Verification

@ Verification: the study of showing how something works as designed.
L ) The discipline considers “worst cases” by design.
Lower-level Verifications for Cryptographlc Software » Tries to show that there are no failure possiblities; and
involving Elliptic Curves and others > ideally identifies possible failures if we cannot verify correctness.
@ The most well-established application of verification is in chip design.

Bo-Yin Yang o We will apply it to cryptographic software.

Academia Sinica Verification in Practice
@ Usually carried out with

ECC 2018, November 20, Osaka Proof Assistants, such as CoQ

Satisfiability Module Theory (SMT) and SAT solvers, e.g. MINISAT.

Specifically designed tools

@ We will use SAT solvers and some home-brewed tools
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Cryptography and Its Software as a Subject of Study | Cryptography and lts Software as a Subject of Study Il
o Cryptography has lots of real world applications from private @ The sophisticated mathematical structures in modern cryptography
communication to digital currency. often require complicated arithmetic computation over large numbers.

e Similar to formal verification, cryptography necessarily expects the

. » In RSA, modulo arithmetic over n = pg where p, g are prime.
worst scenario.

» In NIST P-256, modular arithmetic over 2256 — 2224 | 2192 4 596 __ 7

o Modern cryptography uses much sophisticated, complex mathematical » In Curve25519, modular arithmetic over 225° — 19,
structures. o Commodity computers only support up to 64-bit integers.
@ Secure cryptosystems must be designed and analyzed thoroughly. » This makes the program even more complicated.

» There is little room for trial and error in cryptography.
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Cryptography and Its Software as a Subject of Study Il

To make cryptography practical, cryptographers must design
cryptosystems for security and efficiency.

@ Parameters are chosen for efficiency, not for a reader’s understanding.

» Reduction in GF(225¢ — 2224 4 2192 4 296 _ 1) performed through
bitwise masking and shifting (NIST P-256);

» Reduction in GF(2%° — 19) performed by bitwise shifting and
multiplication (X25519).

To attain the best performance, primitive cryptographic algorithms
are even often implemented in assembly.

» OpenSSL and boringSSL.

Not many cryptographers also program assembly language well.

Bo-Yin Yang (Academia Sinica)

Challenges |

e Verifying non-linear computation is hard.

» Cryptographic assembly programs perform such computation in
hundreds of bits.

@ Such programs must be proven correct for all inputs.

» For cryptographic assembly programs, every bit and flag count.
@ Assembly programs are very succinct.

» Abstraction is unlikely to work.

Bo-Yin Yang (Academia Sinica)
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An ldeal Research Problem for Verification

@ Not all programs need to be verified.
@ However, cryptographic programs are
critical

indispensable

complex

highly visible

vV vy vy

@ Moreover, practical cryptographers do appreciate verification.
» See comments in OpenSSL

@ Colleagues recognize the importance of verification when informed of
this work.

» Many computer scientists know of OpenSSL.
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Challenges Il

@ An algorithm has different instantiations on different mathematical
structures.
@ Consider, say, modular multiplication.

» In NIST P-256, modular multiplication is over
GF (225 — 2224 4 2192 4 29 _ 1) (256 bits).
» In X25519, modular multiplication is over GF(22% — 19) (255 bits).
@ Since numbers are different, reduction is computed differently.
» In NIST P-256, it is implemented by bitwise masks and shifts.
» In X25519, it is implemented by bitwise shifts and multiplication.

@ Each instantiation must be verified.
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Challenges Il Related Work

@ Algorithm instance implement differently on different architectures.
o Different architectures (x86, ARM) have different instruction sets. e Fiat (MIT) is a C program synthesis tool for cryptographic programs.
o Different generations of x86_64 have slightly different instructions. @ Jasmin (INRIA) is a portable assembly language with formal
@ In OpenSSL, two different implementations for modular multiplication semantics.
are available. e HACL* (INRIA) is a verified cryptographic library in F*.
> In Broadwell microarchitecture, it is possible to perform two threads of e Vale (Microsoft Research) is a framework to write correct assembly
addition simultaneously with adox. . .
R _ _ programs for different architectures.
@ Vectorized instructions are also widely used.

@ None of them really addresses the cryptographic assembly program

» OpenSSL has 3 Poly1305 implementations (sequential, avx, avx2). verification problem

(]

All implementations need to be verified.
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Previous Work The gfverif Project

@ Our first idea is to verify cryptographic assembly programs by
SMT /SAT solvers via bit blasting.

@ In 2014, we use BOOLECTOR to verify an academic implementation
of modular multiplication in X25519.
> It took 4 days (without annotation) or 5 hours (with extensive manual

annotation).

» Moreover, we had to prove a simple mathematical property in CoQ. » Translate a C program and its specification to an algebraic problem;
» Solve the algebraic problem by a computer algebra system.

@ In 2015, Daniel J. Bernstein and Peter Schwabe announces their
gfverif project.

@ Their tool verifies algebraic properties of C programs using a
computer algebra system.

o ldea:

@ Verifying a hundred of assembly instructions in 4 days is perhaps

better than using proof assistants. @ It sounds reasonable.

o Not very usefull » Why do we use SMT/SAT solvers to solve algebraic problems?
very useful!
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An Almost Certified Automatic Verification Tool More Recent Work

In 2017, we extend the idea of gfverif to assembly programs and

certify algebraic results with C0Q.

Unfortunately, results from SMT /SAT solvers are yet to be certified.
» Efficient certification implies P = coNP.

(]

[

We further optimize our tool.

®
(]

We verify industrial implementations in OpenSSL and boringSSL.

We verify the OpenSSL multi-precision Montgomery modular
multiplication for RSA, and its implementation for NIST P-256.

@ It also verifies an academic implementation of Montgomery ladderstep }/Xf)?lzssf)\l/gr'fy the boringSSL Montgomery ladderstep implementation

(about 1300 instructions) in 5.5 days.
» Montgomery ladderstep is used in elliptic curve point operations.

®

This tool verifies the same academic implementation of modular
multiplication in 1.5 minutes without annotation.

> Previously, we only verify an academic implementation for X25519.
@ We also decide not to certify the tool.
» Main reason: lack of manpower.

It is probably useful.
» suitable for production release, not for daily development
» not industrial implementation
> we translated from ghasm (X25519), so not many instances
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CRYPTOLINE The CRYPTOLINE Modeling Language |

o CRYPTOLINE covers common assembly instructions used in
@ The CRYPTOLINE tool consists of three parts: cryptographic programs.
bvAssign (assignment)
bvAdd, bvAddC, bvAdc, bvAdcC (addition)
bvSub, bvSubC, bvSub, bvSbbC(subtraction)
bvMul, bvMulf (multiplication)
bvShl, bvConcatShl (left shift)
bvSplit (splitting)
bvCmove (condition move)
bvAssert, bvAssume (assertion and assumption)

» the modeling language for cryptographic assembly programs
> the specification language for functional properties
> the verification algorithm

@ We also provide a tool chain to

> extract assembly programs from execution
> translate assembly programs into the modeling language

vV vV vV vV VvV VY VY

@ The tool chain enables us to produce models for verification quickly.

> It is essential to tool adoption. i ..
P o Flags must be specified explicitly.

» Missing flags induce under- or over-flow checks (bvAdd and bvSub).
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The CRYPTOLINE Modeling Language |l The CRYPTOLINE Specification Language |

@ Special instructions are added for modeling purposes.
» bvConcatShl (concatenate then shift), Split (split into parts), bvCmove

(conditional m.ov.e) @ The CRYPTOLINE specification language specifies a conjunction of
> more about this in case study range and algebraic properties:
@ Instructions for verification are available. » Range properties: E < E' or E < E'.
» bvAssert and bvAssume » Algebraic properties: E = E’' or E = E’ mod E".
@ There is no branching instruction. e We also add syntactic sugar for common expressions.
» In practical cryptography, running time is a side channel. » For instance, [co: ¢y : -+ : ¢ stands for Zlf 0 Gi X 064-i
oo P .

» Cryptographic programs need be data-independent (called
constant-time).
» Secret-Dependent Branches are not allowed.
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The CRYPTOLINE Specification Language |l Hybrid Verification Technique
o For instance, the multiplication in X25519 is specified by @ Here is the CRYPTOLINE verification algorithm:
{Prmg}
A C —>»|BOOLECTOR
/ {Qmg }
MUL([ro i :r:r3:r,[ag:a1:ax:as:aq4],[bo:b1:by:bs:b
([o:r:r:r:rnl[ac:ar:ax:as:as)[bo: by:bs: bs: by]) {Prngg(\Palg}
P 52 " 52 r 52 r 52 P 52
{ 0 <22 A <2 /\2?2 Ars <22 A <2 } {ang/X\Qalg}
(ag + a1 - 22 + ap - 210% 4 a5 . 2196 5, . 2208 5 (by + by - 252 4 by - 2104 4 py L 2150 4 L 2208y =
o4 252 4 2104 4y 0156 4 0208 g (2255 19)

\ {Palg}
C ———>| SINGULAR

{Qalg}

@ Notice that 256-bit numbers are divided into 5 51-bit limbs.
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Verifying Range Specifications Verifying Algebraic Specifications |

(]

CRYPTOLINE translates a program and its range specification to a

‘ i the SMT ot b : e CRYPTOLINE first checks there is no overflow using SMT /SAT.
ormula in the quantifier-free bit vector theory. @ It then translates a program and its algebraic specification to the ideal
@ The formula is unsatisfiable iff the program fulfills its range membership prob|em_
specification. » Aset | C Z[xo,X1,...,Xn] is an ideal if f + g, p- f € | for every
@ We use BOOLECTOR to check the satisfiability of the formula. f,g €land p € Zxo,x1,. .., x).
o BOOLECTOR+MINISAT works better for most cases. > Given an |§ieal / and a poI)_/nomlaI P € Zlxo, X1, Xp], the ideal
membership problem asks if p € /.
@ A handful of cases need BOOLECTOR+LINGELING. L _ . I
. o @ p € [ implies the program fulfills its algebraic specification.
@ Both BOOLECTOR and Z3 fail for a number of realistic assembly

@ We use SINGULAR to solve the ideal membership problem.

programs.
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Verifying Algebraic Specifications |l Verification Flow

@ Here are the verification steps:
@ Compile into a standalone program.
* gcc ecpnistz256 mul.c $0PENSSLDIR/libcrypto.a
@ Extract execution trace.

@ To see how it works, consider a system of polynomial equations
fi(x) = 0 derived from assembly instructions.

» For instance, mul %rcx translates to

%rdx’ x 264 4+ Y% rax’ = Y%rax x %rex. * itrac.e.py a.out ecp_nistz256_mul_mont >
ecpnistz256_mul_mont.gas
@ Suppose we want to prove an equality g(x) = 0. © Manually add x86_64 to CRYPTOLINE translation rules.
e Formally, we want to show Vx. A; fi(x) =0 = g(x) = 0. © Apply the translation rules.
o Then g(?) c <f1(?)7 6(?), o fk(y» impIies * to_bvdsl.py ecp-nistz256_mul_mont.gas >

2 - ecpnistz256_mul mont.cl
N\ =0 = = 0. .
W /\' l(X) 0 _ E(X) 0 _ - © Manually add pre- and post-conditions.
» g(x) = 22 hi(X)fi(x) = 0 for any X such that A, fi(x) = 0. @ Manually tune the CRYPTOLINE program to match semantics.
* More about this later.

@ Run the tool.

* cv.native ecpnistz256_mul_mont.cl
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Current Requirements Translation Rules

@ The PYTHON script to_bvdsl.py translates x86_64 assembly to

CRYPTOLINE by rules provided by users.
All available for stock Ubuntu server install.

e O'Caml Package Manager (opam)
» With O'Caml 4.07.0

@ Consider the following rule:
mov $1v, $2v -> bvAssign $2v (bvVar $1v)

» With 1wt, 1wt_ppx, num packages o |t translates mov Y%rbp, %rax to bvAssign rax (bvVar rbp).
@ SINGULAR version 4 o Here is another rule:
e BOOLECTOR-3.0.0 with LINGELING, MINISAT, EDICAL. add $1v, $2v -> bvAddC carry $2v (bvVar $1v) (bvVar $2v)
o It translates add Yrax, %r9 to bvAddC carry r9 (bvVar rax)
(bvVar r9).

@ Most assembly instructions are thus translated automatically.
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Fine Tune Evaluation on a 2.8GHz Broadwell Xeon
library program In assert range alg total
ecp-nistz256_add 89 0.44 4.17 0.03 4.63
° nsider the fragment: ecp-_nistz256_sub 38 - 18.54 “0 18.55
Consider the agment ecp-nistz256_from_mont 82 - 0.41 0.02 0.45
mov %r8, %rbp ecp_nistz256_mul_mont 192 - 21.49 0.03 21.53
0 ecp_nistz256_mul_mont™ 153 - 15.43 0.03 15.47
shl $0x20, °/°r8 OpenSSL ecp_nistz256_mul_by_2 49 - 0.05 0.02 0.08
shr $0x20, %rbp ecp_nistz256_sqr_mont 148 - 16.43 0.03 16.47
. . . ecp_nistz256_sqr_mont™ 131 - 22.50 0.03 22.54
@ What it does is to assign x86_64_mont_2 228 83260  13.41 003  846.05
> the high 32 bits of old %r8 to the low 32 bits of %rbp; and x86_64_mont_4 490 8279.87 52327 091  8804.06
» the low 32 bits of old %r8 to the high 32 bits of %r8. x25519.x86_64.mul 226 - 2873 003 2878
) ) boringSSL x25519_x86_64 _sqr 171 - 6.14 0.03 6.18
@ Manual translation is needed. x25519_x86_64_ladderstep | 1459 - 202182 107.93 3029.78
. . mbedtls_mpi_mul_mpi_2 76 0.46 0.42 0.03 0.92
@ Here is the correct translation: mbedTLS | mbedtls.mpi-mul_mpi4 | 249  12.85 9.27 0.02 22.16
bvSplit rbp r8 (bvVar r8) 32; @ Time is in seconds; + is for Broadwell architectures
bvShl r8 (bvVar r8) 32; e
’ @ In 2017, X25519 modular multiplication and Montgomery ladderste
. . p g y p
@ Only 4 manual translations are needed in ecp_nistz256 mul mont.

took 90 seconds and 5.5 days respectively.

@ CRYPTOLINE is useful even for daily development!
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Recent Activity Verification of Postquantum Crypto |

Active Research on CRYPTOLINE Lattice-based encryption schemes
@ CRYPTOLINE now supports compositional reasoning and is o NTT-based Ring-LWE: Kyber, NewHope
multi-threaded. o non-NTT based Ring-LWE: NTRU, NTRU Prime
@ Montgomery ladderstep in boringSSL is verified in 307 seconds. o Others: Frodo
was 3029 seconds ‘
@ For multi-precision Montgomery modular multiplication: NTT-based Ring-LWE

256-bit version is verified in 7.5 seconds (was 8804 seconds).
1024-bit version is verified in 295 seconds.

o Verified n =256 NTT and inverse NTT (mod 7681) for Kyber.

@ working ongoing on the similar NewHope

New stuff
@ We are extending our efforts to postquantum crypto non-NTT-based Ring-LWE
@ We are extending verification to compiler intermediate representations NTRU and NTRU Prime should be doable, under study
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Verification of Postquantum Crypto Il Verification of Compiler Intermediate Representations

Why not Assembly

Other classes of PQC than Lattices with Work in Progress:  We can't have assembly for every architecture

o Multivariates: should be doable, operations in GF(2*) or small GF(p). @ For reference implementations, clarity and correctness are more

o Coding-bases: should be doable, operations in GF(2k). important than efficiency

@ Supersingular Isogenies: experience from ECC/RSA valuable? ) o Similarly for prototypes of algorithms. )
Not on the docket Why not C itself?
Hash-based: not our domain ) @ COMPCERT and similar certified compilers are seldom used for

production work.

o Standard compilers (gcc and clang) do strange things to your code.

4
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clang Strangeness on OpenSSL code | clang Strangeness on OpenSSL code Il

From function fe51 mul in curve25519.c
Taken from https://github.com/openssl/openssl/blob/ g2 = (uint64.t)h2 & MASK51;
OpenSSL_1_1_1-stable/crypto/ec/curve25519. g2 += (uinté4-t) (hl >> 51);
g3 += g2 >> b1;
From fe51 mul121666 in curve25519.c g2 &= MASK51; )
ul28 h2 = f[2] * (u128)121666;
g2 = (uint64 t)h2 & MASK51; clang IR output
Constant MASK51=0x7FFFFFFFFFFFF J conv109 = trunc h2 //(uint64_t)h2
clang Intermediate Representation shri22 = lshr 1128 hil 51
_ . . convl23 = trunc shri22 //(uint64_t) (h1>>51)
a2 R B2t e S g2 = and i64 convi09 Ox7FFFFFFFFFFFF
convids = trunc h2; add124 = add i64 convi23 g2
g2 = and 164 convlb Ox7FFFFFFFFFFFE //g3 += g2>>51
fold = add i64 conv123 conv109
and135 = and i64 fold Ox7FFFFFFFFFFFF |

Bo-Yin Yang (Academia Sinica) Verifying Lower-Level Crypto 2018.11.20 33 /42 Bo-Yin Yang (Academia Sinica) Verifying Lower-Level Crypto 2018.11.20 34 /42

What we have done with clang IR | What we have done with clang IR Il

program function loc (IR) modified time (s)

ecp-nistp224.c felem_diff-128_64 30 X 0.35

felem_diff 30 X 0.26

felem_mul_reduce 99 v 18.10

felem_mul 60 X 5.34

felem_neg 47 v 0.74

felem_reduce 75 v 1.40

felem _scalar 15 3 0.10

o |dentify a subset LLVMCRYPTOLINE of clang IR in use for crypto felem_square-reduce 79 4 16.40
felem_square 43 3 0.97

felem_sum 22 B3 0.15

o Translate LLVMCRYPTOLINE to CRYPTOLINE. Widefelem_diff 57 X 0.77
widefelem _scalar 31 3 1.19

@ Add assertions and assumptions as needed. ecp_mistpb2L.c felem_diff128 61 X 044
felem_diff64 61 X 0.50

H felem_neg 43 X 0.34

° Hand_adJUSt as needed‘ felem_scalar128 36 X 0.62
} felem _scalar64 35 X 0.21

o Vel’lfy. felem _scalar 43 X 0.24
felem_sum64 52 X 0.19

felem_reduce 144 v 1.81

felem_diff-128_64 70 X -

felem_mul 289 X
felem_square 158 X

Note that the three unverified programs contain anomalies which we
suspect are possible mistakes in range specification.
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What we have done with clang IR Il Conclusions

program function loc (IR) | modified | time (s)
ecp_nistp256.c felem _shrink 63 v 1.33
felem_small_mul 111 X 10.24 @ For the first time, we are able to verify industrial low-level
felem_small_sum 26 X 0.14 cryptographic programs practically.
felem_sum 22 X 0.14 » 5 minutes for 1400 assembly instructions!
smallfelem mul 109 v L.79 @ This project combines several techniques:
smallfelem_neg 22 X 0.07 proJ ) ques:
smallfelem square 70 7 1.80 » SMT/SAT solving and computer algebra
curve25519 c feb1 add 30 X 0.06 @ Formal verification and practical cryptography is a perfect match.
fe51_mul121666 57 v 0.18 » Practical cryptography needs efficient and correct programs.
feb1_mul 124 v 1.88 » Formal verification needs real applications.
fe51 sq 94 v 0.79 @ Lots of new opportunities in high assurance cryptographic software.
feb1_sub 37 X 0.11
x25519 scalar_mult! 1235 v 871.00
1Only the part of Montgomery Ladderstep is verified.
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