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Groups Examples of groups

» The set Z of integers is a group under +
» but not under x!

A group G is a set together with some operation * sending two
elements a, b to another element a = b * ¢, such that:

1. = is associative: (a* b)*c=ax* (bx*c) for all a,b,c
2. there exists an identity element e: exa=axe=afor all a

3. all elements are invertible: for all a, there exists a’ such that
axa' =a'xa=e

Easy properties: e is unique; each element a has a unique inverse,
denoted a7!
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Examples of groups Examples of groups
» The set Z of integers is a group under + » The set Z of integers is a group under +
» but not under x! > but not under x!
» The set Q* (resp. R*) of non-zero rational numbers » The set Q* (resp. R*) of non-zero rational numbers
(resp. real numbers) is a group under x (resp. real numbers) is a group under x
» we have to remove 0, which has no inverse » we have to remove 0, which has no inverse

» For any integer n, the set {0,1,...,n—1} under addition
modulo n is a group, denoted Z/nZ
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Examples of groups Examples of groups

» The set Z of integers is a group under + » The set Z of integers is a group under +
» but not under x! > but not under x!
» The set Q* (resp. R*) of non-zero rational numbers » The set Q* (resp. R*) of non-zero rational numbers
(resp. real numbers) is a group under x (resp. real numbers) is a group under x
» we have to remove 0, which has no inverse > we have to remove 0, which has no inverse
» For any integer n, the set {0,1,...,n—1} under addition » For any integer n, the set {0,1,...,n—1} under addition
modulo n is a group, denoted Z/nZ modulo n is a group, denoted Z/nZ
» The set Z/nZ ~ {0} is stable under multiplication modulo n if » The set Z/nZ ~ {0} is stable under multiplication modulo n if
and only if n=p is prime. In that case, it is a group, denoted and only if n=p is prime. In that case, it is a group, denoted
(Z|pZ)* or IFy. (Z|pZ)* or I},

» Elliptic curves are groups! (more about this later)
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Examples of groups Finite groups

» The set Z of integers is a group under +
» but not under x!
» The set Q* (resp. R*) of non-zero rational numbers
(resp. real numbers) is a group under x
» we have to remove 0, which has no inverse

» From now on, we restrict attention to finite groups (i.e. the
underlying set G is finite). The number N of elements is also

lled the order of th
» For any integer n, the set {0,1,...,n—1} under addition cate € order of the grotp

modulo n is a group, denoted Z/nZ

» The set Z/nZ ~ {0} is stable under multiplication modulo n if
and only if n=p is prime. In that case, it is a group, denoted
(Z|pZ)* or Iy

» Elliptic curves are groups! (more about this later)

» In all these examples, the groups are commutative: for all a, b,
ax* b=bxa. There are also non-commutative groups, like
groups of invertible matrices. Not so important for
cryptography.
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Finite groups Finite groups

» From now on, we restrict attention to finite groups (i.e. the » From now on, we restrict attention to finite groups (i.e. the
underlying set G is finite). The number N of elements is also underlying set G is finite). The number N of elements is also
called the order of the group called the order of the group

» For now, we denote the group operation multiplicatively: a = b » For now, we denote the group operation multiplicatively: a* b
is just a- b or ab, and the identity is 1. We will switch to is just a- b or ab, and the identity is 1. We will switch to
additive notation later additive notation later

» Accordingly, for any positive integer m and any group element
g, we denote by g the group element g - g---g (m times).
We also let g% =1 and g™ = (g™ })™
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Orders of elements, cyclic groups Orders of elements, cyclic groups
» For each g in a finite group, there is a smallest positive » For each g in a finite group, there is a smallest positive
integer m such that g™ = 1. This is the order of g integer m such that g™ = 1. This is the order of g

» indeed, by finiteness, there exists n > n’ > 0 such that g" = g”'; » indeed, by finiteness, there exists n> n’ > 0 such that g" = g"’;
then g”‘”l = 1. This shows the existence of an m > 0 such that then g”‘”’ = 1. This shows the existence of an m > 0 such that
g™ =1; just take the smallest g™ =1, just take the smallest

» the order m of g always divides the order N of the entire group » the order m of g always divides the order N of the entire group
(Legendre) (Legendre)

» For a fixed g, the set of all elements of the form g™ is stable
under the group law and under inversion, and it contains 1: it
is a subgroup of G denoted by (g)
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Orders of elements, cyclic groups The discrete logarithm problem

» For each g in a finite group, there is a smallest positive > Let G be a cyclic group of order N with generator g. By
integer m such that g™ = 1. This is the order of g definition, for all h e G, there exists some integer x such that
» indeed, by finiteness, there exists n > n’ > 0 such that g" = g"’; h=g*.

then g”‘”l = 1. This shows the existence of an m > 0 such that
g™ =1; just take the smallest

» the order m of g always divides the order N of the entire group
(Legendre)

» For a fixed g, the set of all elements of the form g is stable
under the group law and under inversion, and it contains 1: it
is a subgroup of G denoted by (g)

» If G =(g), we say that the group G is cyclic and g is a
generator of G

» a cyclic group is clearly always commutative!
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The discrete logarithm problem The discrete logarithm problem
» Let G be a cyclic group of order N with generator g. By » Let G be a cyclic group of order N with generator g. By
definition, for all h € G, there exists some integer x such that definition, for all h e G, there exists some integer x such that
h=g*. h=g*.
> By analogy with real logarithms, x is called the discrete » By analogy with real logarithms, x is called the discrete
logarithm of h wrt g logarithm of h wrt g
» x is unique up to addition of a multiple of N (i.e. unique > x is unique up to addition of a multiple of N (i.e. unique
modulo N) modulo N)
» The discrete logarithm problem is the problem of computing x
given G, N, g, h
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The discrete logarithm problem Outline

Let G be a cyclic group of order N with generator g. By
definition, for all h € G, there exists some integer x such that
h=g*.
By apalogy with real logarithms, x is called the discrete Generic algorithms for the discrete log
logarithm of h wrt g
» x is unique up to addition of a multiple of N (i.e. unique

modulo N)
The discrete logarithm problem is the problem of computing x
given G, N, g, h

Groups and discrete logarithms

This assumes that we can compute in G: there exist concrete
representations of the elements of G as bit strings, and
efficient algorithms to compute the group law in G and
inversion. We assume that from now on
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Solving the discrete logarithm problem Solving the discrete logarithm problem
» The hardness of the discrete logarithm problem (DLP) is at » The hardness of the discrete logarithm problem (DLP) is at
the core of the security arguments for all cryptography based the core of the security arguments for all cryptography based
on groups, incl. elliptic curve cryptography on groups, incl. elliptic curve cryptography

» Hence, if we can solve DLP efficiently, we can break all
group-based crypto
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Solving the discrete logarithm problem Solving the discrete logarithm problem

» The hardness of the discrete logarithm problem (DLP) is at » The hardness of the discrete logarithm problem (DLP) is at
the core of the security arguments for all cryptography based the core of the security arguments for all cryptography based
on groups, incl. elliptic curve cryptography on groups, incl. elliptic curve cryptography

» Hence, if we can solve DLP efficiently, we can break all » Hence, if we can solve DLP efficiently, we can break all
group-based crypto group-based crypto

» Various approaches to attack the DLP depending on the » Various approaches to attack the DLP depending on the
group we consider group we consider

» However, arguably the most important approaches are those
that are generic: work in all group, independently of the
particular group law or representation of group elements
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Solving the discrete logarithm problem A trivial discrete log algorithm

» The hardness of the discrete logarithm problem (DLP) is at > Here is a trivial algorithm for the DLP
the core of the security arguments for all cryptography based
on groups, incl. elliptic curve cryptography

» Hence, if we can solve DLP efficiently, we can break all
group-based crypto

» Various approaches to attack the DLP depending on the
group we consider

» However, arguably the most important approaches are those
that are generic: work in all group, independently of the
particular group law or representation of group elements

» We now discuss those approaches
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A trivial discrete log algorithm A trivial discrete log algorithm

» Here is a trivial algorithm for the DLP » Here is a trivial algorithm for the DLP

» Given g and h, the goal is to find x such that h=g* » Given g and h, the goal is to find x such that h=g*
» Simple way:
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A trivial discrete log algorithm A trivial discrete log algorithm
» Here is a trivial algorithm for the DLP » Here is a trivial algorithm for the DLP
» Given g and h, the goal is to find x such that h=g* » Given g and h, the goal is to find x such that h=g*
» Simple way: » Simple way:
1. x<0 1. x«<0

2. if h= g%, we are done
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A trivial discrete log algorithm A trivial discrete log algorithm

» Here is a trivial algorithm for the DLP » Here is a trivial algorithm for the DLP
» Given g and h, the goal is to find x such that h=g* » Given g and h, the goal is to find x such that h=g*
» Simple way: » Simple way:

1. x<0 1. x«<0

2. if h=g%, we are done 2. if h=g*, we are done

3. otherwise, x < x +1 and try again 3. otherwise, x < x + 1 and try again

» We know for sure that this algorithm will find a solution.
Since there is such a solution x such that 0 < x < N, time
complexity is O(N) in the worst case (and space complexity is

0(1))
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A trivial discrete log algorithm Baby step, giant step (I)
» Here is a trivial algorithm for the DLP » We can do much better with some memory: the baby step,
» Given g and h, the goal is to find x such that h=g* giant step (BSGS) algorithm
» Simple way:
1. x<0

2. if h=g*, we are done
3. otherwise, x < x +1 and try again
» We know for sure that this algorithm will find a solution.
Since there is such a solution x such that 0 < x < N, time
complexity is O(N) in the worst case (and space complexity is
0(1))
» Note that this algorithm is exponential in the bit size of the
group (which is log, )
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Baby step, giant step (1) Baby step, giant step (1)

» We can do much better with some memory: the baby step, » We can do much better with some memory: the baby step,
giant step (BSGS) algorithm giant step (BSGS) algorithm
» Let m=[v/N]. One can write the discrete log x of h as » Let m=[v/N]. One can write the discrete log x of h as
x =y +mz, with 0 <y, z<m. This gives: x =y +mz, with 0 <y, z<m. This gives:
h=g""™ =g¥.g™ hence h-g¥=g™ h=g""m =g¥.g™ hence h-g¥=g"

» In time O(\/N) and space O(v/N), construct the following
list and sort it (so that we can search through it efficiently):

L= {gO’gm’ng?_”,gm~(m—1)}

z

By construction, g™ is in the list
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Baby step, giant step (I1) Baby step, giant step (I)

» Now do a similar search as before: » Now do a similar search as before:
1. y«<0
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Baby step, giant step (I1) Baby step, giant step (I)

» Now do a similar search as before: » Now do a similar search as before:
1. y<0 1. y«<0
2. search for h- g™ in the list L 2. search for h- g™ in the list L

3. if it is found as g™, return x = y + mz as the discrete log
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Baby step, giant step (I1) Baby step, giant step (I)
» Now do a similar search as before: » Now do a similar search as before:
1. y<0 1. y«<0
2. search for h- g™ in the list L 2. search for h- g7 in the list L
3. if it is found as g, return x = y + mz as the discrete log 3. if it is found as g™, return x = y + mz as the discrete log
4. otherwise, y < y +1 and try again 4. otherwise, y < y +1 and try again

» Total time complexity is O(v/N) and space complexity is
O(+/N). Still exponential, but exponentially faster than the
trivial approach
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Baby step, giant step (I1) Baby step, giant step (I)

» Now do a similar search as before: » Now do a similar search as before:
1. y<0 1. y«<0
2. search for h- g™ in the list L 2. search for h- g™ in the list L
3. if it is found as g, return x = y + mz as the discrete log 3. if it is found as g™, return x = y + mz as the discrete log
4. otherwise, y < y +1 and try again 4. otherwise, y < y +1 and try again
» Total time complexity is O(v/N) and space complexity is » Total time complexity is O(v/N) and space complexity is
O(+/N). Still exponential, but exponentially faster than the O(+/N). Still exponential, but exponentially faster than the
trivial approach trivial approach
» In practice the space complexity is usually prohibitive: e.g. if » In practice the space complexity is usually prohibitive: e.g. if
N =~ 2128 the 2% time complexity is manageable, but 204 N =~ 2128 the 2% time complexity is manageable, but 204
space is not! space is not!

» By choosing a different value for m, we can obtain different
time-memory trade-offs. Not necessary though: same time
complexity is achievable without memory!
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Pollard’s rho algorithm (1) Pollard’s rho algorithm (1)
» The best generic algorithm for discrete logarithms is Pollard’s » The best generic algorithm for discrete logarithms is Pollard’s
rho: it uses O(v/N) time and constant space. rho: it uses O(\/N) time and constant space.

» Basic ingredient: cycle-finding for random functions. If
f:X - X is a random function of a set of cardinality N to
itself, and we iterate f on a random element xp:

x1=Ff(x0); xo="Ff(x1);

then there are integers s, t = O(\/N) whp such that x; = X¢4s.
A well-known algorithm (Floyd) then allows to find s, t in time
O(\/N) and constant memory
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Pollard’s rho algorithm (1) Pollard’s rho algorithm (1)

» Now consider the set X = G, and fix a random element » Now consider the set X = G, and fix a random element
xo = g% - h?. Moreover, we construct f in such a way that f xo = g% - h?™. Moreover, we construct f in such a way that f
acts on each element by multiplication by some known powers acts on each element by multiplication by some known powers
of g and h. As a result, for all /, we know a;, b; such that of g and h. As a result, for all i, we know a;, b; such that
Xi=fi(X0)=gai-hbi X;:fi(Xo)Zgai~hbi

» Apply cycle-finding. In time O(v/N) and constant space, we
find whp integers a, b, a’, b’ such that:

7

Ry

b
g% h° =x¢ = xpss = 8°

Then, if b— b’ is coprime to N (happens with good
probability), we deduce:
o _a-4a
h=g% where a= By (mod N)
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Pollard’s rho algorithm Pohlig—Hellman (1)

» There is one last thing we can do to speed up generic discrete
logarithm computations: use the factorization of the group
order N

Hi7as

Hiras

s

Picture of the p in Pollard’s rho (from Wikimedia Commons)
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Pohlig—Hellman (1) Pohlig—Hellman (1)

» There is one last thing we can do to speed up generic discrete » There is one last thing we can do to speed up generic discrete
logarithm computations: use the factorization of the group logarithm computations: use the factorization of the group
order N order N

» Suppose N factors as a product Ny N> of two coprime » Suppose N factors as a product Ny N, of two coprime

Ng N2

is of order Ny and integers. Then for a generator g of G, g"? is of order Ny and

M s of order N.

integers. Then for a generator g of G, g
gN1 is of order No. g

» We look for x such that h=g*. Raising both sides to the
power Ny, we get: hN2 = (gN2)X DLP in the group (g"?) of
order Ny.
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Pohlig—Hellman (1) Pohlig—Hellman (11)

» There is one last thing we can do to speed up generic discrete
logarithm computations: use the factorization of the group + More generally, if N = p&t...p% is the prime factorization of ,
order N that decomposition approach reduces the DLP in G to DLPs
» Suppose N factors as a product Nj N> of two coprime in groups of order pf, ..., pS.
integers. Then for a generator g of G, g2 is of order N; and
g™ is of order N.

» We look for x such that h = g*. Raising both sides to the
power Ny, we get: hN2 = (gN2)X DLP in the group (g"?) of
order Nj.

» Solve this DLP with Pollard’s rho to obtain x mod Nj.
Similarly, solve the DLP between g™ and A to find
x mod N,. Then apply the Chinese remainder theorem (CRT)
to compute x

» time complexity O(v/Ni ++/N>) and constant space
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Pohlig—Hellman (1) Pohlig—Hellman (11)

» More generally, if N = p;*---pf" is the prime factorization of N, » More generally, if N = pi*---pf" is the prime factorization of N,
that decomposition approach reduces the DLP in G to DLPs that decomposition approach reduces the DLP in G to DLPs
in groups of order p*, ..., pf. in groups of order p*,...,p¢".

» Then, a similar trick reduces the DLP in a group of order p® » Then, a similar trick reduces the DLP in a group of order p€
to e instances of DLPs in groups of order p (relying on to e instances of DLPs in groups of order p (relying on
Pollard’s kangaroo) Pollard’s kangaroo)

» Conclusion: can solve discrete logs in G in time
O(e1/p1 + -+ e/pr) and polynomial space.
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Pohlig—Hellman (I1) Shoup’s lower bound
» More generally, if N = p&---p is the prime factorization of N » Shoup proved that a generic algorithm for the DLP in a cyclic
1 r 1 .
that decomposition approach reduces the DLP in G to DLPs group F)f prime order p had to carry out €2(,/p) group
; e e operations
in groups of order pi*,..., pf" .

» Then, a similar trick reduces the DLP in a group of order p®
to e instances of DLPs in groups of order p (relying on
Pollard’s kangaroo)

» Conclusion: can solve discrete logs in G in time
O(e1/p1 + -+ e/pr) and polynomial space.

» For most N, this simply reduces to O(,/p) time, p largest
prime factor

19/39 (©2018 NTT Secure Platform Laboratories 20/39 (©2018 NTT Secure Platform Laboratories



Shoup’s lower bound Shoup’s lower bound

» Shoup proved that a generic algorithm for the DLP in a cyclic » Shoup proved that a generic algorithm for the DLP in a cyclic
group of prime order p had to carry out Q(,/p) group group of prime order p had to carry out Q(,/p) group
operations operations

» Therefore, among generic algorithms, Pollard’s rho is optimal » Therefore, among generic algorithms, Pollard’s rho is optimal
(up to a constant) for groups of prime order, and Pollard’s rho (up to a constant) for groups of prime order, and Pollard’s rho
+ Pohlig—=Hellman optimal in general + Pohlig=Hellman optimal in general

» On most elliptic curves, no better algorithm than those is
known for the discrete log!
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Shoup’s lower bound Outline

» Shoup proved that a generic algorithm for the DLP in a cyclic
group of prime order p had to carry out Q(,/p) group Groups and discrete logarithms
operations

» Therefore, among generic algorithms, Pollard’s rho is optimal
(up to a constant) for groups of prime order, and Pollard’s rho
+ Pohlig—=Hellman optimal in general

Some groups with non-generic discrete logs

» On most elliptic curves, no better algorithm than those is
known for the discrete log!

» Caveat: this is only about attacks on classical computers.
Quantum computers generically break the DLP in polynomial
time with Shor’s algorithm
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Additive group DLP Additive group DLP

» There are of course some groups when the DLP can be solved » There are of course some groups when the DLP can be solved
much faster than by generic techniques much faster than by generic techniques

» Example: the cyclic group Z/NZ of integers modulo N under
addition
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Additive group DLP Additive group DLP
» There are of course some groups when the DLP can be solved » There are of course some groups when the DLP can be solved
much faster than by generic techniques much faster than by generic techniques
» Example: the cyclic group Z/NZ of integers modulo N under » Example: the cyclic group Z/NZ of integers modulo N under
addition addition
» This is an additive group. The DLP is to find, given two » This is an additive group. The DLP is to find, given two
elements a, b € Z/NZ, a value x such that b= ax (mod N) elements a, b € Z/NZ, a value x such that b= ax (mod N)

» This is just a division! Simply compute x as:

(computation done using the extended Euclidean algorithm)
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Additive group DLP Multiplicative group DLP

» There are of course some groups when the DLP can be solved
much faster than by generic techniques » Fix p a prime. The multiplicative group G = (Z/pZ)* is cyclic

» Example: the cyclic group Z/NZ of integers modulo N under of order p —1 with some generator g
addition

» This is an additive group. The DLP is to find, given two
elements a, b € Z/NZ, a value x such that b= ax (mod N)

» This is just a division! Simply compute x as:

X = b (mod N)
a
(computation done using the extended Euclidean algorithm)

» In Z/NZ, DLP can be solved in polynomial time (in log N),
even though generic algorithms are all exponential
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Multiplicative group DLP Multiplicative group DLP
» Fix p a prime. The multiplicative group G = (Z/pZ)* is cyclic » Fix p a prime. The multiplicative group G = (Z/pZ)* is cyclic
of order p — 1 with some generator g of order p — 1 with some generator g
» We do not know how to solve the DLP in G in polynomial » We do not know how to solve the DLP in G in polynomial
time, but we can still do much better than generic algorithms. time, but we can still do much better than generic algorithms.
The best known algorithms are subexponential The best known algorithms are subexponential

> More precisely, if p is n-bit long, the best algorithm (GNFS)
has a complexity of 20(”1/3), which is considerably less than

Pollard’s /p— 1 ~ 2"/2
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Multiplicative group DLP

» Fix p a prime. The multiplicative group G = (Z/pZ)* is cyclic
of order p — 1 with some generator g

» We do not know how to solve the DLP in G in polynomial
time, but we can still do much better than generic algorithms.
The best known algorithms are subexponential

» More precisely, if p is n-bit long, the best algorithm (GNFS)
has a complexity of 20(”1/3), which is considerably less than
Pollard’s \/p— 1 ~ 22

» In the next slide, brief description of a simpler subexponential
algorithm, index calculus, based on similar principles.

Complexity of 20(n'/%)
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Index calculus in (Z/pZ)*

» Start by collecting all the small prime numbers
l1=2,0,=3,---, £, up to some bound B in a list F called the
factor base. One can easily check if an integer has all its prime
factors in F (and then factor it), and estimate the probability
that this happens. Such a number is called B-smooth

» Now we will try to find the discrete logs xi,...,x, of all the
elements of F wrt g. To do so, pick random numbers k; and
check if gk mod p is B-smooth. If so, we can factor it and
get a relation:

ghi = (747" (mod p)
or after taking discrete logs:
ki=e1x1+ - +e,x (modp-1)

If we find more than r such relations, applying Gaussian
elimination allows to find xq, ..., x,
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Index calculus in (Z/pZ)*

» Start by collecting all the small prime numbers
0y =2,0p=3,---, £, up to some bound B in a list F called the
factor base. One can easily check if an integer has all its prime
factors in F (and then factor it), and estimate the probability
that this happens. Such a number is called B-smooth
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Index calculus in (Z/pZ)*

» After that, finding the discrete log of any he G is
comparatively easy. Just find a single random s such that
g°-hmod p is B-smooth, and factor it to get:

h= g_s Eilgf’

— g—S+61X1+~~-+erXr

(mod p)
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Index calculus in (Z/pZ)* DLP in finite fields

» The group (Z/pZ)* is the multiplicative group of the finite

» After that, finding the discrete log of any he G is field I,

comparatively easy. Just find a single random s such that
g°-hmod p is B-smooth, and factor it to get:

h

—S el er
g 1Ae
—Sstei1Xxy+-terXr
g

(mod p)

» For a well-chosen B, smoothness probability estimates allow
. : O(nl/2
to show that the overall complexity is 20(n'/?)
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DLP in finite fields DLP in finite fields

» The group (Z/pZ)* is the multiplicative group of the finite » The group (Z/pZ)* is the multiplicative group of the finite
field F,, field Fp,

» One can also consider the DLP in the multiplicative group of » One can also consider the DLP in the multiplicative group of
larger finite fields Fy, g = p™. The GNFS algorithm extends to larger finite fields Iy, g = p. The GNFS algorithm extends to
that setting, and always gives algorithms in 20(n"") \vhere n is that setting, and always gives algorithms in 20("'?) \vhere n is
the bit size of g the bit size of g

» Recent breakthrough [BGJT14]: if p is very small
(e.g. constant), a refinement of the algorithm gives
quasipolynomial complexity
» one of the most important advances in number-theoretic
algorithms in the past decade
» with consequences on some flavors of elliptic curve crypto
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Outline Outline

Elliptic curves and the ECDLP Elliptic curves and the ECDLP
Elliptic curve groups
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Elliptic curves Elliptic curves

X s
. —~_

—
N

3

Elliptic curve: plane curve E of the form y? = x>+ ax + b Must be non-singular, so not this
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Elliptic curves

... nor this
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Elliptic curves
P
Q

Because E is of degree 3, the line through P, Q intersects E at
exactly one other point (with coordinates in the same field)

—
P
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Elliptic curves

—
N

Take two points P, Q on E
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Elliptic curves

P+Q

rie—
e

/1N

We define a group law on the points of £
by defining P + Q as the mirror image of R
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Elliptic curves Elliptic curves

| P
| Q

\‘R¥ R

The identitv el ) e | h < R RY=0 Commutative group: P+ Q@=Q + P =-R.
e identity element is at infinity along the y-axis; R+ (-R) = Associativity? Not so obvious but can be checked
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Elliptic curves The ECDLP
» Consider E : y? = x> + ax + b elliptic curve with coefficients
a, b in the finite field I
P+Q

rie—
e

/1N

These pictures are over the reals,
but everything works over finite fields too!
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The ECDLP The ECDLP

» Consider E : y? = x> + ax + b elliptic curve with coefficients » Consider E : y? = x> + ax + b elliptic curve with coefficients
a, b in the finite field I, a, b in the finite field I,
» As we saw, the set E(F,) of points on E with coordinates in » As we saw, the set E(IF;) of points on E with coordinates in
Fq (incl. the point at infinity) is a finite commutative group Fy (incl. the point at infinity) is a finite commutative group
> its order is always of the form g+ O(,/q) (Hasse bound) » its order is always of the form g+ O(,/q) (Hasse bound)

» Given a point P € E(Fg) and an integer x, one can efficiently
compute the scalar multiplication [x]P = P+ P +---+ P (usual
group exponentiation)
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The ECDLP The ECDLP

» Consider E : y? = x> + ax + b elliptic curve with coefficients » Consider E : y? = x> + ax + b elliptic curve with coefficients
a, b in the finite field I, a, b in the finite field I

» As we saw, the set E(F,) of points on E with coordinates in » As we saw, the set E(FF;) of points on E with coordinates in
[Fq (incl. the point at infinity) is a finite commutative group Fy (incl. the point at infinity) is a finite commutative group

> its order is always of the form g+ O(,/q) (Hasse bound) » its order is always of the form g+ O(,/q) (Hasse bound)

» Given a point P € E(Fg) and an integer x, one can efficiently » Given a point P € E(Fg) and an integer x, one can efficiently
compute the scalar multiplication [x]P = P+ P +---+ P (usual compute the scalar multiplication [x]P = P+ P +---+ P (usual
group exponentiation) group exponentiation)

» The elliptic curve discrete logarithm problem (ECDLP), on » The elliptic curve discrete logarithm problem (ECDLP), on
which all elliptic curve crypto is based, is the DLP in cyclic which all elliptic curve crypto is based, is the DLP in cyclic
subgroups of E(Fy). subgroups of E(Fy).

» Namely: given P, Q € E(F,) such that there exists x with
Q =[x]P, find x
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Security of ECDLP Security of ECDLP

» For most elliptic curves, we know no better (classical) attacks » For most elliptic curves, we know no better (classical) attacks
on the ECDLP than the generic ones on the ECDLP than the generic ones
» In particular, the complexity should be O(v/¢) where / is the
largest prime factor of the order #E(IFy). If we choose
#E(F4) as a prime or almost a prime, this is simply O(,/q)
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Security of ECDLP Security of ECDLP

» For most elliptic curves, we know no better (classical) attacks » For most elliptic curves, we know no better (classical) attacks
on the ECDLP than the generic ones on the ECDLP than the generic ones

» In particular, the complexity should be O(\/¢) where ¢ is the » In particular, the complexity should be O(v/¢) where / is the
largest prime factor of the order #E(Fg). If we choose largest prime factor of the order #E(IFy). If we choose
#E(Fg) as a prime or almost a prime, this is simply O(,/q) #E(F4) as a prime or almost a prime, this is simply O(/q)

» In other words, to get e.g. 128 bits of security, simply use an » In other words, to get e.g. 128 bits of security, simply use an
elliptic curve over a field of ~ 256 bits elliptic curve over a field of ~ 256 bits

» In contrast, due to the subexponential attacks, to get the
same level of security for the DLP in (Z/pZ)*, one needs p of
~ 3000 bits

31/39 (©2018 NTT Secure Platform Laboratories 31/39 (©2018 NTT Secure Platform Laboratories



Security of ECDLP Security of ECDLP

» For most elliptic curves, we know no better (classical) attacks » For most elliptic curves, we know no better (classical) attacks
on the ECDLP than the generic ones on the ECDLP than the generic ones

» In particular, the complexity should be O(\/¢) where ¢ is the » In particular, the complexity should be O(v/¢) where / is the
largest prime factor of the order #E(Fg). If we choose largest prime factor of the order #E(IFy). If we choose
#E(Fg) as a prime or almost a prime, this is simply O(,/q) #E(F4) as a prime or almost a prime, this is simply O(,/q)

» In other words, to get e.g. 128 bits of security, simply use an » In other words, to get e.g. 128 bits of security, simply use an
elliptic curve over a field of ~ 256 bits elliptic curve over a field of ~ 256 bits

» In contrast, due to the subexponential attacks, to get the » In contrast, due to the subexponential attacks, to get the
same level of security for the DLP in (Z/pZ)*, one needs p of same level of security for the DLP in (Z/pZ)*, one needs p of
~ 3000 bits ~ 3000 bits

» This is why elliptic curves are generally much more efficient » This is why elliptic curves are generally much more efficient

» However, weak elliptic curves do exist!
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Transporting discrete logs under homomorphism Transporting discrete logs under homomorphism
» Recall that a homomorphism ¢ between two groups G and H » Recall that a homomorphism ¢ between two groups G and H
is a mapping G - H such that for g1, 42 € G, is a mapping G - H such that for g1, g € G,
©(8182) = v(81)p(82) p(8182) = v(81)p(82)

» Most of the non-generic attacks on the ECDLP take the
following form:
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Transporting discrete logs under homomorphism Transporting discrete logs under homomorphism

» Recall that a homomorphism ¢ between two groups G and H » Recall that a homomorphism ¢ between two groups G and H
is a mapping G - H such that for g1, € G, is a mapping G - H such that for g1, g € G,
©(8182) = p(81)p(82) p(8182) = v(&1)p(82)
» Most of the non-generic attacks on the ECDLP take the » Most of the non-generic attacks on the ECDLP take the
following form: following form:
1. Suppose we want to solve the ECDLP for points P, Q € E(Fg) 1. Suppose we want to solve the ECDLP for points P, Q € E(Fg)
of prime order /¢ of prime order /¢

2. Construct an efficiently computable homomorphism
©:(P) — G such that the DLP in G is “easy” (and o(P) #1)
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Transporting discrete logs under homomorphism Transporting discrete logs under homomorphism
» Recall that a homomorphism ¢ between two groups G and H » Recall that a homomorphism ¢ between two groups G and H
is a mapping G - H such that for g1, 42 € G, is a mapping G - H such that for g1, g € G,
o(8182) = ¢(81)(82) p(8182) = p(81)0(82)
» Most of the non-generic attacks on the ECDLP take the » Most of the non-generic attacks on the ECDLP take the
following form: following form:
1. Suppose we want to solve the ECDLP for points P, Q € E(Fg) 1. Suppose we want to solve the ECDLP for points P, Q € E(FFg)
of prime order /¢ of prime order /¢
2. Construct an efficiently computable homomorphism 2. Construct an efficiently computable homomorphism
©:(P) — G such that the DLP in G is “easy” (and ¢(P) #1) ©:(P) — G such that the DLP in G is “easy” (and o(P) #1)
3. Then, the relation Q = [x]P gives ©(Q) = p(P)* and solving 3. Then, the relation Q = [x]P gives ©(Q) = ¢(P)* and solving
the DLP in G reveals x the DLP in G reveals x

» Of course, this can only be done for curves E verifying some
special properties
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Transporting discrete logs under homomorphism Outline

» Recall that a homomorphism ¢ between two groups G and H
is a mapping G - H such that for g1, € G,
©(8182) = p(81)p(82)
» Most of the non-generic attacks on the ECDLP take the
following form:
1. Suppose we want to solve the ECDLP for points P, Q € E(Fg)
of prime order /¢
2. Construct an efficiently computable homomorphism

(p:(P) — G such that the DLP in G is “easy” (and (p(P) * 1) E|||pt|c curves and the ECDLP
3. Then, the relation Q = [x]P gives ©(Q) = p(P)* and solving
the DLP in G reveals x
» Of course, this can only be done for curves E verifying some
special properties
» The condition that ¢ is efficiently computable is essential
» indeed, the discrete logarithm function (P) — Z/{Z itself is a
homomorphism!
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Pairings and the MOV attack

The Menezes—Okamoto—Vanstone attack The Menezes—Okamoto—Vanstone attack
» The epitome of attacks on ECDLP by transporting discrete » The epitome of attacks on ECDLP by transporting discrete
logs to a weaker group is the MOV attack, relying on the logs to a weaker group is the MOV attack, relying on the

existence of pairings on elliptic curves existence of pairings on elliptic curves

» Weil: E elliptic curve over Fg, £ prime not dividing q. There
exists a non-degenerate bilinear pairing:

e E[] x E[] ~ i

where E[{] is the group of points on E of order dividing ¢,
and pu is the group of /-th roots of unity (both possibly in
some extension of Fg)
> bilinearity: e(P+ P, Q) =e(P,Q)-e(P’, Q) and similarly on
the right
» non-degeneracy: for any P of exact order ¢, there exists Q
such that e(P, Q) # 1
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The Menezes—Okamoto—Vanstone attack The Menezes—Okamoto—Vanstone attack (desc.)

» The epitome of attacks on ECDLP by transporting discrete
logs to a weaker group is the MOV attack, relying on the » Given any elliptic curve E and any P of order £ on E, we
existence of pairings on elliptic curves therefore get an efficient(?) homomorphism (P) — uy as
» Weil: E elliptic curve over Fy, £ prime not dividing q. There follows:
exists a non-degenerate bilinear pairing:

e: E[] x E[€] ~ i

where E[(] is the group of points on E of order dividing ¢, Since iy is a subgroup of the multiplicative group of a finite

and p is the group of ¢-th roots of unity (both possibly in field, and those multiplicative groups have subexponential
some extension of [Fg) DLP, this gives a subexponential algorithm for the ECDLP?!
» bilinearity: e(P+ P, Q) =e(P,Q)-e(P’, Q) and similarly on
the right

» non-degeneracy: for any P of exact order ¢, there exists Q
such that e(P,Q) # 1

» Miller: we can compute e(P, Q) in polylog(¢) operations in
the fields of definition of P, @ and
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The Menezes—Okamoto—Vanstone attack (desc.) The Menezes—Okamoto—Vanstone attack (desc.)
» Given any elliptic curve E and any P of order £ on E, we » Given any elliptic curve E and any P of order £ on E, we
therefore get an efficient(?) homomorphism (P) — py as therefore get an efficient(?) homomorphism (P) — uy as
follows: follows:
1. Find Q € E[¢] satisfying non-degeneracy wrt P; 1. Find Q € E[¢] satisfying non-degeneracy wrt P;

2. Then R~ e(R, Q) is a homomorphism (P) — p,, “efficient”
by Miller's algorithm

Since i is a subgroup of the multiplicative group of a finite Since iy is a subgroup of the multiplicative group of a finite
field, and those multiplicative groups have subexponential field, and those multiplicative groups have subexponential
DLP, this gives a subexponential algorithm for the ECDLP?! DLP, this gives a subexponential algorithm for the ECDLP?!
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The Menezes—Okamoto—Vanstone attack (desc.) Practical cases of MOV

> Given any elliptic curve E and any P of prder ¢ on E, we » However, in some cases, the MOV attack is actually efficient
therefore get an efficient(?) homomorphism (P) — py as

follows:
1. Find Q € E[¢] satisfying non-degeneracy wrt P;
2. Then R~ e(R, Q) is a homomorphism (P) — g, “efficient”
by Miller's algorithm
Since i is a subgroup of the multiplicative group of a finite
field, and those multiplicative groups have subexponential
DLP, this gives a subexponential algorithm for the ECDLP?!
» Of course, there is a catch! The field of definition of 1, and
@ are usually very large—exponentially so in fact!
> g C F;k implies that ¢ divides qk —1, and for a “random” /,
the smallest such k is roughly as large as ¢ itself!
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Practical cases of MOV Practical cases of MOV
» However, in some cases, the MOV attack is actually efficient » However, in some cases, the MOV attack is actually efficient
» Example: E : y? = x3 + ax over a field Fp with p=3 mod 4. » Example: E:y? = x3 + ax over a field F, with p=3 mod 4.
It is an easy exercise (using the fact that —1 is not a square in It is an easy exercise (using the fact that —1 is not a square in
[, and that the polynomial x3 —axis odd) to check that I, and that the polynomial x3 —axis odd) to check that
#E([Fp)=p+1 #E(Fp)=p+1

» Thus, for any {|#E(F,), we have €|p2 — 1. Hence, the entire
Weil pairing is defined over the field IF»: easy computations
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Practical cases of MOV

» However, in some cases, the MOV attack is actually efficient

» Example: E : y? = x3 + ax over a field Fp with p=3 mod 4.
It is an easy exercise (using the fact that —1 is not a square in
[, and that the polynomial x3 — ax is odd) to check that
#E([Fp)=p+1

» Thus, for any ¢|#E(F,), we have E|p2 — 1. Hence, the entire
Weil pairing is defined over the field I »: easy computations

» This allows to transfer the ECDLP on E to the discrete
logarithm in IE‘;;Q, which can be solved in subexponential time
using GNFS.
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Pairing-friendly curve

> The only case where one would use such a curve E is when we
specifically want to compute the pairing: pairing-based
cryptography
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Practical cases of MOV

» However, in some cases, the MOV attack is actually efficient

» Example: E:y? = x3 + ax over a field F, with p=3 mod 4.
It is an easy exercise (using the fact that —1 is not a square in
I, and that the polynomial x3 — ax is odd) to check that

#E(Fp)=p+1
» Thus, for any {|#E(F,), we have €|p2 — 1. Hence, the entire
Weil pairing is defined over the field I »: easy computations

» This allows to transfer the ECDLP on E to the discrete
logarithm in IF;Z, which can be solved in subexponential time
using GNFS.

» That curve E is dangerous...

36/39 (©2018 NTT Secure Platform Laboratories

Pairing-friendly curve

» The only case where one would use such a curve E is when we
specifically want to compute the pairing: pairing-based
cryptography

» The curves used in this case are said to be pairing-friendly
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Pairing-friendly curve Pairing-friendly curve

» The only case where one would use such a curve E is when we » The only case where one would use such a curve E is when we
specifically want to compute the pairing: pairing-based specifically want to compute the pairing: pairing-based
cryptography cryptography

» The curves used in this case are said to be pairing-friendly » The curves used in this case are said to be pairing-friendly

» MOV is an unavoidable, but “useful”, consequence of the » MOV is an unavoidable, but “useful”, consequence of the
existence of the pairing existence of the pairing

» For other applications, easy to rule out: just verify that k such
that €|pk — 1 is exponentially large
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Outline Other weak elliptic curves

» Anomalous curves: #E(F,) = p. Poly-time ECDLP via p-adic
analysis

Elliptic curves and the ECDLP

Other weak elliptic curves
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Other weak elliptic curves Other weak elliptic curves

» Anomalous curves: #E(F,) = p. Poly-time ECDLP via p-adic » Anomalous curves: #E(F,) = p. Poly-time ECDLP via p-adic
analysis analysis

» GHS attack for curves over extension fields; not stable under » GHS attack for curves over extension fields; not stable under
isogenies isogenies

» Attempts to adapt index calculus-style attacks to the elliptic
curve setting (Diem et al.). Give subexponential asymptotic
complexity in some cases (but not practical)

39/39 (©2018 NTT Secure Platform Laboratories 39/39 (©2018 NTT Secure Platform Laboratories



