
CSIDH:

An Efficient Post-Quantum
Commutative Group Action

https://csidh.isogeny.org

Wouter Castryck1 Tanja Lange2 Chloe Martindale2

Lorenz Panny2 Joost Renes3

1KU Leuven 2TU Eindhoven 3RU Nijmegen

ECC, Osaka, Japan, 21st November 2018

1 / 37

["si:­saId]

2 / 37

History

1976 Diffie-Hellman: Key exchange using exponentiation in
groups (DH)

1985 Koblitz-Miller: Diffie-Hellman style key exchange using
multiplication in elliptic curve groups (ECDH)

1990 Brassard-Yung: Generalizes ‘group exponentiation’ to
‘groups acting on sets’ in a crypto context

1994 Shor: Polynomial-time quantum algorithm to break the
discrete logarithm problem in any group, quantumly
breaking DH and ECDH

1997 Couveignes: Post-quantum isogeny-based
Diffie-Hellman-style key exchange using commutative
group actions (not published at the time)

2003 Kuperberg: Subexponential-time quantum algorithm to
attack cryptosystems based on a hidden shift

3 / 37

History

2004 Stolbunov-Rostovtsev independently rediscover
Couveignes’ scheme (CRS)

2006 Charles-Goren-Lauter: Build hash function from
supersingular isogeny graph

2010 Childs-Jao-Soukharev: Apply Kuperberg’s (and Regev’s)
hidden shift subexponential quantum algorithm to CRS

2011 Jao-De Feo: Build Diffie-Hellman style key exchange from
supersingular isogeny graph (SIDH)

2018 De Feo-Kieffer-Smith: Apply new ideas to speed up CRS

2018 Castryck-Lange-Martindale-Panny-Renes: Apply ideas of
De Feo, Kieffer, Smith to supersingular curves over Fp

(CSIDH)

(History slides mostly stolen from Wouter Castryck)

4 / 37

Why CSIDH?

◮ Drop-in post-quantum replacement for (EC)DH

5 / 37

Why CSIDH?

◮ Drop-in post-quantum replacement for (EC)DH

◮ Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

5 / 37

Why CSIDH?

◮ Drop-in post-quantum replacement for (EC)DH

◮ Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

◮ Small keys: 64 bytes at conjectured AES-128 security level

5 / 37

Why CSIDH?

◮ Drop-in post-quantum replacement for (EC)DH

◮ Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

◮ Small keys: 64 bytes at conjectured AES-128 security level

◮ Competitive speed: ∼ 85 ms for a full key exchange

5 / 37

Why CSIDH?

◮ Drop-in post-quantum replacement for (EC)DH

◮ Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

◮ Small keys: 64 bytes at conjectured AES-128 security level

◮ Competitive speed: ∼ 85 ms for a full key exchange
◮ Flexible:

◮ Compatible with 0-RTT protocols such as QUIC
◮ [DG] uses CSIDH for ‘SeaSign’ signatures
◮ [DGOPS] uses CSIDH for oblivious transfer
◮ [FTY] uses CSIDH for authenticated group key exchange

5 / 37

CSIDH vs SIDH?

Apart from mathematical background, SIDH and CSIDH actually have very

little in common, and are likely to be useful for different applications.

Here is a comparison (mostly stolen from Luca de Feo):

CSIDH SIDH

Speed (NIST 1) 85ms ≈ 10ms1

Public key size (NIST 1) 64B 378B
Key compression (speed) ≈ 15ms
Key compression (size) 222B

Constant time implementation yes (quick and dirty) yes
Submitted to NIST no yes

Maturity 7 months 7 years

Best classical attack p1/4 p1/4

Best quantum attack subexponential p1/6

Key size scales quadratically linearly
Security assumption isogeny walk problem ad hoc

CPA security yes yes
CCA security yes Fujisaki-Okamoto

Non-interactive key exchange yes unbearably slow
Signatures (classical) unbearably slow seconds
Signatures (quantum) seconds still seconds?

1
This is a very conservative estimate!

6 / 37

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

7 / 37

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Shor’s algorithm quantumly computes x from gx in any group
in polynomial time.

7 / 37

Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Shor’s algorithm quantumly computes x from gx in any group
in polynomial time.

 Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S → S.

7 / 37

Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

8 / 37

Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g

·g ·g

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

8 / 37

Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g

·g2

·g2

·g2

·g2

·g2

·g2

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

8 / 37

Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g

·g4

·g4

·g4

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

8 / 37

Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

8 / 37

Square-and-multiply

·g
·g

·g
·g

·g

·g

·g
·g

·g
·g

·g ·g
·g

·g
·g

·g

·g

·g
·g

·g
·g·g·g

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19

g20
g21g22

·g2

·g2

·g2

·g2

·g2

·g2

·g2

·g2

·g2
·g2

·g2
·g2·g

2
·g2
·g2
·g2
·g2
·g2

·g2
·g2·g2·g2

·g2

g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13

g14

g15

g16

g17

g18

g19

g20

g21

g22

·g4

·g4

·g4

·g4

·g4

·g4

·g4

·g4

·g4
·g4

·g4
·g4·g

4
·g4
·g4
·g4
·g4
·g4

·g4
·g4·g4·g4

·g4

g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13
g14

g15

g16

g17

g18

g19

g20

g21

g22

·g8

·g8

·g8

·g8

·g8

·g8

·g8

·g8

·g8
·g8

·g8
·g8·g

8
·g8
·g8
·g8
·g8
·g8

·g8
·g8·g8·g8

·g8

g0

g1

g2

g3

g4

g5

g6

g7g8

g9

g10

g11 g12

g13

g14

g15

g16

g17

g18

g19

g20

g21

g22

9 / 37

Square-and-multiply
g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19

g20
g21g22 g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13

g14

g15

g16

g17

g18

g19

g20

g21

g22

g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13
g14

g15

g16

g17

g18

g19

g20

g21

g22

g0

g1

g2

g3

g4

g5

g6

g7g8

g9

g10

g11 g12

g13

g14

g15

g16

g17

g18

g19

g20

g21

g22

9 / 37

Square-and-multiply
g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19

g20
g21g22 g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19

g20
g21g22

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19

g20
g21g22 g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19

g20
g21g22

9 / 37

Square-and-multiply
g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19

g20
g21g22 g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19

g20
g21g22

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19

g20
g21g22 g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19

g20
g21g22

Cycles are compatible: [right, then left] = [left, then right], etc.

9 / 37

Union of cycles: rapid mixing

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21

g22

10 / 37

Union of cycles: rapid mixing

CSIDH: Nodes are now elliptic curves and edges are isogenies.

10 / 37

Graphs of elliptic curves

E0E158
E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199
E390 E29

E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

11 / 37

Graphs of elliptic curves

E0E158
E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199
E390 E29

E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular curves EA : y2
= x3

+ Ax2
+ x over F419.

11 / 37

Graphs of elliptic curves

E0E158
E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199
E390 E29

E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular curves EA : y2
= x3

+ Ax2
+ x over F419.

Edges: 3-, 5-, and 7-isogenies.

11 / 37

Quantumifying Exponentiation

◮ We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.

◮ Replace G by the set S of supersingular elliptic curves
EA : y2 = x3 + Ax2 + x over F419.

◮ Replace Z by a commutative group H... more details to
come!

◮ The action of a well-chosen h ∈ H on S moves the elliptic
curves one step around one of the cycles.

12 / 37

Graphs of elliptic curves

E0E158
E410

E368

E404

E75

E144

E191

E174

E413

E379

E124
E199 E390 E29

E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

A 3-isogeny

(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)

(

97x3
−183x2+x

x2
−183x+97 ,

y· 133x3+154x2
−5x+97

−x3+65x2+128x−133

)

13 / 37

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−] [+,+,−,+]

14 / 37

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+
↑
,−,+,−] [+

↑
,+,−,+]

14 / 37

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−

↑
,+,−] [+,+

↑
,−,+]

14 / 37

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+

↑
,−] [+,+,−

↑
,+]

14 / 37

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−

↑
] [+,+,−,+

↑
]

14 / 37

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−] [+,+,−,+]

14 / 37

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+
↑
,−,+,−] [+

↑
,+,−,+]

14 / 37

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−

↑
,+,−] [+,+

↑
,−,+]

14 / 37

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+

↑
,−] [+,+,−

↑
,+]

14 / 37

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−

↑
] [+,+,−,+

↑
]

14 / 37

Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−] [+,+,−,+]

14 / 37

A walkable graph

◮ Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x
over F419.

15 / 37

A walkable graph

◮ Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x
over F419.

◮ Edges: 3-, 5-, and 7-isogenies (more details to come).

15 / 37

A walkable graph

◮ Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x
over F419.

◮ Edges: 3-, 5-, and 7-isogenies (more details to come).

Important properties for such a walk:

IP1 ◮ The graph is a composition of compatible cycles.

IP2 ◮ We can compute neighbours in given directions.

15 / 37

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

◮ An elliptic curve E/Fp (for p ≥ 5) is supersingular if
#E(Fp) = p + 1.

16 / 37

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

◮ An elliptic curve E/Fp (for p ≥ 5) is supersingular if
#E(Fp) = p + 1.

◮ An isogeny between two elliptic curves E → E′ is a
surjective morphism (of abelian varieties) that preserves
the identity.

16 / 37

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

◮ An elliptic curve E/Fp (for p ≥ 5) is supersingular if
#E(Fp) = p + 1.

◮ An isogeny between two elliptic curves E → E′ is a
surjective morphism (of abelian varieties) that preserves
the identity.

◮ For elliptic curves E,E′/Fp and a prime ℓ 6= p, an ℓ-isogeny
f : E → E′ is an isogeny with # ker(f) = ℓ.

16 / 37

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

◮ An elliptic curve E/Fp (for p ≥ 5) is supersingular if
#E(Fp) = p + 1.

◮ An isogeny between two elliptic curves E → E′ is a
surjective morphism (of abelian varieties) that preserves
the identity.

◮ For elliptic curves E,E′/Fp and a prime ℓ 6= p, an ℓ-isogeny
f : E → E′ is an isogeny with # ker(f) = ℓ.

◮ If f : E → E′ is an ℓ-isogeny, there is a unique dual isogeny
f∨ : E′ → E such that f∨ ◦ f = [ℓ] is the multiplication-by-ℓ
map on E.

16 / 37

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

◮ An elliptic curve E/Fp (for p ≥ 5) is supersingular if
#E(Fp) = p + 1.

◮ An isogeny between two elliptic curves E → E′ is a
surjective morphism (of abelian varieties) that preserves
the identity.

◮ For elliptic curves E,E′/Fp and a prime ℓ 6= p, an ℓ-isogeny
f : E → E′ is an isogeny with # ker(f) = ℓ.

◮ If f : E → E′ is an ℓ-isogeny, there is a unique dual isogeny
f∨ : E′ → E such that f∨ ◦ f = [ℓ] is the multiplication-by-ℓ
map on E.

◮ The dual isogeny is also an ℓ-isogeny.

16 / 37

Towards IP1: Isogeny graphs

Definition
Let p and ℓ be distinct primes. The isogeny graph Gℓ containing
E/Fp is the graph with:

◮ Nodes: elliptic curves E′/Fp with #E(Fp) = #E′(Fp) (up to
Fp-isomorphism).

◮ Edges: we draw an edge E − E′ to represent an ℓ-isogeny
f : E → E′ together with its dual ℓ-isogeny.

17 / 37

Towards IP1: Isogeny graphs

Definition
Let p and ℓ be distinct primes. The isogeny graph Gℓ containing
E/Fp is the graph with:

◮ Nodes: elliptic curves E′/Fp with #E(Fp) = #E′(Fp) (up to
Fp-isomorphism).

◮ Edges: we draw an edge E − E′ to represent an ℓ-isogeny
f : E → E′ together with its dual ℓ-isogeny.

◮ In our example, these are

G3:

17 / 37

Towards IP1: Isogeny graphs

Definition
Let p and ℓ be distinct primes. The isogeny graph Gℓ containing
E/Fp is the graph with:

◮ Nodes: elliptic curves E′/Fp with #E(Fp) = #E′(Fp) (up to
Fp-isomorphism).

◮ Edges: we draw an edge E − E′ to represent an ℓ-isogeny
f : E → E′ together with its dual ℓ-isogeny.

◮ In our example, these are

G5:

17 / 37

Towards IP1: Isogeny graphs

Definition
Let p and ℓ be distinct primes. The isogeny graph Gℓ containing
E/Fp is the graph with:

◮ Nodes: elliptic curves E′/Fp with #E(Fp) = #E′(Fp) (up to
Fp-isomorphism).

◮ Edges: we draw an edge E − E′ to represent an ℓ-isogeny
f : E → E′ together with its dual ℓ-isogeny.

◮ In our example, these are

G7:

17 / 37

Towards IP1: Isogeny graphs

Definition
Let p and ℓ be distinct primes. The isogeny graph Gℓ containing
E/Fp is the graph with:

◮ Nodes: elliptic curves E′/Fp with #E(Fp) = #E′(Fp) (up to
Fp-isomorphism).

◮ Edges: we draw an edge E − E′ to represent an ℓ-isogeny
f : E → E′ together with its dual ℓ-isogeny.

◮ In our example, these are

G3∪G5∪G7:

17 / 37

Towards IP1: Isogeny graphs

Definition
Let p and ℓ be distinct primes. The isogeny graph Gℓ containing
E/Fp is the graph with:

◮ Nodes: elliptic curves E′/Fp with #E(Fp) = #E′(Fp) (up to
Fp-isomorphism).

◮ Edges: we draw an edge E − E′ to represent an ℓ-isogeny
f : E → E′ together with its dual ℓ-isogeny.

◮ Generally, the Gℓ look something like

G3: G5:

17 / 37

Towards IP1: Endomorphism rings

◮ We want to make sure Gℓ is a cycle.

18 / 37

Towards IP1: Endomorphism rings

◮ We want to make sure Gℓ is a cycle.

◮ Equivalently: every node in Gℓ should be distance zero
from the cycle.

18 / 37

Towards IP1: Endomorphism rings

◮ We want to make sure Gℓ is a cycle.

◮ Equivalently: every node in Gℓ should be distance zero
from the cycle.

◮ Two nodes are at different distances from the cycle if and
only if they have different endomorphism rings.

18 / 37

Towards IP1: Endomorphism rings

Definition
An endomorphism of an elliptic curve E is a morphism E → E
(as abelian varieties).

19 / 37

Towards IP1: Endomorphism rings

Definition
An endomorphism of an elliptic curve E is a morphism E → E
(as abelian varieties).

Example

Let E/Fp be an elliptic curve.

◮ For n ∈ Z, the mulitplication-by-n map

[n] : E → E
P 7→ nP

is an endomorphism.

19 / 37

Towards IP1: Endomorphism rings

Definition
An endomorphism of an elliptic curve E is a morphism E → E
(as abelian varieties).

Example

Let E/Fp be an elliptic curve.

◮ For n ∈ Z, the mulitplication-by-n map

[n] : E → E
P 7→ nP

is an endomorphism.

◮ The Frobenius map

π : E → E
(x, y) 7→ (xp, yp)

is an endomorphism.
19 / 37

Towards IP1: Endomorphism rings

Definition
The Fp-rational endomorphism ring EndFp(E) of an elliptic
curve E/Fp is the set of Fp-rational endomorphisms.

20 / 37

Towards IP1: Endomorphism rings

Definition
The Fp-rational endomorphism ring EndFp(E) of an elliptic
curve E/Fp is the set of Fp-rational endomorphisms.

Example

Let p > 3, let E/Fp : y2 = x3 + Ax2 + x be a supersingular elliptic
curve, and let π be the Frobenius endomorphism. Then

π ◦ π = [−p]

and
Z[
√−p] → EndFp(E)

n 7→ [n]√−p 7→ π

extends Z-linearly to a ring homomorphism.

20 / 37

Towards IP1: Group action

For p ≡ 3 (mod 8) and p ≥ 5, if EA/Fp : y2 = x3 + Ax2 + x is
supersingular, then EndFp(EA) ∼= Z[

√−p].

21 / 37

Towards IP1: Group action

For p ≡ 3 (mod 8) and p ≥ 5, if EA/Fp : y2 = x3 + Ax2 + x is
supersingular, then EndFp(EA) ∼= Z[

√−p].

◮ Remember: we want to replace exponentiation Z× G → G
with a commutative group action H × S → S.

21 / 37

Towards IP1: Group action

For p ≡ 3 (mod 8) and p ≥ 5, if EA/Fp : y2 = x3 + Ax2 + x is
supersingular, then EndFp(EA) ∼= Z[

√−p].

◮ Remember: we want to replace exponentiation Z× G → G
with a commutative group action H × S → S.

◮ The set S is the set of supersingular elliptic curves
EA/Fp : y2 = x3 + Ax2 + x with p ≡ 3 (mod 8) and p ≥ 5.

21 / 37

Towards IP1: Group action

For p ≡ 3 (mod 8) and p ≥ 5, if EA/Fp : y2 = x3 + Ax2 + x is
supersingular, then EndFp(EA) ∼= Z[

√−p].

◮ Remember: we want to replace exponentiation Z× G → G
with a commutative group action H × S → S.

◮ The set S is the set of supersingular elliptic curves
EA/Fp : y2 = x3 + Ax2 + x with p ≡ 3 (mod 8) and p ≥ 5.

◮ The group H = Cl(Z[
√−p]) is the class group of EndFp(EA)

for (every) EA ∈ S.

21 / 37

Towards IP1: Group action

For p ≡ 3 (mod 8) and p ≥ 5, if EA/Fp : y2 = x3 + Ax2 + x is
supersingular, then EndFp(EA) ∼= Z[

√−p].

◮ Remember: we want to replace exponentiation Z× G → G
with a commutative group action H × S → S.

◮ The set S is the set of supersingular elliptic curves
EA/Fp : y2 = x3 + Ax2 + x with p ≡ 3 (mod 8) and p ≥ 5.

◮ The group H = Cl(Z[
√−p]) is the class group of EndFp(EA)

for (every) EA ∈ S.

◮ What is the action?

21 / 37

Towards IP1: Group action
◮ Let I ⊂ EndFp(Z) be an ideal.

22 / 37

Towards IP1: Group action
◮ Let I ⊂ EndFp(Z) be an ideal.
◮ Then

HI =
⋂

α∈I

ker(α)

is a subgroup of E(Fp).

22 / 37

Towards IP1: Group action
◮ Let I ⊂ EndFp(Z) be an ideal.
◮ Then

HI =
⋂

α∈I

ker(α)

is a subgroup of E(Fp).
◮ Recall that isogenies are uniquely defined by their kernels

(cf. First Isomorphism Theorem of Groups).

22 / 37

Towards IP1: Group action
◮ Let I ⊂ EndFp(Z) be an ideal.
◮ Then

HI =
⋂

α∈I

ker(α)

is a subgroup of E(Fp).
◮ Recall that isogenies are uniquely defined by their kernels

(cf. First Isomorphism Theorem of Groups).
◮ Define

fI : E → E/HI

to be the isogeny from E with kernel HI.

22 / 37

Towards IP1: Group action
◮ Let I ⊂ EndFp(Z) be an ideal.
◮ Then

HI =
⋂

α∈I

ker(α)

is a subgroup of E(Fp).
◮ Recall that isogenies are uniquely defined by their kernels

(cf. First Isomorphism Theorem of Groups).
◮ Define

fI : E → E/HI

to be the isogeny from E with kernel HI.
◮ For [I] ∈ Cl(Z[

√−p]), let Ĩ be an integral representative of
the ideal class [I]. Then

Cl(Z[
√−p])× S → S
([I],E) 7→ fHĨ

(E)

is a free, transitive group action!

22 / 37

IP1: The graph is a composition of compatible cycles

◮ The nodes of the graph are the set S of supersingular
elliptic curves E/Fp : y2 = x3 + Ax2 + x with p ≡ 3 (mod 8)
and p ≥ 5.

23 / 37

IP1: The graph is a composition of compatible cycles

◮ The nodes of the graph are the set S of supersingular
elliptic curves E/Fp : y2 = x3 + Ax2 + x with p ≡ 3 (mod 8)
and p ≥ 5.

◮ The map
Cl(Z[

√−p])× S → S
([I],E) 7→ fHĨ

(E)

is a free, transitive group action.

23 / 37

IP1: The graph is a composition of compatible cycles

◮ The nodes of the graph are the set S of supersingular
elliptic curves E/Fp : y2 = x3 + Ax2 + x with p ≡ 3 (mod 8)
and p ≥ 5.

◮ The map
Cl(Z[

√−p])× S → S
([I],E) 7→ fHĨ

(E)

is a free, transitive group action.

◮ Edges are the isogenies fHĨ
(together with their duals).

23 / 37

IP1: The graph is a composition of compatible cycles

◮ The nodes of the graph are the set S of supersingular
elliptic curves E/Fp : y2 = x3 + Ax2 + x with p ≡ 3 (mod 8)
and p ≥ 5.

◮ The map
Cl(Z[

√−p])× S → S
([I],E) 7→ fHĨ

(E)

is a free, transitive group action.

◮ Edges are the isogenies fHĨ
(together with their duals).

 there is a choice of ℓ1, . . . , ℓn such that Gℓ1
∪ · · · ∪ Gℓn is a

composition of compatible cycles (IP1).

23 / 37

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

24 / 37

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

◮ Our group action was:

Cl(Z[
√−p])× S → S
([I],E) 7→ fHĨ

(E) =: [I] ∗ E.

24 / 37

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

◮ Our group action was:

Cl(Z[
√−p])× S → S
([I],E) 7→ fHĨ

(E) =: [I] ∗ E.

◮ For ℓ ∈ {ℓ1, · · · , ℓn} as before and [I] ∈ Cl(Z[
√−p]), the

isogeny fHĨ
(E) is an ℓ-isogeny if and only if

[I] = [〈ℓ, π ± 1〉].

24 / 37

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

◮ Our group action was:

Cl(Z[
√−p])× S → S
([I],E) 7→ fHĨ

(E) =: [I] ∗ E.

◮ For ℓ ∈ {ℓ1, · · · , ℓn} as before and [I] ∈ Cl(Z[
√−p]), the

isogeny fHĨ
(E) is an ℓ-isogeny if and only if

[I] = [〈ℓ, π ± 1〉].

◮ Choosing the direction in the graph corresponds to
choosing this sign.

24 / 37

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an ℓ-isogeny
from a given elliptic curve. To do this:

◮ Find a point P of order ℓ on E.

25 / 37

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an ℓ-isogeny
from a given elliptic curve. To do this:

◮ Find a point P of order ℓ on E.

◮ Compute the isogeny with kernel {P, 2P, . . . , ℓP} using
Vélu’s formulas (implemented in Sage).

25 / 37

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an ℓ-isogeny
from a given elliptic curve. To do this:

◮ Find a point P of order ℓ on E.

◮ Compute the isogeny with kernel {P, 2P, . . . , ℓP} using
Vélu’s formulas (implemented in Sage).

◮ Let E/Fp be supersingular and p ≥ 5.

25 / 37

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an ℓ-isogeny
from a given elliptic curve. To do this:

◮ Find a point P of order ℓ on E.

◮ Compute the isogeny with kernel {P, 2P, . . . , ℓP} using
Vélu’s formulas (implemented in Sage).

◮ Let E/Fp be supersingular and p ≥ 5. Then E(Fp) ∼= Cp+1 or
C2 × C(p+1)/2.

25 / 37

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an ℓ-isogeny
from a given elliptic curve. To do this:

◮ Find a point P of order ℓ on E.

◮ Compute the isogeny with kernel {P, 2P, . . . , ℓP} using
Vélu’s formulas (implemented in Sage).

◮ Let E/Fp be supersingular and p ≥ 5. Then E(Fp) ∼= Cp+1 or
C2 × C(p+1)/2.

◮ Suppose we have found P = E(Fp) of order p + 1 or
(p + 1)/2.

25 / 37

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an ℓ-isogeny
from a given elliptic curve. To do this:

◮ Find a point P of order ℓ on E.

◮ Compute the isogeny with kernel {P, 2P, . . . , ℓP} using
Vélu’s formulas (implemented in Sage).

◮ Let E/Fp be supersingular and p ≥ 5. Then E(Fp) ∼= Cp+1 or
C2 × C(p+1)/2.

◮ Suppose we have found P = E(Fp) of order p + 1 or
(p + 1)/2.

◮ For every odd prime ℓ|(p + 1), the point
p+1
ℓ P is a point of

order ℓ.

25 / 37

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an ℓ-isogeny
from a given elliptic curve. To do this:

◮ Find a point P of order ℓ on E.

◮ Compute the isogeny with kernel {P, 2P, . . . , ℓP} using
Vélu’s formulas (implemented in Sage).

◮ Let E/Fp be supersingular and p ≥ 5. Then E(Fp) ∼= Cp+1 or
C2 × C(p+1)/2.

◮ Suppose we have found P = E(Fp) of order p + 1 or
(p + 1)/2.

◮ For every odd prime ℓ|(p + 1), the point
p+1
ℓ P is a point of

order ℓ.

◮ Given a Fp-rational point of order ℓ, the isogeny
computations can be done over Fp.

25 / 37

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/Fp with p ≥ 5 in
its ℓ-isogeny graph Gℓ for odd ℓ|(p + 1):

26 / 37

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/Fp with p ≥ 5 in
its ℓ-isogeny graph Gℓ for odd ℓ|(p + 1):

◮ Fix conditions as before so that Gℓ is a cycle, i.e., E has two
neighbours.

26 / 37

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/Fp with p ≥ 5 in
its ℓ-isogeny graph Gℓ for odd ℓ|(p + 1):

◮ Fix conditions as before so that Gℓ is a cycle, i.e., E has two
neighbours.

◮ Find a basis {P,Q} of the ℓ-torsion with P ∈ Fp.

26 / 37

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/Fp with p ≥ 5 in
its ℓ-isogeny graph Gℓ for odd ℓ|(p + 1):

◮ Fix conditions as before so that Gℓ is a cycle, i.e., E has two
neighbours.

◮ Find a basis {P,Q} of the ℓ-torsion with P ∈ Fp.

◮ 1 ∈ Z/ℓZ is an eigenvalue of Frobenius on the ℓ-torsion; the
action [〈ℓ, π − 1〉] ∗ E gives an ℓ-isogeny in the ’+’ direction.

26 / 37

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/Fp with p ≥ 5 in
its ℓ-isogeny graph Gℓ for odd ℓ|(p + 1):

◮ Fix conditions as before so that Gℓ is a cycle, i.e., E has two
neighbours.

◮ Find a basis {P,Q} of the ℓ-torsion with P ∈ Fp.

◮ 1 ∈ Z/ℓZ is an eigenvalue of Frobenius on the ℓ-torsion; the
action [〈ℓ, π − 1〉] ∗ E gives an ℓ-isogeny in the ’+’ direction.

◮ The other eigenvalue of Frobenius is p/ℓ ∈ Z/ℓZ.

26 / 37

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/Fp with p ≥ 5 in
its ℓ-isogeny graph Gℓ for odd ℓ|(p + 1):

◮ Fix conditions as before so that Gℓ is a cycle, i.e., E has two
neighbours.

◮ Find a basis {P,Q} of the ℓ-torsion with P ∈ Fp.

◮ 1 ∈ Z/ℓZ is an eigenvalue of Frobenius on the ℓ-torsion; the
action [〈ℓ, π − 1〉] ∗ E gives an ℓ-isogeny in the ’+’ direction.

◮ The other eigenvalue of Frobenius is p/ℓ ∈ Z/ℓZ.

◮ If p ≡ −1 (mod ℓ) then the action [〈ℓ, π + 1〉] ∗ E gives an
ℓ-isogeny in the ’−’ direction.

26 / 37

IP2: Computing neighbours in given directions

For which ℓ can we (efficiently) compute the neighbours of
supersingular E/Fp in its ℓ-isogeny graph Gℓ for odd ℓ|(p + 1)?

2You still need a little more to get computations for both the + and −

directions to be over Fp
27 / 37

IP2: Computing neighbours in given directions

For which ℓ can we (efficiently) compute the neighbours of
supersingular E/Fp in its ℓ-isogeny graph Gℓ for odd ℓ|(p + 1)?
Choosing p = 4ℓ1 · · · ℓn − 1 ensures:

◮ Every ℓi|(p + 1), so there is a rational basis point of the
ℓi-torsion

2You still need a little more to get computations for both the + and −

directions to be over Fp
27 / 37

IP2: Computing neighbours in given directions

For which ℓ can we (efficiently) compute the neighbours of
supersingular E/Fp in its ℓ-isogeny graph Gℓ for odd ℓ|(p + 1)?
Choosing p = 4ℓ1 · · · ℓn − 1 ensures:

◮ Every ℓi|(p + 1), so there is a rational basis point of the
ℓi-torsion

◮ p ≡ 3 (mod 8), so Gℓi
is a cycle (we have our group action)

2You still need a little more to get computations for both the + and −

directions to be over Fp
27 / 37

IP2: Computing neighbours in given directions

For which ℓ can we (efficiently) compute the neighbours of
supersingular E/Fp in its ℓ-isogeny graph Gℓ for odd ℓ|(p + 1)?
Choosing p = 4ℓ1 · · · ℓn − 1 ensures:

◮ Every ℓi|(p + 1), so there is a rational basis point of the
ℓi-torsion

◮ p ≡ 3 (mod 8), so Gℓi
is a cycle (we have our group action)

◮ p ≡ 1 (mod ℓi), so ℓi-isogenies come from action of
[〈ℓi, π ± 1〉].

2You still need a little more to get computations for both the + and −

directions to be over Fp
27 / 37

IP2: Computing neighbours in given directions

For which ℓ can we (efficiently) compute the neighbours of
supersingular E/Fp in its ℓ-isogeny graph Gℓ for odd ℓ|(p + 1)?
Choosing p = 4ℓ1 · · · ℓn − 1 ensures:

◮ Every ℓi|(p + 1), so there is a rational basis point of the
ℓi-torsion

◮ p ≡ 3 (mod 8), so Gℓi
is a cycle (we have our group action)

◮ p ≡ 1 (mod ℓi), so ℓi-isogenies come from action of
[〈ℓi, π ± 1〉].

Given the group action as above, Vélu’s formulas give actual
isogenies!
With our design choices all isogeny computations are over Fp. 2

2You still need a little more to get computations for both the + and −

directions to be over Fp
27 / 37

Representing nodes of the graph

◮ Every node of Gℓi
is

EA : y2 = x3 + Ax2 + x.

28 / 37

Representing nodes of the graph

◮ Every node of Gℓi
is

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.

28 / 37

Representing nodes of the graph

◮ Every node of Gℓi
is

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.

⇒ Tiny keys!

28 / 37

Does any A work?

3This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

29 / 37

Does any A work?

No.

3This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

29 / 37

Does any A work?

No.

◮ About
√

p of all A ∈ Fp are valid keys.

3This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

29 / 37

Does any A work?

No.

◮ About
√

p of all A ∈ Fp are valid keys.

◮ Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P = ∞.3

3This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

29 / 37

Classical Security

◮ Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

30 / 37

Classical Security

◮ Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

◮ Say Alice’s secret is isogeny is of degree ℓe1
1 · · · ℓen

n . She
knows the path, so can do only small degree isogeny
computations, giving complexity O(

∑
eiℓi).

30 / 37

Classical Security

◮ Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

◮ Say Alice’s secret is isogeny is of degree ℓe1
1 · · · ℓen

n . She
knows the path, so can do only small degree isogeny
computations, giving complexity O(

∑
eiℓi). An attacker

has to compute one isogeny of degree
∏

ℓei

i (cf. isogeny
evaluation complexity from David Jao’s talk).

30 / 37

Classical Security

◮ Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

◮ Say Alice’s secret is isogeny is of degree ℓe1
1 · · · ℓen

n . She
knows the path, so can do only small degree isogeny
computations, giving complexity O(

∑
eiℓi). An attacker

has to compute one isogeny of degree
∏

ℓei

i (cf. isogeny
evaluation complexity from David Jao’s talk).

◮ Alternative way of thinking about it: Alice has to compute
the isogeny corresponding to one path from E0 to EA,
whereas an attacker has compute all the possible paths
from E0 to EA.

30 / 37

Classical Security

◮ Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

◮ Say Alice’s secret is isogeny is of degree ℓe1
1 · · · ℓen

n . She
knows the path, so can do only small degree isogeny
computations, giving complexity O(

∑
eiℓi). An attacker

has to compute one isogeny of degree
∏

ℓei

i (cf. isogeny
evaluation complexity from David Jao’s talk).

◮ Alternative way of thinking about it: Alice has to compute
the isogeny corresponding to one path from E0 to EA,
whereas an attacker has compute all the possible paths
from E0 to EA.

◮ Best classical attacks are (variants of) meet-in-the-middle:
Time O(4

√
p).

30 / 37

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

31 / 37

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

◮ Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

31 / 37

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

◮ Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

◮ Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

31 / 37

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

◮ Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

◮ Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

◮ Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

31 / 37

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

◮ Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

◮ Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

◮ Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

◮ Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to
CRS – their attack also applies to CSIDH.

◮ Part of CJS attack computes many paths in superposition.

31 / 37

Quantum Security

◮ The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

◮ Choice of time/memory trade-off (Regev/Kuperberg)
◮ Quantum evaluation of isogenies

(and much more).

4From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

32 / 37

Quantum Security

◮ The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

◮ Choice of time/memory trade-off (Regev/Kuperberg)
◮ Quantum evaluation of isogenies

(and much more).

◮ Most previous analysis focussed on asymptotics

4From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

32 / 37

Quantum Security

◮ The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

◮ Choice of time/memory trade-off (Regev/Kuperberg)
◮ Quantum evaluation of isogenies

(and much more).

◮ Most previous analysis focussed on asymptotics

◮ Recent preprint [BLMP] gives full computer-verified
simulation of quantum evaluation of isogenies. Computes
one query (i.e. CSIDH-512 group action) using
765325228976 ≈ 0.7 · 240 nonlinear bit operations.

4From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

32 / 37

Quantum Security

◮ The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

◮ Choice of time/memory trade-off (Regev/Kuperberg)
◮ Quantum evaluation of isogenies

(and much more).

◮ Most previous analysis focussed on asymptotics

◮ Recent preprint [BLMP] gives full computer-verified
simulation of quantum evaluation of isogenies. Computes
one query (i.e. CSIDH-512 group action) using
765325228976 ≈ 0.7 · 240 nonlinear bit operations.

◮ For fastest variant of Kuperberg (uses billions of qubits),
total cost of CSIDH-512 attack is about 281 qubit
operations.4

4From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

32 / 37

Parameters

CSIDH-log p in
te

n
d

ed
N

IS
T

le
v

el

p
u

b
li

c
k

ey
si

ze

p
ri

v
at

e
k

ey
si

ze

ti
m

e
(f

u
ll

ex
ch

an
g

e)

cy
cl

es
(f

u
ll

ex
ch

an
g

e)

st
ac

k
m

em
o

ry

cl
as

si
ca

l
se

cu
ri

ty

CSIDH-512 1 64 b 32 b 85 ms 212e6 4368 b 128

CSIDH-1024 3 128 b 64 b 256

CSIDH-1792 5 224 b 112 b 448

33 / 37

Work in progress & future work

◮ Fast and constant-time implementation. (For ideas on
constant-time optimization, see [BLMP], [MR]).

34 / 37

Work in progress & future work

◮ Fast and constant-time implementation. (For ideas on
constant-time optimization, see [BLMP], [MR]).

◮ Hardware implementation.

34 / 37

Work in progress & future work

◮ Fast and constant-time implementation. (For ideas on
constant-time optimization, see [BLMP], [MR]).

◮ Hardware implementation.

◮ More applications.

34 / 37

Work in progress & future work

◮ Fast and constant-time implementation. (For ideas on
constant-time optimization, see [BLMP], [MR]).

◮ Hardware implementation.

◮ More applications.

◮ [Your paper here!]

34 / 37

Thank you!

35 / 37

References

Mentioned in this talk:

BLMP Bernstein, Lange, Martindale, and Panny:
Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies
https://quantum.isogeny.org

BS Bonnetain, Schrottenloher:
Quantum Security Analysis of CSIDH and Ordinary Isogeny-based Schemes
https://ia.cr/2018/537

CLMPR Castryck, Lange, Martindale, Panny, Renes:
CSIDH: An Efficient Post-Quantum Commutative Group Action
https://ia.cr/2018/383

CJS Childs, Jao, and Soukharev:
Constructing elliptic curve isogenies in quantum subexponential time
https://arxiv.org/abs/1012.4019

DG De Feo, Galbraith:
SeaSign: Compact isogeny signatures from class group actions
https://ia.cr/2018/824

DKS De Feo, Kieffer, Smith:
Towards practical key exchange from ordinary isogeny graphs
https://ia.cr/2018/485

References

Mentioned in this talk (contd.):

DOPS Delpech de Saint Guilhem, Orsini, Petit, and Smart:
Secure Oblivious Transfer from Semi-Commutative Masking
https://ia.cr/2018/648

FTY Fujioka, Takashima, and Yoneyama:
One-Round Authenticated Group Key Exchange from Isogenies
https://eprint.iacr.org/2018/1033

MR Meyer, Reith:
A faster way to the CSIDH
https://ia.cr/2018/782

Kup1 Kuperberg:
A subexponential-time quantum algorithm for the dihedral hidden subgroup problem
https://arxiv.org/abs/quant-ph/0302112

Kup2 Kuperberg:
Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem
https://arxiv.org/abs/1112.3333

Reg Regev:
A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial
space
https://arxiv.org/abs/quant-ph/0406151

References

Further reading:

BIJ Biasse, Iezzi, Jacobson:
A note on the security of CSIDH
https://arxiv.org/pdf/1806.03656

DPV Decru, Panny, and Vercauteren:
Faster SeaSign signatures through improved rejection sampling
https://eprint.iacr.org/2018/1109

JLLR Jao, LeGrow, Leonardi, Ruiz-Lopez:
A polynomial quantum space attack on CRS and CSIDH
(MathCrypt 2018)

Credits: thanks to Lorenz Panny for many of these slides, including all of the beautiful
pictures.

