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Groups

A group G is a set together with some operation ∗ sending two
elements a,b to another element a = b ∗ c , such that:

1. ∗ is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a,b, c
2. there exists an identity element e: e ∗ a = a ∗ e = a for all a

3. all elements are invertible: for all a, there exists a′ such that
a ∗ a′ = a′ ∗ a = e

Easy properties: e is unique; each element a has a unique inverse,
denoted a−1
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Examples of groups

▸ The set Z of integers is a group under +
▸ but not under ×!

▸ The set Q∗ (resp. R∗) of non-zero rational numbers
(resp. real numbers) is a group under ×

▸ we have to remove 0, which has no inverse

▸ For any integer n, the set {0,1, . . . ,n − 1} under addition
modulo n is a group, denoted Z/nZ

▸ The set Z/nZ ∖ {0} is stable under multiplication modulo n if
and only if n = p is prime. In that case, it is a group, denoted
(Z/pZ)× or F∗p.

▸ Elliptic curves are groups! (more about this later)

▸ In all these examples, the groups are commutative: for all a,b,
a ∗ b = b ∗ a. There are also non-commutative groups, like
groups of invertible matrices. Not so important for
cryptography.
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Finite groups

▸ From now on, we restrict attention to finite groups (i.e. the
underlying set G is finite). The number N of elements is also
called the order of the group

▸ For now, we denote the group operation multiplicatively: a ∗ b
is just a ⋅ b or ab, and the identity is 1. We will switch to
additive notation later

▸ Accordingly, for any positive integer m and any group element
g , we denote by gm the group element g ⋅ g⋯g (m times).
We also let g0

= 1 and g−m = (g−1)m
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Orders of elements, cyclic groups

▸ For each g in a finite group, there is a smallest positive
integer m such that gm

= 1. This is the order of g
▸ indeed, by finiteness, there exists n > n′ > 0 such that gn

= gn′ ;
then gn−n′

= 1. This shows the existence of an m > 0 such that
gm
= 1; just take the smallest

▸ the order m of g always divides the order N of the entire group
(Legendre)

▸ For a fixed g , the set of all elements of the form gm is stable
under the group law and under inversion, and it contains 1: it
is a subgroup of G denoted by ⟨g⟩

▸ If G = ⟨g⟩, we say that the group G is cyclic and g is a
generator of G

▸ a cyclic group is clearly always commutative!
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The discrete logarithm problem

▸ Let G be a cyclic group of order N with generator g . By
definition, for all h ∈ G , there exists some integer x such that
h = g x .

▸ By analogy with real logarithms, x is called the discrete
logarithm of h wrt g

▸ x is unique up to addition of a multiple of N (i.e. unique
modulo N)

▸ The discrete logarithm problem is the problem of computing x

given G ,N,g ,h

▸ This assumes that we can compute in G : there exist concrete
representations of the elements of G as bit strings, and
efficient algorithms to compute the group law in G and
inversion. We assume that from now on
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Solving the discrete logarithm problem

▸ The hardness of the discrete logarithm problem (DLP) is at
the core of the security arguments for all cryptography based
on groups, incl. elliptic curve cryptography

▸ Hence, if we can solve DLP efficiently, we can break all
group-based crypto

▸ Various approaches to attack the DLP depending on the
group we consider

▸ However, arguably the most important approaches are those
that are generic: work in all group, independently of the
particular group law or representation of group elements

▸ We now discuss those approaches
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A trivial discrete log algorithm

▸ Here is a trivial algorithm for the DLP

▸ Given g and h, the goal is to find x such that h = g x

▸ Simple way:

1. x ← 0
2. if h = g x , we are done
3. otherwise, x ← x + 1 and try again

▸ We know for sure that this algorithm will find a solution.
Since there is such a solution x such that 0 ≤ x < N, time
complexity is O(N) in the worst case (and space complexity is
O(1))

▸ Note that this algorithm is exponential in the bit size of the
group (which is log2N)
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Baby step, giant step (I)

▸ We can do much better with some memory: the baby step,
giant step (BSGS) algorithm

▸ Let m = ⌈
√
N⌉. One can write the discrete log x of h as

x = y +mz , with 0 ≤ y , z < m. This gives:

h = g y+mz
= g y

⋅ gmz hence h ⋅ g−y = gmz

▸ In time Õ(
√
N) and space O(

√
N), construct the following

list and sort it (so that we can search through it efficiently):

L = {g0,gm,gm⋅2,⋯,gm⋅(m−1)}

By construction, gmz is in the list
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Baby step, giant step (II)

▸ Now do a similar search as before:

1. y ← 0
2. search for h ⋅ g−y in the list L
3. if it is found as gmz , return x = y +mz as the discrete log
4. otherwise, y ← y + 1 and try again

▸ Total time complexity is Õ(
√
N) and space complexity is

O(
√
N). Still exponential, but exponentially faster than the

trivial approach

▸ In practice the space complexity is usually prohibitive: e.g. if
N ≈ 2128, the 264 time complexity is manageable, but 264

space is not!

▸ By choosing a different value for m, we can obtain different
time-memory trade-offs. Not necessary though: same time
complexity is achievable without memory!
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▸ Total time complexity is Õ(
√
N) and space complexity is

O(
√
N). Still exponential, but exponentially faster than the

trivial approach

▸ In practice the space complexity is usually prohibitive: e.g. if
N ≈ 2128, the 264 time complexity is manageable, but 264

space is not!
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Pollard’s rho algorithm (I)

▸ The best generic algorithm for discrete logarithms is Pollard’s
rho: it uses O(

√
N) time and constant space.

▸ Basic ingredient: cycle-finding for random functions. If
f ∶X → X is a random function of a set of cardinality N to
itself, and we iterate f on a random element x0:

x1 = f (x0); x2 = f (x1);⋯

then there are integers s, t = O(
√
N) whp such that xt = xt+s .

A well-known algorithm (Floyd) then allows to find s, t in time
O(
√
N) and constant memory
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Pollard’s rho algorithm (II)

▸ Now consider the set X = G , and fix a random element
x0 = g

a0
⋅ hb0 . Moreover, we construct f in such a way that f

acts on each element by multiplication by some known powers
of g and h. As a result, for all i , we know ai ,bi such that

xi = f
i(x0) = gai

⋅ hbi

▸ Apply cycle-finding. In time O(
√
N) and constant space, we

find whp integers a,b, a′,b′ such that:

ga
⋅ hb = xt = xt+s = g

a′
⋅ hb

′

Then, if b − b′ is coprime to N (happens with good
probability), we deduce:

h = gα where α ≡ −
a − a′

b − b′
(mod N)

16/39 ©2018 NTT Secure Platform Laboratories

Pollard’s rho algorithm (II)

▸ Now consider the set X = G , and fix a random element
x0 = g

a0
⋅ hb0 . Moreover, we construct f in such a way that f

acts on each element by multiplication by some known powers
of g and h. As a result, for all i , we know ai ,bi such that

xi = f
i(x0) = gai

⋅ hbi

▸ Apply cycle-finding. In time O(
√
N) and constant space, we

find whp integers a,b, a′,b′ such that:

ga
⋅ hb = xt = xt+s = g

a′
⋅ hb

′

Then, if b − b′ is coprime to N (happens with good
probability), we deduce:

h = gα where α ≡ −
a − a′

b − b′
(mod N)

16/39 ©2018 NTT Secure Platform Laboratories

Pollard’s rho algorithm

Picture of the ρ in Pollard’s rho (from Wikimedia Commons)
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Pohlig–Hellman (I)

▸ There is one last thing we can do to speed up generic discrete
logarithm computations: use the factorization of the group
order N

▸ Suppose N factors as a product N1N2 of two coprime
integers. Then for a generator g of G , gN2 is of order N1 and
gN1 is of order N2.

▸ We look for x such that h = g x . Raising both sides to the
power N2, we get: hN2 = (gN2)x , DLP in the group ⟨gN2⟩ of
order N1.

▸ Solve this DLP with Pollard’s rho to obtain x mod N1.
Similarly, solve the DLP between gN1 and hN1 to find
x mod N2. Then apply the Chinese remainder theorem (CRT)
to compute x

▸ time complexity O(
√
N1 +

√
N2) and constant space
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Pohlig–Hellman (II)

▸ More generally, if N = pe11 ⋯p
er
r is the prime factorization of N,

that decomposition approach reduces the DLP in G to DLPs
in groups of order pe11 , . . . ,perr .

▸ Then, a similar trick reduces the DLP in a group of order pe

to e instances of DLPs in groups of order p (relying on
Pollard’s kangaroo)

▸ Conclusion: can solve discrete logs in G in time
O(e1

√
p1 +⋯+ er

√
pr) and polynomial space.

▸ For most N, this simply reduces to O(√p) time, p largest
prime factor
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Shoup’s lower bound

▸ Shoup proved that a generic algorithm for the DLP in a cyclic
group of prime order p had to carry out Ω(√p) group
operations

▸ Therefore, among generic algorithms, Pollard’s rho is optimal
(up to a constant) for groups of prime order, and Pollard’s rho
+ Pohlig–Hellman optimal in general

▸ On most elliptic curves, no better algorithm than those is
known for the discrete log!

▸ Caveat: this is only about attacks on classical computers.
Quantum computers generically break the DLP in polynomial
time with Shor’s algorithm
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Additive group DLP

▸ There are of course some groups when the DLP can be solved
much faster than by generic techniques

▸ Example: the cyclic group Z/NZ of integers modulo N under
addition

▸ This is an additive group. The DLP is to find, given two
elements a,b ∈ Z/NZ, a value x such that b ≡ ax (mod N)

▸ This is just a division! Simply compute x as:

x ≡
b

a
(mod N)

(computation done using the extended Euclidean algorithm)

▸ In Z/NZ, DLP can be solved in polynomial time (in logN),
even though generic algorithms are all exponential
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Multiplicative group DLP

▸ Fix p a prime. The multiplicative group G = (Z/pZ)× is cyclic
of order p − 1 with some generator g

▸ We do not know how to solve the DLP in G in polynomial
time, but we can still do much better than generic algorithms.
The best known algorithms are subexponential

▸ More precisely, if p is n-bit long, the best algorithm (GNFS)

has a complexity of 2Õ(n
1/3), which is considerably less than

Pollard’s
√
p − 1 ≈ 2n/2

▸ In the next slide, brief description of a simpler subexponential
algorithm, index calculus, based on similar principles.

Complexity of 2Õ(n
1/2)
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Index calculus in (Z/pZ)×

▸ Start by collecting all the small prime numbers
ℓ1 = 2, ℓ2 = 3,⋯, ℓr up to some bound B in a list F called the
factor base. One can easily check if an integer has all its prime
factors in F (and then factor it), and estimate the probability
that this happens. Such a number is called B-smooth

▸ Now we will try to find the discrete logs x1, . . . , xr of all the
elements of F wrt g . To do so, pick random numbers kj and
check if gkj mod p is B-smooth. If so, we can factor it and
get a relation:

gkj ≡ ℓ
ej,1
1 ⋯ℓ

ej,r
r (mod p)

or after taking discrete logs:

kj ≡ ej ,1x1 +⋯+ ej ,rxr (mod p − 1)
If we find more than r such relations, applying Gaussian
elimination allows to find x1, . . . , xr
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Index calculus in (Z/pZ)×

▸ After that, finding the discrete log of any h ∈ G is
comparatively easy. Just find a single random s such that
g s
⋅ h mod p is B-smooth, and factor it to get:

h ≡ g−s ⋅ ℓe11 ⋯ℓ
er
r

≡ g−s+e1x1+⋯+erxr (mod p)

▸ For a well-chosen B , smoothness probability estimates allow

to show that the overall complexity is 2Õ(n
1/2)
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DLP in finite fields

▸ The group (Z/pZ)× is the multiplicative group of the finite
field Fp

▸ One can also consider the DLP in the multiplicative group of
larger finite fields Fq, q = p

m. The GNFS algorithm extends to

that setting, and always gives algorithms in 2Õ(n
1/3) where n is

the bit size of q

▸ Recent breakthrough [BGJT14]: if p is very small
(e.g. constant), a refinement of the algorithm gives
quasipolynomial complexity

▸ one of the most important advances in number-theoretic
algorithms in the past decade

▸ with consequences on some flavors of elliptic curve crypto
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Elliptic curves

Elliptic curve: plane curve E of the form y2 = x3 + ax + b
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Elliptic curves

Must be non-singular, so not this
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Elliptic curves

. . . nor this
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Elliptic curves

P

Q

Take two points P , Q on E
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Elliptic curves

P

Q

R

Because E is of degree 3, the line through P ,Q intersects E at
exactly one other point (with coordinates in the same field)
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Elliptic curves

P

Q

R

P +Q

We define a group law on the points of E
by defining P +Q as the mirror image of R
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Elliptic curves

R

−R

The identity element is at infinity along the y -axis; R + (−R) = 0
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Elliptic curves

P

Q

R

P +Q

Commutative group: P +Q = Q + P = −R .
Associativity? Not so obvious but can be checked
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Elliptic curves

P

Q

R

P +Q

These pictures are over the reals,
but everything works over finite fields too!

29/39 ©2018 NTT Secure Platform Laboratories

The ECDLP

▸ Consider E ∶ y2 = x3 + ax + b elliptic curve with coefficients
a,b in the finite field Fq

▸ As we saw, the set E(Fq) of points on E with coordinates in
Fq (incl. the point at infinity) is a finite commutative group

▸ its order is always of the form q +O(√q) (Hasse bound)

▸ Given a point P ∈ E(Fq) and an integer x , one can efficiently
compute the scalar multiplication [x]P = P +P +⋯+P (usual
group exponentiation)

▸ The elliptic curve discrete logarithm problem (ECDLP), on
which all elliptic curve crypto is based, is the DLP in cyclic
subgroups of E(Fq).

▸ Namely: given P ,Q ∈ E(Fq) such that there exists x with
Q = [x]P , find x
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Security of ECDLP

▸ For most elliptic curves, we know no better (classical) attacks
on the ECDLP than the generic ones

▸ In particular, the complexity should be O(
√
ℓ) where ℓ is the

largest prime factor of the order #E(Fq). If we choose
#E(Fq) as a prime or almost a prime, this is simply O(√q)

▸ In other words, to get e.g. 128 bits of security, simply use an
elliptic curve over a field of ≈ 256 bits

▸ In contrast, due to the subexponential attacks, to get the
same level of security for the DLP in (Z/pZ)×, one needs p of
≈ 3000 bits

▸ This is why elliptic curves are generally much more efficient

▸ However, weak elliptic curves do exist!
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Transporting discrete logs under homomorphism

▸ Recall that a homomorphism ϕ between two groups G and H

is a mapping G → H such that for g1,g2 ∈ G ,
ϕ(g1g2) = ϕ(g1)ϕ(g2)

▸ Most of the non-generic attacks on the ECDLP take the
following form:
1. Suppose we want to solve the ECDLP for points P ,Q ∈ E(Fq)

of prime order ℓ
2. Construct an efficiently computable homomorphism

ϕ∶ ⟨P⟩→ G such that the DLP in G is “easy” (and ϕ(P) ≠ 1)
3. Then, the relation Q = [x]P gives ϕ(Q) = ϕ(P)x and solving

the DLP in G reveals x

▸ Of course, this can only be done for curves E verifying some
special properties

▸ The condition that ϕ is efficiently computable is essential
▸ indeed, the discrete logarithm function ⟨P⟩→ Z/ℓZ itself is a
homomorphism!
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The Menezes–Okamoto–Vanstone attack

▸ The epitome of attacks on ECDLP by transporting discrete
logs to a weaker group is the MOV attack, relying on the
existence of pairings on elliptic curves

▸ Weil: E elliptic curve over Fq, ℓ prime not dividing q. There
exists a non-degenerate bilinear pairing:

e ∶E [ℓ] × E [ℓ]→ µℓ

where E [ℓ] is the group of points on E of order dividing ℓ,
and µℓ is the group of ℓ-th roots of unity (both possibly in
some extension of Fq)

▸ bilinearity: e(P + P ′,Q) = e(P ,Q) ⋅ e(P ′,Q) and similarly on
the right

▸ non-degeneracy: for any P of exact order ℓ, there exists Q
such that e(P ,Q) ≠ 1

▸ Miller: we can compute e(P ,Q) in polylog(ℓ) operations in
the fields of definition of P , Q and µℓ
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The Menezes–Okamoto–Vanstone attack (desc.)

▸ Given any elliptic curve E and any P of order ℓ on E , we
therefore get an efficient(?) homomorphism ⟨P⟩→ µℓ as
follows:

1. Find Q ∈ E [ℓ] satisfying non-degeneracy wrt P ;
2. Then R ↦ e(R ,Q) is a homomorphism ⟨P⟩→ µℓ, “efficient”

by Miller’s algorithm

Since µℓ is a subgroup of the multiplicative group of a finite
field, and those multiplicative groups have subexponential
DLP, this gives a subexponential algorithm for the ECDLP?!

▸ Of course, there is a catch! The field of definition of µℓ and
Q are usually very large—exponentially so in fact!

▸ µℓ ⊂ F
∗

qk implies that ℓ divides qk − 1, and for a “random” ℓ,
the smallest such k is roughly as large as ℓ itself!
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Practical cases of MOV

▸ However, in some cases, the MOV attack is actually efficient

▸ Example: E ∶ y2 = x3 + ax over a field Fp with p ≡ 3 mod 4.
It is an easy exercise (using the fact that −1 is not a square in
Fp and that the polynomial x3 − ax is odd) to check that
#E(Fp) = p + 1

▸ Thus, for any ℓ∣#E(Fp), we have ℓ∣p2 − 1. Hence, the entire
Weil pairing is defined over the field Fp2 : easy computations

▸ This allows to transfer the ECDLP on E to the discrete
logarithm in F∗

p2
, which can be solved in subexponential time

using GNFS.

▸ That curve E is dangerous...
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Pairing-friendly curve

▸ The only case where one would use such a curve E is when we
specifically want to compute the pairing: pairing-based
cryptography

▸ The curves used in this case are said to be pairing-friendly

▸ MOV is an unavoidable, but “useful”, consequence of the
existence of the pairing

▸ For other applications, easy to rule out: just verify that k such
that ℓ∣pk − 1 is exponentially large
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Other weak elliptic curves

▸ Anomalous curves: #E(Fp) = p. Poly-time ECDLP via p-adic
analysis

▸ GHS attack for curves over extension fields; not stable under
isogenies

▸ Attempts to adapt index calculus-style attacks to the elliptic
curve setting (Diem et al.). Give subexponential asymptotic
complexity in some cases (but not practical)
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