − Hr ))B

pr

− p
∑

(p−1)/5<r≤2(p−1)/5

(5r − (p − 1))!

r !5
Br (mod p2) .

Note that this requires only O(p) operations and essentially no

storage.
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The Method using Gross–Koblitz II

Now we have seen above that (p − 1) | S(p;B). Thus the

above congruence determines S(p;B) modulo p2(p − 1). On

the other hand, the Weil conjectures (more precisely the

Riemann hypothesis for varieties, Deligne’s theorem) tells us

that |S(p;B)− p4| < 4p5/2. A small computation shows that for

p ≥ 67 the congruence modulo (p − 1)p2 determines

completely S(p;B).
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The Method using Gross–Koblitz II

Thus this is a O(p) method, much faster than everything else

(even the implicit constant in the O() is very small), and not

needing much storage. Example in 2 seconds we obtain

S(106 + 3; 2) = 1000012000056356142712140 .

Sample timings: for q = p of the order 10k with k = 2, 3, 4, 5,

6, 7, 8 requires 0.001, 0.01, 0.03, 0.21, 2.13, 21.9, 229

seconds respectively, compatible with time O(q) (and 5 to 6

times faster than the polynomial method), but requiring

essentially no storage.

Therefore it is the best available method.
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Conclusion I

We have presented four algorithms for computing the number

of points of a quasi-diagonal hypersurface. A summary of the

timings (in seconds) for a prime q of the order of 10k is given in

the following table, where ∗ means that I have not been patient

enough for the program to terminate:

k 2 3 4 5 6 7 8

Direct 0.03 1.56 149. ∗ ∗ ∗ ∗
Theta 0.02 0.40 16.2 663. ∗ ∗ ∗

Mod X q−1 − 1 0.00 0.02 0.08 0.85 9.90 123 ∗
Gross–Koblitz 0.00 0.01 0.03 0.21 2.13 21.9 229.
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Conclusion II

The definite conclusion is that the method using the

Gross–Koblitz formula is both by far the best in terms of speed,

but also in terms of storage since it does not need much.

Two additional remarks. First, note that this method can be

used in point-counting for much more general varieties than

quasi-diagonal hypersurfaces, for instance for varieties coming

from hypergeometric motives.

Second, computing |V (Fq)| for all small prime powers q allows

the construction of the global L-function attached to the variety

V , and in particular permits the experimental testing of

numerous conjectures (generalizing the Taniyama–Weil

conjecture, i.e., Wiles’s theorem).
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Thank you for your attention.
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