Lower-level Verifications for Cryptographic Software involving Elliptic Curves and others

Bo-Yin Yang

Academia Sinica

ECC 2018. November 20. Osaka

4日 > 4日 > 4日 > 4日 > 日

Cryptography and Its Software as a Subject of Study I

- Cryptography has lots of real world applications from private communication to digital currency.
- Similar to formal verification, cryptography necessarily expects the worst scenario.
- Modern cryptography uses much sophisticated, complex mathematical structures.
- Secure cryptosystems must be designed and analyzed thoroughly.
 - ▶ There is little room for trial and error in cryptography.

Verification

- Verification: the study of showing how something works as designed. The discipline considers "worst cases" by design.
 - ► Tries to show that there are no failure possiblities: and
 - ideally identifies possible failures if we cannot verify correctness.
- The most well-established application of verification is in chip design.
- We will apply it to cryptographic software.

Verification in Practice

- Usually carried out with
 - Proof Assistants, such as Coo
 - Satisfiability Module Theory (SMT) and SAT solvers, e.g. MINISAT.
 - Specifically designed tools
- We will use SAT solvers and some home-brewed tools.

4 □ → 4 □ → 4 □ → 4 □ → Bo-Yin Yang (Academia Sinica)

Cryptography and Its Software as a Subject of Study II

- The sophisticated mathematical structures in modern cryptography often require complicated arithmetic computation over large numbers.
 - ▶ In RSA, modulo arithmetic over n = pq where p, q are prime.
 - ▶ In NIST P-256, modular arithmetic over $2^{256} 2^{224} + 2^{192} + 2^{96} 1$.
 - ▶ In Curve25519, modular arithmetic over 2²⁵⁵ 19.
- Commodity computers only support up to 64-bit integers.
 - ▶ This makes the program even more complicated.

Cryptography and Its Software as a Subject of Study III

- To make cryptography practical, cryptographers must design cryptosystems for security and efficiency.
- Parameters are chosen for efficiency, not for a reader's understanding.
 - Reduction in $GF(2^{256} 2^{224} + 2^{192} + 2^{96} 1)$, performed through bitwise masking and shifting (NIST P-256);
 - ▶ Reduction in $GF(2^{255} 19)$ performed by bitwise shifting and multiplication (X25519).
- To attain the best performance, primitive cryptographic algorithms are even often implemented in assembly.
 - ► OpenSSL and boringSSL.
- Not many cryptographers also program assembly language well.

Bo-Yin Yang (Academia Sinica)

Challenges I

- Verifying non-linear computation is hard.
 - Cryptographic assembly programs perform such computation in hundreds of bits.
- Such programs must be proven correct for all inputs.
 - ► For cryptographic assembly programs, every bit and flag count.
- Assembly programs are very succinct.
 - Abstraction is unlikely to work.

An Ideal Research Problem for Verification

- Not all programs need to be verified.
- However, cryptographic programs are
 - critical
 - ▶ indispensable
 - complex
 - highly visible
- Moreover, practical cryptographers do appreciate verification.
 - ► See comments in OpenSSL
- Colleagues recognize the importance of verification when informed of this work
 - Many computer scientists know of OpenSSL.

Bo-Yin Yang (Academia Sinica)

Challenges II

- An algorithm has different instantiations on different mathematical structures.
- Consider, say, modular multiplication.
 - ▶ In NIST P-256, modular multiplication is over $GF(2^{256} - 2^{224} + 2^{192} + 2^{96} - 1)$ (256 bits).
 - ▶ In X25519, modular multiplication is over $GF(2^{255} 19)$ (255 bits).
- Since numbers are different, reduction is computed differently.
 - ▶ In NIST P-256, it is implemented by bitwise masks and shifts.
 - ▶ In X25519, it is implemented by bitwise shifts and multiplication.
- Each instantiation must be verified.

Challenges III

- Algorithm instance implement differently on different architectures.
- Different architectures (x86, ARM) have different instruction sets.
- Different generations of x86_64 have slightly different instructions.
- In OpenSSL, two different implementations for modular multiplication are available.
 - ▶ In Broadwell microarchitecture, it is possible to perform two threads of addition simultaneously with adox.
- Vectorized instructions are also widely used.
 - ▶ OpenSSL has 3 Poly1305 implementations (sequential, avx, avx2).
- All implementations need to be verified.

Bo-Yin Yang (Academia Sinica)

Previous Work

- Our first idea is to verify cryptographic assembly programs by SMT/SAT solvers via bit blasting.
- In 2014, we use BOOLECTOR to verify an academic implementation of modular multiplication in X25519.
 - ▶ It took 4 days (without annotation) or 5 hours (with extensive manual annotation).
 - ▶ Moreover, we had to prove a simple mathematical property in Coq.
- Verifying a hundred of assembly instructions in 4 days is perhaps better than using proof assistants.
- Not very useful!

Related Work

• Fiat (MIT) is a C program synthesis tool for cryptographic programs.

- Jasmin (INRIA) is a portable assembly language with formal semantics.
- HACL* (INRIA) is a verified cryptographic library in F*.
- Vale (Microsoft Research) is a framework to write correct assembly programs for different architectures.
- None of them really addresses the cryptographic assembly program verification problem.

Bo-Yin Yang (Academia Sinica)

The gfverif Project

- In 2015, Daniel J. Bernstein and Peter Schwabe announces their gfverif project.
- Their tool verifies algebraic properties of C programs using a computer algebra system.
- Idea
 - ► Translate a C program and its specification to an algebraic problem;
 - ▶ Solve the algebraic problem by a computer algebra system.
- It sounds reasonable.
 - ▶ Why do we use SMT/SAT solvers to solve algebraic problems?

An Almost Certified Automatic Verification Tool

- In 2017, we extend the idea of giverif to assembly programs and certify algebraic results with Coo.
- Unfortunately, results from SMT/SAT solvers are yet to be certified.
 - Efficient certification implies P = coNP.
- This tool verifies the same academic implementation of modular multiplication in 1.5 minutes without annotation.
- It also verifies an academic implementation of Montgomery ladderstep (about 1300 instructions) in 5.5 days.
 - ▶ Montgomery ladderstep is used in elliptic curve point operations.
- It is probably useful.
 - suitable for production release, not for daily development
 - not industrial implementation
 - we translated from ghasm (X25519), so not many instances

Bo-Yin Yang (Academia Sinica)

CRYPTOLINE

- The CRYPTOLINE tool consists of three parts:
 - ▶ the modeling language for cryptographic assembly programs
 - ▶ the specification language for functional properties
 - ▶ the verification algorithm
- We also provide a tool chain to
 - extract assembly programs from execution
 - translate assembly programs into the modeling language
- The tool chain enables us to produce models for verification quickly.
 - ▶ It is essential to tool adoption.

More Recent Work

- We further optimize our tool.
- We verify industrial implementations in OpenSSL and boringSSL.
- We verify the OpenSSL multi-precision Montgomery modular multiplication for RSA, and its implementation for NIST P-256.
- We also verify the boringSSL Montgomery ladderstep implementation for X25519.
 - ▶ Previously, we only verify an academic implementation for X25519.
- We also decide not to certify the tool.
 - Main reason: lack of manpower.

Bo-Yin Yang (Academia Sinica)

The CRYPTOLINE Modeling Language I

- CRYPTOLINE covers common assembly instructions used in cryptographic programs.
 - bvAssign (assignment)
 - bvAdd, bvAddC, bvAdc, bvAdcC (addition)
 - bvSub, bvSubC, bvSub, bvSbbC(subtraction)
 - bvMul, bvMulf (multiplication)
 - bvShl, bvConcatShl (left shift)
 - bvSplit (splitting)
 - bvCmove (condition move)
 - bvAssert, bvAssume (assertion and assumption)
- Flags must be specified explicitly.
 - ► Missing flags induce under- or over-flow checks (bvAdd and bvSub).

The CRYPTOLINE Modeling Language II

- Special instructions are added for modeling purposes.
 - bvConcatShl (concatenate then shift), Split (split into parts), bvCmove (conditional move)
 - more about this in case study
- Instructions for verification are available.
 - bvAssert and bvAssume
- There is no branching instruction.
 - ▶ In practical cryptography, running time is a side channel.
 - Cryptographic programs need be data-independent (called constant-time).
 - ► Secret-Dependent Branches are not allowed.

The CRYPTOLINE Specification Language II

• For instance, the multiplication in X25519 is specified by

$$\left\{ \begin{array}{c} a_0 < 2^{52} \wedge a_1 < 2^{52} \wedge a_2 < 2^{52} \wedge a_3 < 2^{52} \wedge a_4 < 2^{52} \wedge \\ b_0 < 2^{52} \wedge b_1 < 2^{52} \wedge b_2 < 2^{52} \wedge b_3 < 2^{52} \wedge b_4 < 2^{52} \\ & \stackrel{\text{M}}{\sqcap} \end{array} \right.$$

 $MUL([r_0:r_1:r_2:r_3:r_4],[a_0:a_1:a_2:a_3:a_4],[b_0:b_1:b_2:b_3:b_4])$

$$\left\{ \begin{array}{c} r_0 < 2^{52} \wedge r_1 < 2^{52} \wedge r_2 < 2^{52} \wedge r_3 < 2^{52} \wedge r_4 < 2^{52} \\ \text{ (a_0 + a_1 \cdot 2^{52} + a_2 \cdot 2^{104} + a_3 \cdot 2^{156} + a_4 \cdot 2^{208}) \times (b_0 + b_1 \cdot 2^{52} + b_2 \cdot 2^{104} + b_3 \cdot 2^{156} + b_4 \cdot 2^{208}) \\ r_0 + r_1 \cdot 2^{52} + r_2 \cdot 2^{104} + r_3 \cdot 2^{156} + r_4 \cdot 2^{208} \quad \text{mod } (2^{255} - 19) \end{array} \right.$$

• Notice that 256-bit numbers are divided into 5 51-bit limbs.

The CRYPTOLINE Specification Language I

- The CRYPTOLINE specification language specifies a conjunction of range and algebraic properties:
 - ▶ Range properties: E < E' or E < E'.
 - ightharpoonup Algebraic properties: E = E' or $E \equiv E' \mod E''$.
- We also add syntactic sugar for common expressions.
 - ▶ For instance, $[c_0: c_1: \cdots: c_k]$ stands for $\sum_{i=0}^k c_i \times 2^{64 \cdot i}$.

Hybrid Verification Technique

• Here is the CRYPTOLINE verification algorithm:

Verifying Range Specifications

- CRYPTOLINE translates a program and its range specification to a formula in the SMT quantifier-free bit vector theory.
- The formula is unsatisfiable iff the program fulfills its range specification.
- We use BOOLECTOR to check the satisfiability of the formula.
- BOOLECTOR+MINISAT works better for most cases.
- A handful of cases need BOOLECTOR+LINGELING.
- Both BOOLECTOR and Z3 fail for a number of realistic assembly programs.

Verifying Algebraic Specifications II

- To see how it works, consider a system of polynomial equations $f_i(\overline{x}) = 0$ derived from assembly instructions.
 - ▶ For instance, mul %rcx translates to $\frac{\%}{r}dx' \times 2^{64} + \frac{\%}{r}ax' = \frac{\%}{r}ax \times \frac{\%}{r}cx$
- Suppose we want to prove an equality $g(\overline{x}) = 0$.
- Formally, we want to show $\forall \overline{x}$. $\bigwedge_i f_i(\overline{x}) = 0 \implies g(\overline{x}) = 0$.
- Then $g(\overline{x}) \in \langle f_1(\overline{x}), f_2(\overline{x}), \dots, f_k(\overline{x}) \rangle$ implies $\forall \overline{x}. \land f_i(\overline{x}) = 0 \implies g(\overline{x}) = 0.$
 - $g(\overline{x}) = \sum_i h_i(\overline{x}) f_i(\overline{x}) = 0$ for any \overline{x} such that $\bigwedge_i f_i(\overline{x}) = 0$.

Verifying Algebraic Specifications I

- CRYPTOLINE first checks there is no overflow using SMT/SAT.
- It then translates a program and its algebraic specification to the ideal membership problem.
 - ▶ A set $I \subseteq \mathbb{Z}[x_0, x_1, \dots, x_n]$ is an *ideal* if $f + g, p \cdot f \in I$ for every $f,g \in I$ and $p \in \mathbb{Z}[x_0,x_1,\ldots,x_n]$.
 - Given an ideal I and a polynomial $p \in \mathbb{Z}[x_0, x_1, \dots, x_n]$, the ideal membership problem asks if $p \in I$.
- $p \in I$ implies the program fulfills its algebraic specification.
- We use Singular to solve the ideal membership problem.

Bo-Yin Yang (Academia Sinica)

Verification Flow

- Here are the verification steps:
 - 1 Compile into a standalone program.
 - ★ gcc ecp_nistz256_mul.c \$OPENSSLDIR/libcrypto.a
 - Extract execution trace.
 - * itrace.py a.out ecp_nistz256_mul_mont > ecp_nistz256_mul_mont.gas
 - 3 Manually add x86_64 to CRYPTOLINE translation rules.
 - Apply the translation rules.
 - to_bvdsl.py ecp_nistz256_mul_mont.gas > ecp_nistz256_mul_mont.cl
 - Manually add pre- and post-conditions.
 - **10** Manually tune the CRYPTOLINE program to match semantics.
 - * More about this later.
 - Run the tool.
 - * cv.native ecp_nistz256_mul_mont.cl

Current Requirements

All available for stock Ubuntu server install.

- O'Caml Package Manager (opam)
 - ▶ With O'Caml 4.07.0
 - ▶ With lwt, lwt_ppx, num packages
- SINGULAR version 4
- BOOLECTOR-3.0.0 with LINGELING, MINISAT, EDICAL.

						-	01	0 1	1 2	n	OF.	112	
4	Þ	∢ 🗗	Þ	4	Ē	•	4	Ē	×	=	9	Q (~	

Bo-Yin Yang (Academia Sinica)

Fine Tune

Consider the fragment:

mov %r8, %rbp shl \$0x20, %r8 shr \$0x20, %rbp

- What it does is to assign
 - ▶ the high 32 bits of old %r8 to the low 32 bits of %rbp; and
 - ▶ the low 32 bits of old %r8 to the high 32 bits of %r8.
- Manual translation is needed.
- Here is the correct translation:

bvSplit rbp r8 (bvVar r8) 32; bvShl r8 (bvVar r8) 32;

• Only 4 manual translations are needed in ecp_nistz256_mul_mont.

Translation Rules

- The Python script to_bvdsl.py translates x86_64 assembly to CRYPTOLINE by rules provided by users.
- Consider the following rule:

mov \$1v, \$2v -> bvAssign \$2v (bvVar \$1v)

- It translates mov %rbp, %rax to bvAssign rax (bvVar rbp).
- Here is another rule.

add \$1v, \$2v -> bvAddC carry \$2v (bvVar \$1v) (bvVar \$2v)

- It translates add %rax, %r9 to bvAddC carry r9 (bvVar rax) (byVar r9).
- Most assembly instructions are thus translated automatically.

4□ > 4□ > 4□ > 4□ > 4□ > 900

Bo-Yin Yang (Academia Sinica)

Evaluation on a 2.8GHz Broadwell Xeon

library	program	In	assert	range	alg	total
	ecp_nistz256_add	89	0.44	4.17	0.03	4.63
	ecp_nistz256_sub	88	-	18.54	~0	18.55
	ecp_nistz256_from_mont	82	-	0.41	0.02	0.45
	ecp_nistz256_mul_mont	192	-	21.49	0.03	21.53
OpenSSL	ecp_nistz256_mul_mont ⁺	153	-	15.43	0.03	15.47
Openssi	ecp_nistz256_mul_by_2	49	-	0.05	0.02	0.08
	ecp_nistz256_sqr_mont	148	-	16.43	0.03	16.47
	ecp_nistz256_sqr_mont ⁺	131	-	22.50	0.03	22.54
	x86_64_mont_2	228	832.60	13.41	0.03	846.05
	×86_64_mont_4	490	8279.87	523.27	0.91	8804.06
	×25519_×86_64_mul	226	-	28.73	0.03	28.78
boringSSL	×25519_×86_64_sqr	171	-	6.14	0.03	6.18
	×25519_×86_64_ladderstep	1459	-	2921.82	107.93	3029.78
	mbedtls_mpi_mul_mpi_2	76	0.46	0.42	0.03	0.92
mbedTLS	mbedtls_mpi_mul_mpi_4	249	12.85	9.27	0.02	22.16

- Time is in seconds: + is for Broadwell architectures
- In 2017, X25519 modular multiplication and Montgomery ladderstep took 90 seconds and 5.5 days respectively.
- CRYPTOLINE is useful even for daily development!

4□ > 4回 > 4 亘 > 4 亘 > □ 9 Q ○

Recent Activity

Active Research on CRYPTOLINE

- CRYPTOLINE now supports compositional reasoning and is multi-threaded.
- Montgomery ladderstep in boringSSL is verified in 307 seconds.
 - was 3029 seconds
- For multi-precision Montgomery modular multiplication:
 - 256-bit version is verified in 7.5 seconds (was 8804 seconds).
 - 1024-bit version is verified in 295 seconds.

New stuff

- We are extending our efforts to postquantum crypto
- We are extending verification to compiler intermediate representations

4日 > 4日 > 4日 > 4日 > 日

Bo-Yin Yang (Academia Sinica)

Verification of Postquantum Crypto II

Other classes of PQC than Lattices with Work in Progress:

- Multivariates: should be doable, operations in $GF(2^k)$ or small GF(p).
- Coding-bases: should be doable, operations in $GF(2^k)$.
- Supersingular Isogenies: experience from ECC/RSA valuable?

Not on the docket

Hash-based: not our domain

Verification of Postquantum Crypto I

Lattice-based encryption schemes

- NTT-based Ring-LWE: Kyber, NewHope
- non-NTT based Ring-LWE: NTRU, NTRU Prime
- Others: Frodo

NTT-based Ring-LWE

- Verified n = 256 NTT and inverse NTT (mod 7681) for Kyber.
- working ongoing on the similar NewHope

non-NTT-based Ring-LWE

NTRU and NTRU Prime should be doable, under study

イロン イ部 とくまとくまと

Bo-Yin Yang (Academia Sinica)

Verification of Compiler Intermediate Representations

Why not Assembly

- We can't have assembly for every architecture
- For reference implementations, clarity and correctness are more important than efficiency
- Similarly for prototypes of algorithms.

Why not C itself?

- COMPCERT and similar certified compilers are seldom used for production work.
- Standard compilers (gcc and clang) do strange things to your code.

clang Strangeness on OpenSSL code I

Taken from https://github.com/openssl/openssl/blob/ OpenSSL_1_1_1-stable/crypto/ec/curve25519.

```
From fe51 mul121666 in curve25519.c.
u128 h2 = f[2] * (u128)121666;
g2 = (uint64_t)h2 \& MASK51;
```

```
clang Intermediate Representation
h2 = mul i128 f_2 121666;
conv15 = trunc h2;
g2 = and i64 conv15 0x7FFFFFFFFFE
```

Bo-Yin Yang (Academia Sinica)

↓□→ ↓□→ ↓□→ ↓□→ □ ♥♀○

What we have done with clang IR I

- Identify a subset LLVMCRYPTOLINE of clang IR in use for crypto
- Translate LLVMCRYPTOLINE to CRYPTOLINE.
- Add assertions and assumptions as needed.
- Hand-adjust as needed.
- Verify.

clang Strangeness on OpenSSL code II

```
From function fe51 mul in curve25519.c
g2 = (uint64_t)h2 \& MASK51:
g2 += (uint64_t)(h1 >> 51);
g3 += g2 >> 51;
g2 &= MASK51;
```

```
clang IR output
conv109 = trunc h2
                                            //(uint64 t)h2
shr122 = 1shr i128 h1 51
                                       //(uint64_t)(h1>>51)
conv123 = trunc shr122
g2 = and i64 conv109 0x7FFFFFFFFFFF
add124 = add i64 conv123 g2
                                            //g3 += g2>>51
fold = add i64 conv123 conv109
```

Bo-Yin Yang (Academia Sinica)

2018.11.20

What we have done with clang IR II

program	function	loc (IR)	modified	time (s)
ecp_nistp224.c	felem_diff_128_64	30	×	0.35
	felem_diff	30	×	0.26
	felem_mul_reduce	99	✓	18.10
	felem_mul	60	×	5.34
	felem_neg	47	√	0.74
	felem_reduce	75	√	1.40
	felem_scalar	15	×	0.10
	felem_square_reduce	79	√	16.40
	felem_square	43	×	0.97
	felem_sum	22	×	0.15
	widefelem_diff	54	×	0.77
	widefelem_scalar	31	×	1.19
ecp_nistp521.c	felem_diff128	61	×	0.44
	felem_diff64	61	×	0.50
	felem_neg	43	×	0.34
	felem_scalar128	36	×	0.62
	felem_scalar64	35	×	0.21
	felem_scalar	43	×	0.24
	felem_sum64	52	×	0.19
	felem_reduce	144	✓	1.81
	felem_diff_128_64	70	×	-
	felem_mul	289	×	-
	felem_square	158	×	-

Note that the three unverified programs contain anomalies which we suspect are possible mistakes in range specification.

What we have done with clang IR III

program	function	loc (IR)	modified	time (s)
ecp_nistp256.c	felem_shrink	63	✓	1.33
	felem_small_mul	111	×	10.24
	felem_small_sum	26	×	0.14
	felem_sum	22	×	0.14
	smallfelem_mul	109	✓	1.79
	smallfelem_neg	22	×	0.07
	smallfelem_square	70	✓	1.80
curve25519.c	fe51_add	32	X	0.06
	fe51_mul121666	57	✓	0.18
	fe51_mul	124	✓	1.88
	fe51_sq	94	✓	0.79
	fe51_sub	37	×	0.11
	x25519_scalar_mult ¹	1235	✓	871.00

¹ Only the part of Montgo	omery Ladderstep is verified.	→ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹	■
Bo-Yin Yang (Academia Sinica)	Verifying Lower-Level Crypto	2018.11.20	37 / 42

Thanks to

My Colleagues at IIS, Sinica

- Ming-Hsien Tsai
- Bow-Yaw Wang

Also must thank these smart people

- Jiaxiang Liu and Xiaomu Shi, Shenzhen University
- Andy Polyakov, OpenSSL

Conclusions

- For the first time, we are able to verify industrial low-level cryptographic programs practically.
 - ▶ 5 minutes for 1400 assembly instructions!
- This project combines several techniques:
 - ► SMT/SAT solving and computer algebra
- Formal verification and practical cryptography is a perfect match.
 - ▶ Practical cryptography needs efficient and correct programs.
 - ▶ Formal verification needs real applications.
- Lots of new opportunities in high assurance cryptographic software.

| Bo-Yin Yang (Academia Sinica) | Verifying Lower-Level Crypto | 2018.11.20 | 38 / 42 |

Thank you for your attention. Question?