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Traditional Ditfie-Hellman key exchange
Suppose that (G, *) is a finite group. Examples:

> (G, %) = (F, — {0}, %).
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Traditional Ditfie-Hellman key exchange
Suppose that (G, *) is a finite group. Examples:

> (G/ *) - (FP - {0}/ X)'
> (G.*x) = (E(F,), +), where + is the elliptic curve addition
that was defined in Mehdi’s lecture.



Traditional Diffie-Hellman key exchange
Suppose that (G, *) is a finite group. Examples:

» (G,x) = (F, — {0}, x).
» (G,*) = (E(F,), +), where + is the elliptic curve addition
that was defined in Mehdi’s lecture.

For a finite group (G, *) we have a map

7ZxG — G
(x,8) — gx*---xg.
N
x times

Traditional Diffie-Hellman key exchange
Suppose that (G, *) is a finite group. Examples:
> (G,*) = (F, — {0}, x).
» (G,*) = (E(F,), +), where + is the elliptic curve addition
that was defined in Mehdi’s lecture.

For a finite group (G, *) we have a map

7ZxG — G
(x,8) +— gx*---xg.
N
x times

Examples:

» g€ F, — {0}, then (x,g) — g*.
» P < E(FF), then (x, P) — xP.

Traditional Diffie-Hellman key exchange
Suppose that (G, *) is a finite group. Examples:
> (Ga *) - (FP - {O}/ X)'
» (G,*) = (E(F,), +), where + is the elliptic curve addition
that was defined in Mehdi’s lecture.

For a finite group (G, *) we have a map

7ZxG — G
(x,8) +— gx*x---%xg.
N
x times

Examples:

» g € F, — {0}, then (x,g) — g*.

Traditional Diffie-Hellman key exchange
Suppose that (G, *) is a finite group. Examples:
> (G, x) = (Fp = {0}, ).
» (G,*) = (E(F,), +), where + is the elliptic curve addition
that was defined in Mehdi’s lecture.

For a finite group (G, *) we have a map

7ZxG — G
(x,8) +— gx*x---%xg.
N
x times

Examples:
» g € F, — {0}, then (x,g) — g*.
» P c E(Fy), then (x, P) ~ xP.

For simplicity, for a finite group (G, *) and x € Z, we'll write g*
forg*---xg.
——

x times
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Traditional Ditfie-Hellman key exchange Traditional Ditfie-Hellman key exchange

For a finite group (G, *), if ¢ € G and x € Z, we write For a finite group (G, *), if g € G and x € Z, we write
o o
X times X times

o l

. beZ
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Traditional Ditfie-Hellman key exchange Traditional Ditfie-Hellman key exchange
For a finite group (G, *), if g € G and x € Z, we write For a finite group (G, *), if g € G and x € Z, we write
X times X times
i, . l
g’ g '
— bez ) - beZ
ez b
g e g (8)
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Traditional Ditfie-Hellman key exchange

For a finite group (G, *), if ¢ € G and x € Z, we write
——

x times

Traditional Ditfie-Hellman key exchange

For a finite group (G, *), if g € G and x € Z, we write
——

x times

geG
g
— beZ
g (g)"
o

> k= (") =g"" =g"" = (g")".
» Computing a or b given ¢* and g’ should be hard (i.e.
slow).

» Computing ¢” given g and a should be easy (i.e. fast).

Traditional Ditfie-Hellman key exchange

For a finite group (G, *), if g € G and x € Z, we write
g=g* - xg.
——

x times
geG
g
) — beZ
i ¢ &)
g)" -

> k= (g) =gt =g = ()"
» Computing a or b given ¢” and g’ should be hard (i.e.
slow).

Square-and-multiply
Computing ¢g*: an example. Suppose |G| = 23 and that Alice

computes ¢'°.
0
1 g 2
g g
gz N g21
ga .gZO
g4 g19
g5 . g18
ge . g17
g7 . gle
ng g15
q9. ‘g14
10 . 13
8 8
gll glz
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Square-and-multiply
Computing ¢g*: an example. Suppose |G| = 23 and that Alice

computes g13.
0
1 g 22
8 8
gz . . g21
g3 . .820
g4 g19
gS g18
gé . . g17
g7 . . glé
gS g15
g . .8
10 M . 13
8 8
gll glz

Square-and-multiply
Computing ¢g*: an example. Suppose |G| = 23 and that Alice

computes g13.
0
) g g g2 .
& “.T ° &
g i e
.X‘

'S g
gé . Aq’ g17
g * g6
¢ i P
9 % .2 R
8 D 8 . 8
X‘-/-) 13
8 PR g

Square-and-multiply
Computing ¢g*: an example. Suppose |G| = 23 and that Alice

computes ¢'3.
0
2 gl g. gzz 21
s c 8
. : .
e g
8
o/
L
ge Y g17
%
g7 ‘\'g ° gle
g’s 8 . g15
N SR
g1o\>-—>-/ 13
gll gu
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Square-and-multiply

Computing ¢g*: an example. Suppose |G| = 23 and that Alice
computes ¢'°.

0
2
3:2 e
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Square-and-multiply

Computing ¢g*: an example. Suppose |G| = 23 and that Alice
computes g13.

» Alice uses the knowledge that
13=1-22+1-2240-2!4+1-2% to compute g'°.

Square-and-multiply

5/40 6 /40

Square-and-multiply

» Alice uses the knowledge that
13=1-22+1-2240-2!+1-2%to compute ¢'3.

» An (naive) ! attacker has to check ¢* fora =0,...,13, so
has no shortcuts.

'a smart attacker like Mehdi can often exploit the structure of the specific

group to do better than this
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Square-and-multiply

.« o g
10 139
g7 gl o128

» Alice uses the knowledge that
13=1-22+1-2240-2!4+1-2% to compute g'°.

» An (naive) ! attacker has to check ¢ fora =0, ...,13, so
has no shortcuts.

» Exercise: prove that, for any cyclic group G of size n, if
g € Ganda € Z, Alice can compute g’ in < log, (1)
(multiplication) steps. (In polynomial time).

'a smart attacker like Mehdi can often exploit the structure of the specific

group to do better than this (but even Mehdi can’t manage polynomial time)
6/40

Quantum revolution

Let G be a finite group, let g € G and let x € Z. As before, define
§ by

ZxG — G

(x,8) — g i=g%x---%g.
o
X times

Alice can compute ¢g* in polynomial time.

Given a quantum computer, Shor’s algorithm computes x from
g* ...also in polynomial time.

Quantum revolution

Let G be a finite group, let ¢ € G and let x € Z. As before, define
§ by
ZxG — G
(v.g) = ghi=gx---xg.

x times

Alice can compute ¢g* in polynomial time.
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Quantum revolution

Let G be a finite group, let ¢ € G and let x € Z. As before, define
§ by
ZxG — G
(v.g) = gli=gx---xg.

x times

Alice can compute ¢g* in polynomial time.

Given a quantum computer, Shor’s algorithm computes x from
g* ...also in polynomial time.

~ Idea:

Replace the map Z x G — G by a group action of a group H on
asetS:

HxS — S.
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What do we keep from traditional (EC)DH?
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What do we keep from traditional (EC)DH?
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What do we keep from

traditional (EC)DH?
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What do we keep from traditional (EC)DH?
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What do we keep from traditional (EC)DH? What do we keep from traditional (EC)DH?
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Cycles are compatible: [right, then left] = [left, then right], etc. C1}3’Cles are com%atible:
g = g , etc.
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What do we keep from traditional (EC)DH? What do we keep from traditional (EC)DH?
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Cycles are compatible: Cycles are compatible:
g13 _ g*go , etc. g13 = g4>)<g>kg0 , etc.
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What do we keep from traditional (EC)DH? What do we keep from traditional (EC)DH?
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Cycles are compatible: Cycles are compatible:
g13 = gg*g4*g*g0 , etc. g13 = gs*g4*g*go = go , etc.
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What do we keep from traditional (EC)DH? What do we keep from traditional (EC)DH?
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Cycles are compatible: Cycles are compatible:
13 = Brotigagl = ¢ gl , etc. g% = Brgtugxgl = otegB i gl , etc.
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What do we keep from traditional (EC)DH?

N &
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Cycles are compatible:
g1 = gPugtugng® = gugtug® x g0

What do we keep from traditional (EC)DH?

, etc.

Cycles are compatible:
gl = g¥ugtugng® = gxgtigb 1 g0 =

¢tg0, ete.
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What do we keep from traditional (EC)DH?
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Cycles are compatible:
g1 = gPugtugxg? = gugtug® g0 =

What do we keep from traditional (EC)DH?
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Cycles are compatible:
g1 = gPugtugxg? = gugtug® g0 =

TN

g0, etc.

gxgtxgY etc.
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Graphs of elliptic curves

What do we keep from traditional (EC)DH?
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CSIDH: Nodes are now elliptic curves and edges are isogenies.
10/40

Cycles are compatible:

8% = gPxgtugng? = gugtug® x 8" = gPugugtigl, ete.
9/40

Diffie-Hellman on ‘nice” graphs

Alice
b = [+7 +7 -

Graphs of elliptic curves
a= [+7 -t _]
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S

\ N
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B
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Nodes: Supersingular elliptic curves E4: y* = x°* + Ax* + x over Fayo.
Edges: 3-, 5-, and 7-isogenies (more details to come).
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Diffie-Hellman on ‘nice’ graphs Diffie-Hellman on ‘nice” graphs

Alice Bob Alice Bob
a= [*>_7+a_] b= [T7+>_7+] a= [+7¥>+7_] = [-I—’—Jf-,_’—i_]
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Diffie-Hellman on ‘nice” graphs
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Diffie-Hellman on ‘nice’ graphs
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Diffie-Hellman on ‘nice” graphs

Alice Bob
4= [-,'r_’_’—i_’_] = [*a+7_a+]
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Diffie-Hellman on ‘nice” graphs
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Diffie-Hellman on ‘nice’ graphs

Alice
a= [+> ] +a ?]
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Elliptic curves
Recall from Mehdi’s talk:

R
5

Diffie-Hellman on ‘nice” graphs
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7'1[_] a= [+7_a+7 ] = [+7+7 a+]
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Elliptic curves
Recall from Mehdi’s talk:
» Elliptic curves over F;, can be thought of as curves of the
form E/F, : y* = f(x) with deg(f) = 3 with a ‘point at
infinity’.
12/40
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Elliptic curves Elliptic curves

Recall from Mehdi’s talk: Recall from Mehdi’s talk:

» Elliptic curves over [}, can be thought of as curves of the » Elliptic curves over ), can be thought of as curves of the
form E/F, : y* = f(x) with deg(f) = 3 with a ‘point at form E/F, : y* = f(x) with deg(f) = 3 with a ‘point at
infinity’. infinity’.

» There is a geometric group law called + on the rational » There is a geometric group law called + on the rational
points of E. points of E.

» The point at infinity P is the identity of the group.

The group of rational points on E is
E(Fy) = {(x,y) € F} : y* = f(x)} U{Poc}.

Example
Define E/Fs : y> = x> + 1. Then

E(]F5) = {(07 1)7 (07 _1)7 (273)7 (27 _3)7 (_170)7P00}'

Elliptic curves Elliptic curves
» E:y2=x+1. 4 5 » E:y2=x>+1. 4 4
» Recall Y » Recall Y
P
E(FS) = {(27 )7(07 _1)7 E(]F5) = {(2,3),(0,—1),
(_170)7(07 )7 27 (_170)7(071)7 2
(27 _3)7Poo}' (27 _3)apoo}
f _ f
1 X 1 1
-2 \*‘ 2 -2 k‘ 2
21 o




Elliptic curves

Elliptic curves
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Elliptic curves

Elliptic curves
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» E:y2=x+1.

» Recall

E(FS) = {(27 3)7 (07 _1)7

(_170)7 (07 1)7
(27 _3)7Poo}'

{P,2P,
3P,

13 /40



Elliptic curves

» E:y2=x+1.
» Recall

E(Fs) = {(2.3), (0,~1),
(_17 0)7 (07 1)7
(2,-3), P}
= {P,2P,
3P, 4P,

Elliptic curves

E(Fs5) = {(2,3), (0, -1),
(_17 0)7 (07 1)7
(27 _3)7POO}
= {P,2P,
3P, 4P,
5P,

-
[ S A § g

Elliptic curves

» E:y2=x>+1.
» Recall

E(Fs) = {(2.3), (0,~1),
(_17 0)7 (07 1)7
(2,-3), P}
— {P,2P,
3P, 4P,

E(Fs5) = {(2,3), (0, -1),
(_17 0)7 (07 1)7
(2, _3)’ POO}
— {P,2P,
3P, 4P,
5P,

13 /40
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Elliptic curves

» E:y2=x+1.
» Recall

E(Fs5) = {(2,3), (0, -1),
(_17 0)7 (07 1)7
(2,-3),Pxo}.

= {P,2P,
3P, 4P,
5P, 6P}.

Elliptic curves

Example

E/Fs:y? = x> + 1, then E(Fs) = Cs.

S .

14 /40

Elliptic curves

» E:y2=x>+1.
» Recall

E(Fs5) = {(2,3), (0, -1),
(_17 0)7 (07 1)7
(2,-3),Pxo}.

— {P,2P,
3P, 4P,
5P, 6P}.

» E(Fs) is cyclic -
E(Fs) = Cs.

Elliptic curves

Example

E/Fs : y?> = x® 4+ 1, then E(F5) = Cg.

Definition

1
>

4p

-2

An elliptic curve E defined over a finite prime field Fy with

p > 5is supersingular if #E(F,) =p + 1.
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Elliptic curves

Example

E/Fs:y? = x> + 1, then E(Fs) = Cs.

Definition

An elliptic curve E defined over a finite prime field F, with
p > 5is supersingular if #E(F,) = p + 1.

Theorem

If E/F, is supersingular and p > 5 then

E(Fy) = Cpr1 or E(Fp) = C2 x Cipiay .

Elliptic curves

Definition

A point P € E(F)) is called a n-torsion point if nP = Po.. An
n-torsion point P is a point of order 7 if there is no positive
m < n such that mP = P.

Example

E/Fs : y* = x> + 1. Then E(F,) = C and is generated by
P=(2,3).

Elliptic curves

Definition
A point P € E(F)) is called a n-torsion point if nP = P..

Elliptic curves

Definition

A point P € E(F)) is called a n-torsion point if nP = P.. An
n-torsion point P is a point of order 7 if there is no positive
m < n such that mP = P.

Example

E/Fs: y* = x> + 1. Then E(F,) = Cs and is generated by
P=(2,3).

» (2,3) is a 6-torsion point of order 6.

5/40
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Elliptic curves

Definition

A point P € E(F)) is called a n-torsion point if nP = P... An
n-torsion point P is a point of order 7 if there is no positive
m < n such that mP = P..

Example

E/Fs:y* = x> 4+ 1. Then E(F,) = C¢ and is generated by
P=(23).

> (2,3) is a 6-torsion point of order 6.

» (—1,0) = 3(2,3) is a 6-torsion point and a 2-torsion point,
and has order 2.

Elliptic curves

Definition

A point P € E(F)) is called a n-torsion point if nP = Po.. An
n-torsion point P is a point of order 7 if there is no positive
m < n such that mP = P.

Example

E/IF, supersingular and p > 5.
Then either

» E(FFy) = Cp1; generated by a point P of order p + 1, or

Elliptic curves

Definition

A point P € E(F)) is called a n-torsion point if nP = P.. An
n-torsion point P is a point of order # if there is no positive
m < n such that mP = P.

Example

E/F, supersingular and p > 5.
Then either

Elliptic curves

Definition

A point P € E(F)) is called a n-torsion point if nP = P.. An
n-torsion point P is a point of order # if there is no positive
m < n such that mP = P.

Example

E/F, supersingular and p > 5.
Then either

» E(F,) = Cp11; generated by a point P of order p + 1, or

» E(F,) = Cy x C(,41)/2 and contains a point P of order
(r+1)/2.

5/40
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Elliptic curves

Definition

A point P € E(F)) is called a n-torsion point if nP = P... An
n-torsion point P is a point of order 7 if there is no positive
m < n such that mP = P.

Example
E/FF, supersingular and p > 5.
Then either
» E(FFy) = C,1; generated by a point P of order p + 1, or
> E(Fp) = Cy x C(py1),2 and contains a point P of order
(r+1)/2.

In either case, if ¢|(p + 1) is an odd prime, then p%lP is a point
of order /.

Elliptic curves and isogenies

Definition

An isogeny of elliptic curves over [, is a non-zero morphism
E — E’ that maps the group identity of E to the group identity
of E'. It is given by rational maps.

Example

Define E51/F419 : yZ =x3 +51x% +x

[2] : E51 — E51
(x7y) = 2. (x7y) = (X,y) + (xvy)

Elliptic curves and isogenies

Definition

An isogeny of elliptic curves over F, is a non-zero morphism
E — E’ that maps the group identity of E to the group identity
of E’. It is given by rational maps.

16 /40

Elliptic curves and isogenies

Definition

An isogeny of elliptic curves over F, is a non-zero morphism
E — E’ that maps the group identity of E to the group identity
of E’. It is given by rational maps.

Example
Define E51/F419 : yZ =3 + 51x2 + X

[2] : E51 — E51
(X,y) = 2 (X,y) = (X,y) + (xvy)

» As [2] is a morphism, it induces a morphism of groups
E(Fa19) = E(Fa1), ie. [2)(P + Q) = [2](P) + [2](Q)-

16 /40



Elliptic curves and isogenies Elliptic curves and isogenies

Definition Definition
An isogeny of elliptic curves over [, is a non-zero morphism An isogeny of elliptic curves over F, is a non-zero morphism
E — E’ that maps the group identity of E to the group identity E — E’ that maps the group identity of E to the group identity
of E'. It is given by rational maps. of E'. Itis given by rational maps.
Example Example
Define Es1 /Fu9 : y2 =x3+51x% +x Define Es1 /F419 : y2 =x3+51x% +x

[2] : Esq — Esp [2] : Es — Esp

(y) = 2-(y) = (ny) + (v y) (v y) = 2-(y) = (xy)+ (xy)

> [2](Pso) = Poo + Poc = Poc.

Elliptic curves and isogenies Elliptic curves and isogenies
Definition
Definition An isogeny of elliptic curves over F, is a non-zero morphism
An isogeny of elliptic curves over [, is a non-zero morphism E — E' that maps the group identity of E to the group identity
E — E’ that maps the group identity of E to the group identity of E'. It is given by rational maps.
of E'. It is given by rational maps. Example
Example » Exercise: show that
Define Es1 /Fa9 : y2 =x3+51x% +x
2: B > Es 1
2]: Esn — Es (x 1418216322~ 18x+1
) y) = 2 ’
(ry) = 2-(0y) = (x.y) +(x.y) Y185 o a8 1)
(8x(x249x+1))? )
> [2](Poc) = Poo + P o0 = p oo So [2] maps the group identity Hint: Try to compute the rational maps using the group
of E5; to the group identity of Es;. law from Mehdi’s talk or see David’s talk to learn how to

compute the rational maps with Sage.
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Elliptic curves and isogenies

Definition

An isogeny of elliptic curves over [F} is a non-zero morphism
E — E’ that maps the group identity of E to the group identity
of E'. It is given by rational maps.

Example

Fact: let E5 /Fa19 : yz = x3 +51x% + x and
Eg/Fao : y2 = x3 +9x% + x be elliptic curves. Then

f: E51 — Eg
3 —183x%473x430
(ry) > (PEIEET0,
3 —65x2—104x+174
(x+118)3 :
is an isogeny.
19 /40
Elliptic curves and isogenies
Example
f: Esp — Eg
x3—183x2+73x+30
(y) — (ST
¥ —65x2—104x+174
(x+118)3 :

The kernel ker(f) is the set of points (x,y) that map to the group
identity Po:

» If (x,y) € ker(f) then (x,y) = P or x = —118.

20 /40

Elliptic curves and isogenies

Example
f: E51 — E9
3 _183x%+73x+30
(xvy) = (X (xjﬁlJ{S)zx+ ’
x3—65x2—104x+174)
(x+118)3 :
Elliptic curves and isogenies
Example
f: E51 — E9
X3 —183x2473x4-30
N e

X% —65x2—104x+174
Y8y :

The kernel ker(f) is the set of points (x,y) that map to the group
identity P.:

» If (x,y) € ker(f) then (x,y) = Po or x = —118.

> If (—118,y) € Es; then (x,y) = (—118, £51).

20 / 40
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Elliptic curves and isogenies

Example

f: Esp — Eg
x°—183x2473x+30
(y) — (LT
x3—65x2—104x+174>

(x+118)3
The kernel ker(f) is the set of points (x,y) that map to the group
identity Po:
» If (x,y) € ker(f) then (x,y) = Po or x = —118.
» If (—118,y) € Es5 then (x,y) = (—118, £51).
» f(Poo) =f((—118,£51)) = P.

Fact: an isogeny is uniquely determined by its kernel.

20 /40

Elliptic curves and isogenies

Example

f : E51 — Eg

x> —183x2+73x+30
(X, ]/) = ( (x+118)2 ’

23 —65x2—104x+174
(x+118)3 :

> ker(f) = {(—118,51), (~118,—51), Po }.

Elliptic curves and isogenies

Example

f : E51 — Eg

x3—183x%+73x+30
(-xv y) = < (x+118)2 )

3 —65x2—104x+174
(x+118)3

Elliptic curves and isogenies

Example

f : E51 — Eg

x3—183x%+73x+30
(-xv y) = < (x+118)2 ’

3 —65x2—104x+174
(x+118)3 :

» ker(f) = {(—118,51), (—118,—51), Po. }.

» ker(f) is a subgroup of Es;(Fa19) (because f induces a
morphism of groups).

21/40
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Elliptic curves and isogenies Elliptic curves and isogenies

Example
Example
f £ £ f : E51 — E9
: 51. — Lo x°—183x2473x+30
(x,y) = (4x3—183x2+73x+30 ) = ( (x+118)2 7
Y (x+118)2 ) x3—65x2—104x+174)
x3765x27104x+174> (x+118)° '
(x+118)° :
» ker(f) = {(—118,51), (—118,—51), P }.
» ker(f) is a subgroup of Es;(Fa19) (because f induces a
morphism of groups).
» ker(f) is order 3, so must be a cyclic group, hence
(—118,51) + (—118,51) + (—118,51) = P.
21/40 22/40
Elliptic curves and isogenies Elliptic curves and isogenies
Example Example
f : Es1 — Eg f : Es1 — E
3_ 2 3_ 2
(x.y) (x 1(83;87)32”307 (x,y) (x 1(83114{87)32x+307
x3—65x2—104x+174> x3—65x2—104x+174)
(x+118)° : (x+118) :
» ker(f) is a cyclic subgroup of Es;(F419), generated by a » ker(f) is a cyclic subgroup of Es;(F419), generated by a
3-torsion point P = (—118, 51). 3-torsion point P = (—118,51).

» Q= (210,v380) € E(F9) is also a point of order 3.
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Elliptic curves and isogenies

Example

f: E51 — Eg
x> —183x%24+73x+30
(xvy) = ( (x+118)2 )
23 —65x2—104x+174
(x+118)3 :

» ker(f) is a cyclic subgroup of Es;(F419), generated by a
3-torsion point P = (—118, 51).

» Q= (210, v380) € E(Fy4) is also a point of order 3.
» Then f(Q) = (286,107+/380) is a point of order 3 on Ey.

22 /40

Elliptic curves and isogenies

Example
f : E51 — Eg
3_ 2
(vy) = (S
x3—65x2—1o4x+174)
(x+118)3 :
» ker(f) is a cyclic subgroup of Es;(F419), generated by a

3-torsion point P = (—118, 51).
Q = (210, v380) € E(Fy92) is also a point of order 3.
Then f(Q) = (286,107+/380) is a point of order 3 on Es.

There is another 3-isogeny ¢ : E9 — Es51 with cyclic kernel
generated by f(Q).

v

v

v

» gof : Es; — Es is the multiplication-by-3 map.
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Elliptic curves and isogenies

Example
f : E51 — E9
3_ 2
(x,y) (x 1(8311-{87)329(-&-307
x3—65x2—104x+174)
(x+118)3 )
» ker(f) is a cyclic subgroup of Es;(Fs19), generated by a

3-torsion point P = (—118, 51).
Q = (210, v380) € E(F492) is also a point of order 3.
Then f(Q) = (286,107+/380) is a point of order 3 on Eg.

There is another 3-isogeny ¢ : E9 — E51 with cyclic kernel
generated by f(Q).

v

v

v

22 /40

Elliptic curves and isogenies

Definition
Let E, E'/F, be elliptic curves and let £ be a prime different from
p. An (-isogeny f : E — E’ is an isogeny with # ker(f) = £.

Definition
Let E/IF, be an elliptic curve and let £ # p be prime. Let
f : E — E' be an (-isogeny.



Elliptic curves and isogenies Elliptic curves and isogenies

Definition Definition

Let E, E'/F, be elliptic curves and let £ be a prime different from Let E, E'/F, be elliptic curves and let / be a prime different from

p. An (-isogeny f : E — E’ is an isogeny with # ker(f) = . p. An (-isogeny f : E — E’ is an isogeny with # ker(f) = £.

Definition Definition

Let E/IF, be an elliptic curve and let £ # p be prime. Let Let E/IF, be an elliptic curve and let £ # p be prime. Let

f : E — E' be an /-isogeny. Then there exists a unique (up to f : E — E’ be an (-isogeny. Then there exists a unique (up to

isomorphism) (-isogeny f¥ : E' — E such that " o f is the isomorphism) (-isogeny f¥ : E' — E such that f" o f is the

multiplication-by-¢ map on E. multiplication-by-¢ map on E. This is called the dual isogeny.
Example

E51/F419 IyZ =x3 +513C2 + x and E9/F419 :yZ =3 +9x2 + Xx.

N
B
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Elliptic curves and isogenies Isogeny graphs
Graph of 3-isogenies over Fyq9.
Definition Example
Let E, E'/F, be elliptic curves and let £ be a prime different from
p. An (-isogeny f : E — E’ is an isogeny with # ker(f) = . Esi0——e Ly Esi® o Ey
Definition

Let E/IF, be an elliptic curve and let £ # p be prime. Let

f : E — E'be an (-isogeny. Then there exists a unique (up to
isomorphism) (-isogeny f¥ : E’ — E such that " o f is the
multiplication-by-¢ map on E. This is called the dual isogeny.

Example

E51/F419 : yZ =3 + 51x2 + x and EQ/F419 : y2 =x3 + 9x? + Xx.
The dual of the 3-isogeny f : E5; — Eg with kernel generated by
(—118,51) is the 3-isogeny f¥ : Eg — Es; with kernel generated
by (286, 107+/380).

N
B

24 /40



Isogeny graphs
Graph of 3-isogenies over Fyq9.
Example
Esi¢—=e Ey Esie——e@ Eg
Eisg E.O Eze1
E41.o ) T '59
E36§ v N .551
Eao4, 15
Ezs \.5344
E1a4e \-5275
Ejo1¢ *Epog
5174'\ /’15245
E413.\. . /' Ee
5379\. . Ex
5124\-\._. o Exos
E1g99 s Eao Exo
Isogeny graphs
Definition

Let p and ¢ be distinct primes. The isogeny graph G, over I,
has
» Nodes: elliptic curves defined over F, with a given
number of points (up to F,-isomorphism).
» Edges: an edge E — E’ respresents an (-isogeny E — E’
defined over I, together with its dual isogeny.

Isogeny graphs

A 3-isogeny

Esq: y2=x3+51x2+x —  Eg: y2 =23 49x%4x

(97x3 — 1832 4

|
) | X2 —183x497

13323415432 —5x4-97

T3 e5x2 4128x—133

)

E Eiss Fo Epe
410 e, 9
E368. P \.551
E. E
104 / JEis
Eys ./ \,5344
Egad \-l Ezzs
E19 /' Epps
Eizg \ /'E245
Eqz \ ./. Eg
Esz9 "\, " Eg

24 /40

Isogeny graphs

Definition

Let p and / be distinct primes. The isogeny graph G, over F,

has

» Nodes: elliptic curves defined over I, with a given
number of points (up to F,-isomorphism).

» Edges: an edge E — E' respresents an (-isogeny E — E’
defined over I, together with its dual isogeny.

» In our example

———————
- s,

G32

......
\\\\\

25/40
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Isogeny graphs

Definition
Let p and / be distinct primes. The isogeny graph G, over [,
has
» Nodes: elliptic curves defined over F, with a given
number of points (up to F,-isomorphism).
» Edges: an edge E — E’ respresents an (-isogeny E — E’
defined over F, together with its dual isogeny.

» In our example

Isogeny graphs

Definition
Let p and / be distinct primes. The isogeny graph G, over [,
has
» Nodes: elliptic curves defined over F, with a given
number of points (up to F,-isomorphism).
» Edges: an edge E — E’ respresents an (-isogeny E — E’
defined over I, together with its dual isogeny.

» In our example

G3UG5UGy j\ !

o
NI g~
e Ng e

Isogeny graphs

Definition
Let p and / be distinct primes. The isogeny graph G, over F,
has

» Nodes: elliptic curves defined over I, with a given
number of points (up to F,-isomorphism).

» Edges: an edge E — E' respresents an (-isogeny E — E’
defined over I, together with its dual isogeny.

» In our example
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Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, over I,
has
» Nodes: elliptic curves defined over F, with a given
number of points (up to F,-isomorphism).
» Edges: an edge E — E' respresents an (-isogeny E — E’
defined over I, together with its dual isogeny.

» Generally, the G, look something like

............

N\ z <
G3 - / \/ GS: :.57/ \Ié

.
.........

26 /40 26 /40



Endomorphisms

» Our graphs are cycles because all the curves have ‘the
same endomorphisms’

Endomorphisms

» Our graphs are cycles because all the curves have ‘the
same endomorphisms’

Definition
An endomorphism of an elliptic curve E is a morphism E — E.

Example

» For any n € Z, the map

m: E — E
(xv,y) = n(x.y).

Endomorphisms

» Our graphs are cycles because all the curves have ‘the
same endomorphisms’

Definition
An endomorphism of an elliptic curve E is a morphism E — E.

Endomorphisms

» Our graphs are cycles because all the curves have ‘the
same endomorphisms’

Definition
An endomorphism of an elliptic curve E is a morphism E — E.

Example
» For any n € Z, the map
m: E — E
(x,y) = n(xy).
» For E/F,, the Frobenius map

T E — E
(,y) = (F,yP).

27 /40
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Endomorphism rings

Let E/F, be supersingular.

» Applying the Frobenius endomorphism (x,y) — (x",y?)
twice results in the multiplication by —p map [—p].

Endomorphism rings

Let E/F, be supersingular.

» Applying the Frobenius endomorphism (x,y) — (x",y")
twice results in the multiplication by —p map [—p].

» The set of F;-rational endomorphisms of a curve E/F),
forms a ring Endp, (E).

» We can define a ring homomorphism

Zly=p] — Ends,(E)
n > [n]
N .

Endomorphism rings

Let E/IF, be supersingular.

» Applying the Frobenius endomorphism (x,y) — (x”, y?)
twice results in the multiplication by —p map [—p].

» The set of F-rational endomorphisms of a curve E/IF,,
forms a ring Endp, (E).

Endomorphism rings

Let E/IF, be supersingular.

» Applying the Frobenius endomorphism (x,y) — (x”, ")
twice results in the multiplication by —p map [—p].

» The set of F,-rational endomorphisms of a curve E/IF),
forms a ring Endp, (E).

» We can define a ring homomorphism

Z[\/=p] — Endg,(E)
n — 1]

N .

» Fact:if p =3 (mod 8),p > 5,and Ez/F : y* = x° + Ax* +x
is supersingular, then Endy, (E) = Z[/=p].

28 /40
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Group actions Group actions

Remember: we wanted to replace exponentiation Remember: we wanted to replace exponentiation
ZxG — G ZxG — G
(x,g) +— g i=gx---xg. (x,8) +— gFi=gx---xg.
X times X times
by a group action of a group H on a set S: by a group action of a group H on a set S:
HxS§ —S. HxS§—S.

Now we can do it!

29 /40

Group actions Group actions
Definition
An action of a group (H, -) on a set S is a map
Definition
An action of a group (H, -) on a set S is a map HxS5 — ' §
(h,s) +— hxs
HxS — S
(h,s) > hxs such thatid xs = sand hy % (hy xs) = (hy - hp) *s for all s € S and

all hy,hy € H.
such thatid xs = sand hy * (hy *s) = (hy - hp) xs for all s € S and
all hy,hy € H. Example

Traditional Diffie-Hellman is an example:
(H,)=Z/(p—1)Z)*,+) and S = (Z/pZ)*. Exponentiation
(h,s) — s is a group action.



Group actions

Definition
An action of a group (H,-) on a set S is a map

HxS — S
(hy,s) +— hxs

such thatid xs = sand hy % (hp xs) = (hy -hp) xs forall s € S and
all hy,hy € H.

For the CSIDH group action
» the set S is the set of supersingular
Ea/Fy: y* = x° + Ax? + x withp = 3 (mod 8) and p > 5.
» the group H is the class group of the endomorphism ring

V=

Class groups

Let O = Z[\/=p].

Definition

Anideal I C O is the set of all O-linear combinations of a given
set of elements of O.

Example
In Z[v/—3] we can consider the ideal

(7,24+V=3) :={7a+ 2+ V=3)b:a,b e Z[vV-3]}.

Class groups

Let O = Z[\/=p].

Definition

Anideal I C O is the set of all O-linear combinations of a given
set of elements of O.

31/40

Class groups

Let O = Z[\/=p].

Definition

Anideal I C O is the set of all O-linear combinations of a given
set of elements of O.

Example
In Z[v/—3] we can consider the ideal

(7,24 V=3) == {7a+ 2+ V-3)b:a,b € Z[V-3]}.

Definition
A principal ideal is an ideal of the form I = («).

31/40



Class groups

Let O = Z[\/=p].

Definition

Anideal I C O is the set of all O-linear combinations of a given
set of elements of O.

Example
In Z[v/—3] we can consider the ideal

(7,24+V=3) :={7a+ 2+ V-3)b:a,b e Z[vV-3]}.

Definition
A principal ideal is an ideal of the form I = («).

» We can multiply ideals I and | C O:
[ J={(aB:acl,pe]).

Class groups

Definition
Twoideals I,] C O are equivalent if there exist a, 5 € O \ {0}
such that

Definition
The ideal class group of O is?

Cl(O) = {equivalence classes of nonzero ideals I C O}.

2modulo details

Class groups

Definition
Twoideals I,] C O are equivalent if there exist o, 5 € O \ {0}
such that

’modulo details

Class groups

Definition
Twoideals I,] C O are equivalent if there exist o, 5 € O \ {0}
such that

Definition
The ideal class group of O is?

Cl(O) = {equivalence classes of nonzero ideals I C O}.

Miracle fact: the ideal class group is a group!

2modulo details
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Class group action

The class group of the endomorphism ring Z[,/—p] acts on the
set S of supersingular elliptic curves E4 /Fp : y* = x° + Ax? + x
withp =3 (mod 8) and p > 5.

Class group action

The class group of the endomorphism ring Z[,/—p] acts on the
set S of supersingular elliptic curves E4 /Fp : y* = x° + Ax? + x
withp =3 (mod 8) and p > 5. How?
» Recall: Anisogeny is uniquely determined by its kernel.
» Let C Endp,(E) be an ideal. Then

H; = Naer ker(a)

is a subgroup of E(F,).

Class group action

The class group of the endomorphism ring Z[,/—p] acts on the
set S of supersingular elliptic curves E4 /Fy : y* = x® + Ax? + x
withp =3 (mod 8) and p > 5. How?

» Recall: Anisogeny is uniquely determined by its kernel.

Class group action

The class group of the endomorphism ring Z[,/—p] acts on the
set S of supersingular elliptic curves E4 /F : y* = x® + Ax? + x
withp =3 (mod 8) and p > 5. How?
» Recall: Anisogeny is uniquely determined by its kernel.
» LetI C Endp,(E) be an ideal. Then

Hr = Naer ker(a)

is a subgroup of E(F,).
» Define f; : E — E’ to be the isogeny with kernel Hj.
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Class group action

The class group of the endomorphism ring Z[,/—p] acts on the
set S of supersingular elliptic curves E4 /Fp : y* = x° + Ax? + x
withp =3 (mod 8) and p > 5. How?
» Recall: Anisogeny is uniquely determined by its kernel.
» Let C Endp,(E) be an ideal. Then

H; = Nael ker(a)

is a subgroup of E(F,).
» Define f; : E — E’ to be the isogeny with kernel Hj.
The CSIDH group action is:

Cl(Ends,(E)) xS — S
(ILE) — fi(E).

Class group action

The CSIDH group action is:

Cl(Ends, (E)) xS — S
(I,E) s I%E:=f(E).

» The isogeny fj is an ¢-isogeny if and only if I = ([¢/], 7 + [1]).
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Class group action

The CSIDH group action is:

Cl(Endy, (E)) x S — S
(I,E) s I%E:=f/(E).

Class group action

The CSIDH group action is:

Cl(Endy, (E)) x S — S
(IE) s I%E:=f/(E).

» The isogeny f; is an ¢-isogeny if and only if I = ([¢], 7 + [1]).

» A’+' direction isogeny on the (-isogeny graph is the action
of (€], 7 — [1]).

34/40
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Class group action

The CSIDH group action is:

CI(Endg, (E)) x S — S
(IE) s I+E:=fi(E).

» The isogeny fj is an ¢-isogeny if and only if I = ([¢/], 7 + [1]).

» A’4’ direction isogeny on the (-isogeny graph is the action
of ([¢], 7 — [1]).

» A’—'direction isogeny on the (-isogeny graph is the action
of ([¢],m + [1]).

34 /40

Diffie-Hellman with CSIDH

Alice Bob
a= [_1[_7 ) +7 _]

b: [+7+7_7+]
+

E c—E
199 E390 E29 220

Eisg = (3,m—1)*Ey Ei99 = (7,m —1) x Eg

35/40

Diffie-Hellman with CSIDH

Alice Bob
a:[+7_7+7_] b=[+7+7_a+]

35/40

Diffie-Hellman with CSIDH

Alice Bob
a:[—i_a??—i_:_] b:[+7*7_7+]

Ei5 = (5,m+ 1) x E158 Es9 = (5,7 — 1) * Eqg9

35/40



Diffie-Hellman with CSIDH Diffie-Hellman with CSIDH

Alice Bob Alice Bob
b = [+7 +7 ) _TH

a=[+7_7+7_] b:[+:+7_7+] a:[+7_7+7_]
0 ) 0

35S
<R
@,
A N
J .
5124?-\._/15/5295 i AVA S
199 B Ey, F220 199 g T Ey, F220

Ei5 = <3,7T — 1> x E51  Eog5 = <3,7T + 1> * E40 - E199 = (7,7‘(’ + 1> x* Es1 Eq58 = (7,71' — 1> * Enos -
Diffie-Hellman with CSIDH Diffie-Hellman with CSIDH
Bob Alice Bob
b:[+7+7_7+] a:["*a_v"i‘:_] b:[—'ir_,+’_,+]

E7s4 Faus
Ey / v \5275
E191’\ }Ezzs
Elzf\ ; "”""i“v . é£z45

413\ /) X AN\ / 6
LR
5124? a\V2\V/

Eqo= (3,m—1) *E153 Es1 = (7,7 — 1) * E199 o

(exchange of public keys) o



Diffie-Hellman with CSIDH Diffie-Hellman with CSIDH

Alice Bob Alice Bob
a=[+7?7+7_] b:[+:jir_7_7+] a:[—i_a_?—*_:_] b:[+7+7¥7+]

'\._./E
199 Ezg0 Eng 220

Es1 = <5,7T + 1) x Eq10 Egq10 = <5,7‘l’ — 1> * E5p Eg = <3,7I' — 1> x Es1  Eq58 = <3,7T + 1> x E410

35 /40 35/40
Diffie-Hellman with CSIDH Diffie-Hellman with CSIDH
Alice Bob Alice Bob
a=[+7_7+7¥] b:[+:+7_7—1[_] a:[+7_7+7_] b:[+7+7_7+]
E410/E1§0\E§61 15410/Elf0\E3159
1 > Eseg ‘(“ s
] \, \ Av =% "/
[\/ =
E754 Faus
Ey / v \-'5275
E191’\ = }Ezzs
E174'\ /1:'245
E413\ Y Ee
Eao g2 E'zﬁzzo Eio g2 E'zg/Ezzo Eio g2, E.29/E220
Eso0 = (7,m+1) x E9  Esop = (7,7 — 1) x Eys8 o (shared secret key is E3q) 35 /40



Design choices

» Choose small odd primes 41, ..., ¢,.

Design choices

» Choose small odd primes 41, ..., ¢,.
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Choose small odd primes /1, ..., ¢,.

Make surep =4 - {1 ---{, — 1is prime.

Fix Eo/Fp : y* = x> + x.

Then E is supersingular. Exercise: show that there is a
point of order ¢; in Eo(IF) for every £1,. .., 4;.

All arithmetic for computing /;-isogenies is now over [F,.

(For more: see David’s talk).
Every Gy, containing Ey is a disjoint union of cycles.

Every node of Gy, is of the form E4 : y? = x® + Ax* + x -
can be compressed to just A € F, giving tiny keys.
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Why CSIDH? Work in progress & future work

» Drop-in post-quantum replacement for (EC)DH

> Non-interactive key exchange (full public-key validation); » Fast, constant-time implementation. For constant-time
previously an open problem post-quantumly (for ideas, see [BLMP]

reasonable run-time)
» Small keys: 64 bytes at conjectured AES-128 security level
» Competitive speed: ~ 85ms for a full key exchange

» Flexible: compatible with 0-RTT protocols such as QUIC;
recent preprint uses CSIDH for ‘SeaSign” signatures
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Work in progress & future work Work in progress & future work
» Fast, constant-time implementation. For constant-time » Fast, constant-time implementation. For constant-time
ideas, see [BLMP]. ideas, see [BLMP].
» More applications. » More applications.

» [Your paper here!]
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3Concrete numbers in this paper should be treated with caution, see [Section 1.3, BLMP]



