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︸ ︷︷ ︸

x times

.

Examples:

◮ g ∈ Fp − {0}, then (x, g) 7→ gx.

◮ P ∈ E(Fp), then (x,P) 7→ xP.

For simplicity, for a finite group (G, ∗) and x ∈ Z, we’ll write gx

for g ∗ · · · ∗ g
︸ ︷︷ ︸

x times

.
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(ga)b

◮ k = (ga)b = ga·b = gb·a = (gb)a.

◮ Computing a or b given ga and gb should be hard (i.e.
slow).

◮ Computing ga given g and a should be easy (i.e. fast).
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◮ Alice uses the knowledge that
13 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 to compute g13.

◮ An (naïve) 1 attacker has to check ga for a = 0, . . . , 13, so
has no shortcuts.

◮ Exercise: prove that, for any cyclic group G of size n, if
g ∈ G and a ∈ Z, Alice can compute ga in ≤ log2(n)
(multiplication) steps. (In polynomial time).

1a smart attacker like Mehdi can often exploit the structure of the specific
group to do better than this (but even Mehdi can’t manage polynomial time)
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Quantum revolution

Let G be a finite group, let g ∈ G and let x ∈ Z. As before, define
gx by

Z× G → G
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Alice can compute gx in polynomial time.
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Quantum revolution

Let G be a finite group, let g ∈ G and let x ∈ Z. As before, define
gx by

Z× G → G
(x, g) 7→ gx := g ∗ · · · ∗ g

︸ ︷︷ ︸

x times

.

Alice can compute gx in polynomial time.

Given a quantum computer, Shor’s algorithm computes x from
gx ...also in polynomial time.

 Idea:

Replace the map Z×G → G by a group action of a group H on
a set S:

H × S → S.
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CSIDH: Nodes are now elliptic curves and edges are isogenies.
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Nodes: Supersingular elliptic curves EA : y2
= x3

+ Ax2
+ x over F419.

Edges: 3-, 5-, and 7-isogenies (more details to come).
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Diffie-Hellman on ‘nice’ graphs

Alice Bob
a = [+,−,+,−] b = [+,+,−,+]
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Elliptic curves
Recall from Mehdi’s talk:

◮ Elliptic curves over Fp can be thought of as curves of the
form E/Fp : y2 = f (x) with deg(f ) = 3 with a ‘point at
infinity’.

◮ There is a geometric group law called + on the rational
points of E.

◮ The point at infinity P∞ is the identity of the group.

The group of rational points on E is

E(Fp) = {(x, y) ∈ F
2
p : y2 = f (x)} ∪ {P∞}.

Example

Define E/F5 : y2 = x3 + 1. Then

E(F5) = {(0, 1), (0,−1), (2, 3), (2,−3), (−1, 0),P∞}.
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Elliptic curves

◮ E : y2 = x3 + 1.

◮ Recall

E(F5) = {(2, 3), (0,−1),

(−1, 0), (0, 1),

(2,−3),P∞}.
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◮ Recall

E(F5) = {(2, 3), (0,−1),

(−1, 0), (0, 1),
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◮ E : y2 = x3 + 1.

◮ Recall

E(F5) = {(2, 3), (0,−1),

(−1, 0), (0, 1),

(2,−3),P∞}.
= {P, 2P,

3P, 4P,
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◮ E : y2 = x3 + 1.

◮ Recall
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◮ E : y2 = x3 + 1.

◮ Recall

E(F5) = {(2, 3), (0,−1),

(−1, 0), (0, 1),

(2,−3),P∞}.
= {P, 2P,

3P, 4P,
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Elliptic curves

◮ E : y2 = x3 + 1.

◮ Recall

E(F5) = {(2, 3), (0,−1),

(−1, 0), (0, 1),

(2,−3),P∞}.
= {P, 2P,

3P, 4P,

5P, 6P}.

◮ E(F5) is cyclic –
E(F5) ∼= C6.
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Elliptic curves

Example

E/F5 : y2 = x3 + 1, then E(F5) ∼= C6.

14 / 40

Elliptic curves

Example

E/F5 : y2 = x3 + 1, then E(F5) ∼= C6.

Definition
An elliptic curve E defined over a finite prime field Fp with
p ≥ 5 is supersingular if #E(Fp) = p + 1.
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Elliptic curves

Example

E/F5 : y2 = x3 + 1, then E(F5) ∼= C6.

Definition
An elliptic curve E defined over a finite prime field Fp with
p ≥ 5 is supersingular if #E(Fp) = p + 1.

Theorem
If E/Fp is supersingular and p ≥ 5 then

E(Fp) ∼= Cp+1 or E(Fp) ∼= C2 × C(p+1)/2.
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Elliptic curves

Definition
A point P ∈ E(Fp) is called a n-torsion point if nP = P∞.
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Definition
A point P ∈ E(Fp) is called a n-torsion point if nP = P∞. An
n-torsion point P is a point of order n if there is no positive
m < n such that mP = P∞.

Example

E/F5 : y2 = x3 + 1. Then E(Fp) ∼= C6 and is generated by
P = (2, 3).
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Elliptic curves

Definition
A point P ∈ E(Fp) is called a n-torsion point if nP = P∞. An
n-torsion point P is a point of order n if there is no positive
m < n such that mP = P∞.

Example

E/F5 : y2 = x3 + 1. Then E(Fp) ∼= C6 and is generated by
P = (2, 3).

◮ (2, 3) is a 6-torsion point of order 6.
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Elliptic curves

Definition
A point P ∈ E(Fp) is called a n-torsion point if nP = P∞. An
n-torsion point P is a point of order n if there is no positive
m < n such that mP = P∞.

Example

E/F5 : y2 = x3 + 1. Then E(Fp) ∼= C6 and is generated by
P = (2, 3).

◮ (2, 3) is a 6-torsion point of order 6.

◮ (−1, 0) = 3(2, 3) is a 6-torsion point and a 2-torsion point,
and has order 2.
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Definition
A point P ∈ E(Fp) is called a n-torsion point if nP = P∞. An
n-torsion point P is a point of order n if there is no positive
m < n such that mP = P∞.

Example

E/Fp supersingular and p ≥ 5.
Then either

◮ E(Fp) ∼= Cp+1; generated by a point P of order p + 1, or

◮ E(Fp) ∼= C2 × C(p+1)/2 and contains a point P of order
(p + 1)/2.
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Elliptic curves

Definition
A point P ∈ E(Fp) is called a n-torsion point if nP = P∞. An
n-torsion point P is a point of order n if there is no positive
m < n such that mP = P∞.

Example

E/Fp supersingular and p ≥ 5.
Then either

◮ E(Fp) ∼= Cp+1; generated by a point P of order p + 1, or

◮ E(Fp) ∼= C2 × C(p+1)/2 and contains a point P of order
(p + 1)/2.

In either case, if ℓ|(p + 1) is an odd prime, then
p+1
ℓ P is a point

of order ℓ.
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Elliptic curves and isogenies

Definition
An isogeny of elliptic curves over Fp is a non-zero morphism
E → E′ that maps the group identity of E to the group identity
of E′. It is given by rational maps.
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E → E′ that maps the group identity of E to the group identity
of E′. It is given by rational maps.

Example

Define E51/F419 : y2 = x3 + 51x2 + x

[2] : E51 → E51

(x, y) 7→ 2 · (x, y) := (x, y) + (x, y)
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Elliptic curves and isogenies

Definition
An isogeny of elliptic curves over Fp is a non-zero morphism
E → E′ that maps the group identity of E to the group identity
of E′. It is given by rational maps.

Example

Define E51/F419 : y2 = x3 + 51x2 + x

[2] : E51 → E51

(x, y) 7→ 2 · (x, y) := (x, y) + (x, y)

◮ As [2] is a morphism, it induces a morphism of groups
E(F419)→ E(F419), i.e. [2](P + Q) = [2](P) + [2](Q).
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Define E51/F419 : y2 = x3 + 51x2 + x

[2] : E51 → E51

(x, y) 7→ 2 · (x, y) := (x, y) + (x, y)

◮ [2](P∞) = P∞ + P∞ = P∞.
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Definition
An isogeny of elliptic curves over Fp is a non-zero morphism
E → E′ that maps the group identity of E to the group identity
of E′. It is given by rational maps.

Example

Define E51/F419 : y2 = x3 + 51x2 + x

[2] : E51 → E51

(x, y) 7→ 2 · (x, y) := (x, y) + (x, y)

◮ [2](P∞) = P∞ + P∞ = P∞. So [2] maps the group identity
of E51 to the group identity of E51.
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Elliptic curves and isogenies

Definition
An isogeny of elliptic curves over Fp is a non-zero morphism
E → E′ that maps the group identity of E to the group identity
of E′. It is given by rational maps.

Example

◮ Exercise: show that

[2] : E51 → E51

(x, y) 7→
( 1

2
x4−18x3−163x2−18x+ 1

2

8x(x2+9x+1)
,

y(x6+18x5+5x4−5x2−18x−1)
(8x(x2+9x+1))2

)

.

Hint: Try to compute the rational maps using the group
law from Mehdi’s talk or see David’s talk to learn how to
compute the rational maps with Sage.
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Elliptic curves and isogenies

Definition
An isogeny of elliptic curves over Fp is a non-zero morphism
E → E′ that maps the group identity of E to the group identity
of E′. It is given by rational maps.

Example

Fact: let E51/F419 : y2 = x3 + 51x2 + x and
E9/F419 : y2 = x3 + 9x2 + x be elliptic curves. Then

f : E51 → E9

(x, y) 7→
(

x3−183x2+73x+30
(x+118)2 ,

y x3−65x2−104x+174
(x+118)3

)

.

is an isogeny.
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The kernel ker(f ) is the set of points (x, y) that map to the group
identity P∞:

◮ If (x, y) ∈ ker(f ) then (x, y) = P∞ or x = −118.
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(x, y) 7→
(

x3−183x2+73x+30
(x+118)2 ,

y x3−65x2−104x+174
(x+118)3

)

.

The kernel ker(f ) is the set of points (x, y) that map to the group
identity P∞:

◮ If (x, y) ∈ ker(f ) then (x, y) = P∞ or x = −118.

◮ If (−118, y) ∈ E51 then (x, y) = (−118,±51).

20 / 40



Elliptic curves and isogenies

Example

f : E51 → E9

(x, y) 7→
(

x3−183x2+73x+30
(x+118)2 ,

y x3−65x2−104x+174
(x+118)3

)

.

The kernel ker(f ) is the set of points (x, y) that map to the group
identity P∞:

◮ If (x, y) ∈ ker(f ) then (x, y) = P∞ or x = −118.

◮ If (−118, y) ∈ E51 then (x, y) = (−118,±51).

◮ f (P∞) = f ((−118,±51)) = P∞.

Fact: an isogeny is uniquely determined by its kernel.
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Elliptic curves and isogenies

Example

f : E51 → E9

(x, y) 7→
(

x3−183x2+73x+30
(x+118)2 ,

y x3−65x2−104x+174
(x+118)3

)

.

◮ ker(f ) = {(−118, 51), (−118,−51),P∞}.
◮ ker(f ) is a subgroup of E51(F419) (because f induces a

morphism of groups).

◮ ker(f ) is order 3, so must be a cyclic group, hence
(−118, 51) + (−118, 51) + (−118, 51) = P∞.
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y x3−65x2−104x+174
(x+118)3

)

.
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Example

f : E51 → E9

(x, y) 7→
(

x3−183x2+73x+30
(x+118)2 ,

y x3−65x2−104x+174
(x+118)3

)

.

◮ ker(f ) is a cyclic subgroup of E51(F419), generated by a
3-torsion point P = (−118, 51).

◮ Q = (210,
√

380) ∈ E(F4192) is also a point of order 3.

◮ Then f (Q) = (286, 107
√

380) is a point of order 3 on E9.

◮ There is another 3-isogeny g : E9 → E51 with cyclic kernel
generated by f (Q).

◮ g ◦ f : E51 → E51 is the multiplication-by-3 map.
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Elliptic curves and isogenies

Definition
Let E,E′/Fp be elliptic curves and let ℓ be a prime different from
p. An ℓ-isogeny f : E → E′ is an isogeny with # ker(f ) = ℓ.

Definition
Let E/Fp be an elliptic curve and let ℓ 6= p be prime. Let
f : E → E′ be an ℓ-isogeny.
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Let E/Fp be an elliptic curve and let ℓ 6= p be prime. Let
f : E → E′ be an ℓ-isogeny. Then there exists a unique (up to
isomorphism) ℓ-isogeny f∨ : E′ → E such that f∨ ◦ f is the
multiplication-by-ℓ map on E. This is called the dual isogeny.

Example

E51/F419 : y2 = x3 + 51x2 + x and E9/F419 : y2 = x3 + 9x2 + x.
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Elliptic curves and isogenies

Definition
Let E,E′/Fp be elliptic curves and let ℓ be a prime different from
p. An ℓ-isogeny f : E → E′ is an isogeny with # ker(f ) = ℓ.

Definition
Let E/Fp be an elliptic curve and let ℓ 6= p be prime. Let
f : E → E′ be an ℓ-isogeny. Then there exists a unique (up to
isomorphism) ℓ-isogeny f∨ : E′ → E such that f∨ ◦ f is the
multiplication-by-ℓ map on E. This is called the dual isogeny.

Example

E51/F419 : y2 = x3 + 51x2 + x and E9/F419 : y2 = x3 + 9x2 + x.
The dual of the 3-isogeny f : E51 → E9 with kernel generated by
(−118, 51) is the 3-isogeny f∨ : E9 → E51 with kernel generated
by (286, 107

√
380).
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Isogeny graphs
Graph of 3-isogenies over F419.

Example

E51 E9 E51 E9
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Isogeny graphs
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A 3-isogeny

(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)

(

97x3
−183x2+x

x2
−183x+97 ,

y· 133x3+154x2
−5x+97

−x3+65x2+128x−133

)
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Isogeny graphs

Definition
Let p and ℓ be distinct primes. The isogeny graph Gℓ over Fp

has

◮ Nodes: elliptic curves defined over Fp with a given
number of points (up to Fp-isomorphism).

◮ Edges: an edge E− E′ respresents an ℓ-isogeny E → E′

defined over Fp together with its dual isogeny.
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has

◮ Nodes: elliptic curves defined over Fp with a given
number of points (up to Fp-isomorphism).

◮ Edges: an edge E− E′ respresents an ℓ-isogeny E → E′
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Isogeny graphs

Definition
Let p and ℓ be distinct primes. The isogeny graph Gℓ over Fp

has

◮ Nodes: elliptic curves defined over Fp with a given
number of points (up to Fp-isomorphism).

◮ Edges: an edge E− E′ respresents an ℓ-isogeny E → E′

defined over Fp together with its dual isogeny.

◮ In our example

G5:
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Isogeny graphs

Definition
Let p and ℓ be distinct primes. The isogeny graph Gℓ over Fp

has

◮ Nodes: elliptic curves defined over Fp with a given
number of points (up to Fp-isomorphism).

◮ Edges: an edge E− E′ respresents an ℓ-isogeny E → E′

defined over Fp together with its dual isogeny.

◮ In our example

G7:
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Isogeny graphs

Definition
Let p and ℓ be distinct primes. The isogeny graph Gℓ over Fp

has

◮ Nodes: elliptic curves defined over Fp with a given
number of points (up to Fp-isomorphism).

◮ Edges: an edge E− E′ respresents an ℓ-isogeny E → E′

defined over Fp together with its dual isogeny.

◮ In our example

G3∪G5∪G7
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Isogeny graphs

Definition
Let p and ℓ be distinct primes. The isogeny graph Gℓ over Fp

has

◮ Nodes: elliptic curves defined over Fp with a given
number of points (up to Fp-isomorphism).

◮ Edges: an edge E− E′ respresents an ℓ-isogeny E → E′

defined over Fp together with its dual isogeny.

◮ Generally, the Gℓ look something like

G3: G5:

26 / 40



Endomorphisms
◮ Our graphs are cycles because all the curves have ‘the

same endomorphisms’
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(x, y) 7→ n(x, y).
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Endomorphisms
◮ Our graphs are cycles because all the curves have ‘the

same endomorphisms’

Definition
An endomorphism of an elliptic curve E is a morphism E → E.

Example

◮ For any n ∈ Z, the map

[n] : E → E
(x, y) 7→ n(x, y).

◮ For E/Fp, the Frobenius map

π : E → E
(x, y) 7→ (xp, yp).
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Endomorphism rings

Let E/Fp be supersingular.

◮ Applying the Frobenius endomorphism (x, y) 7→ (xp, yp)
twice results in the multiplication by −p map [−p].
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twice results in the multiplication by −p map [−p].

◮ The set of Fp-rational endomorphisms of a curve E/Fp

forms a ring EndFp(E).

◮ We can define a ring homomorphism

Z[
√−p] → EndFp(E)

n 7→ [n]√−p 7→ π.
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Endomorphism rings

Let E/Fp be supersingular.

◮ Applying the Frobenius endomorphism (x, y) 7→ (xp, yp)
twice results in the multiplication by −p map [−p].

◮ The set of Fp-rational endomorphisms of a curve E/Fp

forms a ring EndFp(E).

◮ We can define a ring homomorphism

Z[
√−p] → EndFp(E)

n 7→ [n]√−p 7→ π.

◮ Fact: if p ≡ 3 (mod 8), p ≥ 5, and EA/Fp : y2 = x3 + Ax2 + x
is supersingular, then EndFp(E)

∼= Z[
√−p].
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Group actions

Remember: we wanted to replace exponentiation

Z× G → G
(x, g) 7→ gx := g ∗ · · · ∗ g

︸ ︷︷ ︸

x times

.

by a group action of a group H on a set S:

H × S → S.
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Group actions

Remember: we wanted to replace exponentiation

Z× G → G
(x, g) 7→ gx := g ∗ · · · ∗ g

︸ ︷︷ ︸

x times

.

by a group action of a group H on a set S:

H × S → S.

Now we can do it!
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Group actions

Definition
An action of a group (H, ·) on a set S is a map

H × S → S
(h, s) 7→ h ∗ s

such that id ∗ s = s and h1 ∗ (h2 ∗ s) = (h1 · h2) ∗ s for all s ∈ S and
all h1, h2 ∈ H.
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Group actions

Definition
An action of a group (H, ·) on a set S is a map

H × S → S
(h, s) 7→ h ∗ s

such that id ∗ s = s and h1 ∗ (h2 ∗ s) = (h1 · h2) ∗ s for all s ∈ S and
all h1, h2 ∈ H.

Example

Traditional Diffie-Hellman is an example:
(H, ·) = ((Z/(p− 1)Z)∗,+) and S = (Z/pZ)∗. Exponentiation
(h, s) 7→ sh is a group action.
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Group actions

Definition
An action of a group (H, ·) on a set S is a map

H × S → S
(h, s) 7→ h ∗ s

such that id ∗ s = s and h1 ∗ (h2 ∗ s) = (h1 · h2) ∗ s for all s ∈ S and
all h1, h2 ∈ H.

For the CSIDH group action

◮ the set S is the set of supersingular
EA/Fp : y2 = x3 + Ax2 + x with p ≡ 3 (mod 8) and p ≥ 5.

◮ the group H is the class group of the endomorphism ring
Z[
√−p].
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Class groups
Let O = Z[

√−p].

Definition
An ideal I ⊂ O is the set of all O-linear combinations of a given
set of elements of O.
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Class groups
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√−p].

Definition
An ideal I ⊂ O is the set of all O-linear combinations of a given
set of elements of O.

Example

In Z[
√
−3] we can consider the ideal

〈7, 2 +
√
−3〉 := {7a + (2 +

√
−3)b : a, b ∈ Z[

√
−3]}.
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Class groups
Let O = Z[

√−p].

Definition
An ideal I ⊂ O is the set of all O-linear combinations of a given
set of elements of O.

Example

In Z[
√
−3] we can consider the ideal

〈7, 2 +
√
−3〉 := {7a + (2 +

√
−3)b : a, b ∈ Z[

√
−3]}.

Definition
A principal ideal is an ideal of the form I = 〈α〉.

◮ We can multiply ideals I and J ⊂ O:

I · J = 〈αβ : α ∈ I, β ∈ J〉.
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Class groups

Definition
Two ideals I, J ⊆ O are equivalent if there exist α, β ∈ O \ {0}
such that

〈α〉 · I = 〈β〉 · J.

2modulo details
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Class groups

Definition
Two ideals I, J ⊆ O are equivalent if there exist α, β ∈ O \ {0}
such that

〈α〉 · I = 〈β〉 · J.

Definition
The ideal class group of O is2

Cl(O) = {equivalence classes of nonzero ideals I ⊂ O}.

Miracle fact: the ideal class group is a group!

2modulo details
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Class group action

The class group of the endomorphism ring Z[
√−p] acts on the

set S of supersingular elliptic curves EA/Fp : y2 = x3 + Ax2 + x
with p ≡ 3 (mod 8) and p ≥ 5.
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◮ Recall: An isogeny is uniquely determined by its kernel.
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The class group of the endomorphism ring Z[
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set S of supersingular elliptic curves EA/Fp : y2 = x3 + Ax2 + x
with p ≡ 3 (mod 8) and p ≥ 5. How?

◮ Recall: An isogeny is uniquely determined by its kernel.

◮ Let I ⊂ EndFp(E) be an ideal. Then

HI = ∩α∈I ker(α)

is a subgroup of E(Fp).

◮ Define fI : E → E′ to be the isogeny with kernel HI.

The CSIDH group action is:

Cl(EndFp(E))× S → S

(I,E) 7→ fI(E).
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◮ The isogeny fI is an ℓ-isogeny if and only if I = 〈[ℓ], π ± [1]〉.
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Class group action

The CSIDH group action is:

Cl(EndFp(E))× S → S

(I,E) 7→ I ∗ E := fI(E).

◮ The isogeny fI is an ℓ-isogeny if and only if I = 〈[ℓ], π ± [1]〉.
◮ A ′+′ direction isogeny on the ℓ-isogeny graph is the action

of 〈[ℓ], π − [1]〉.
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Class group action

The CSIDH group action is:

Cl(EndFp(E))× S → S

(I,E) 7→ I ∗ E := fI(E).

◮ The isogeny fI is an ℓ-isogeny if and only if I = 〈[ℓ], π ± [1]〉.
◮ A ′+′ direction isogeny on the ℓ-isogeny graph is the action

of 〈[ℓ], π − [1]〉.
◮ A ′−′ direction isogeny on the ℓ-isogeny graph is the action

of 〈[ℓ], π + [1]〉.
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Diffie-Hellman with CSIDH
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◮ Choose small odd primes ℓ1, . . . , ℓn.

◮ Make sure p = 4 · ℓ1 · · · ℓn − 1 is prime.

◮ Fix E0/Fp : y2 = x3 + x.

◮ Then E0 is supersingular. Exercise: show that there is a
point of order ℓi in E0(Fp) for every ℓ1, . . . , ℓn.

◮ All arithmetic for computing ℓi-isogenies is now over Fp.
(For more: see David’s talk).

◮ Every Gℓi
containing E0 is a disjoint union of cycles.

◮ Every node of Gℓi
is of the form EA : y2 = x3 + Ax2 + x –

can be compressed to just A ∈ Fp giving tiny keys.
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Why CSIDH?

◮ Drop-in post-quantum replacement for (EC)DH

◮ Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly (for
reasonable run-time)

◮ Small keys: 64 bytes at conjectured AES-128 security level

◮ Competitive speed: ∼ 85 ms for a full key exchange

◮ Flexible: compatible with 0-RTT protocols such as QUIC;
recent preprint uses CSIDH for ‘SeaSign’ signatures
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◮ More applications.

◮ [Your paper here!]
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Thank you!
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Concrete numbers in this paper should be treated with caution, see [Section 1.3, BLMP]
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CSIDH-512 1 64 b 32 b 85 ms 212e6 4368 b 128

CSIDH-1024 3 128 b 64 b 256

CSIDH-1792 5 224 b 112 b 448
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