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（整数）格子（lattice）
 b1, …, bn （∈ Zm, m≧n） ： 線形独立な（列）ベクトル

 Zm における格子：
b1, …, bn のすべての整数線形結合の集合：

 n ： 階数（rank），m ： 次元

 b1, …, bn ： 格子基底．

 B = [b1, …, bn] （∈Zm×n） ： 格子基底の行列記法

 L(B) = { Bx | x ∈ Zn } ： 格子の行列記法

 文脈から明らかなときは，B を格子 L(B) の意味で用いる
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Z2 における格子
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言語

 アルファベット ： 記号の有限集合 Σ
 通常は，Σ = {0, 1} とする

 （Σ上の）列 ： Σからの記号の有限列

 Σ* ： Σ上のすべての（有限）列の集合

 言語 ： Σ* の部分集合
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判定（決定）問題 (decision problem)

 いま考えようとしている「問題」 ： なんらかの符
号化により，Σ上の列 x に変換 (x ∈ Σ*)

 判定問題 ： 列 x が，ある特定の性質を満たす
かどうか判定する

 x を入力とし，{YES, NO}を出力する関数と考えてよ
い

 YES 例題（YES instance） ： 性質を満たす x （YES 
が出力される x）
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判定問題と言語

 判定問題に対応する言語 L

 「（判定）問題を解く」とは

 入力列 x が，x ∈ L かどうかを判定する

 問題の困難さ

 問題が規定する関数 f （ f : Σ* → {YES, NO} ） の計
算の困難さ

L = { YES 例題の集合 } ⊆ Σ*
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帰着

 A, B ： 判定問題

 A から B への（Karp） 帰着

 多項式時間計算可能な関数 f :
f : Σ* → Σ* ，ただし，x ∈ A iff. f (x) ∈ B

 A から B への Cook 帰着（Turing 帰着）

 問題 B を解くオラクル O を利用できる，多項式時間
チューリング機械 M （ MO） が，正しく A を解くならば，
M は A を B に Cook 帰着する
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最短ベクトル問題（shortest vector 
problem, SVP）

 格子基底 B ∈ Zm×n が与えられるとき，非零
格子ベクトル Bx （x ∈ Zn － {0}） で，他のい
かなる y ∈ Zn － {0} に対しても， ||Bx|| ≦
||By|| であるようなものを求めよ．
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最近ベクトル問題 (closest vector 
problem, CVP)

 格子基底 B ∈ Zm×n と目標ベクトル t ∈ Zmが
与えられるとき，t に最も近い格子ベクトル Bx
（ただし x ∈ Zn）を求めよ．

 すなわち，他のいかなる y ∈ Zn に対しても，
||Bx – t|| ≦ ||By – t|| であるような格子ベクトルBx
（x ∈ Zn ） を求めよ．
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最近ベクトルの例
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t
最近ベクトル
2b1 + b2 = B[2, 1]T
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SVP, CVP の近似版

 SVPγ

 基底 B ∈ Zm×n が与えられるとき，他のどんな y ∈ Zn

－ {0} に対しても ||Bx|| ≦ γ・||By|| であるような非零
格子ベクトルBx （x ∈ Zn － {0}） を求めよ．

 CVPγ

 基底 B ∈ Zm×n と目標ベクトル t ∈ Zmが与えられると
き，他のどんな y ∈ Zn に対しても
||Bx – t|| ≦ γ・||By – t|| であるような格子ベクトルBx
（x ∈ Zn ） を求めよ．
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第4章の概要

 最短ベクトル問題（SVP）を近似する困難性につ
いて考察

 Kannan の同次化（同質化，homogenization）
技法を拡張して，近似CVPを，近似SVPに帰着

 lp ノルムにおいて，21/p より小さな近似因子で
SVP を近似することがNP困難であることを示す

 言及しない限り，l2 ノルムを仮定
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Kannan の同次化技法 (homogenization 
technique)

 最近ベクトル問題 （CVP） を，最短ベクトル
問題 （SVP） に Cook 帰着する

 格子 L(B) の点で，目標ベクトル t に（近似
的に）最も近いものを求めたい
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CVP から SVP への帰着における，同次
化のナイーブな方法

行列 [B | t] で生成される格子の中から，
最短非零ベクトルを求める

もし最短非零ベクトルが Bx – t， Bx + t の形ならば，
それぞれ Bx，– Bx が t に最も近いベクトル

しかし，求められたベクトルが，Bx ± t の形で
ないならば，この帰着は失敗する！

（この場合の帰着の失敗例については，教科書参照）

生成される
ベクトルは，
Bx + w t の形

w の取り得る
値が重要
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同次化技法の基本的なアイディア
 B，t を，より高次元の空間に埋め込む，すなわち，

によって生成される格子の最短ベクトルを考える．

 このとき，

 B の列が線形独立なら， B’ も同様 → B’ はL(B’) の基底

 c は有理数

 B’の最後の列が，高々一回しか使えないような（十分大き
い） c を適切に選ぶ（ただし，c が大きすぎると，最後の列は
一回も使われない）
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補題4.1
 任意のμ ∈[1, 2) ： L(B) からの点 t の距離

（μ= dist(t, L(B)）
 定数

 このとき，もし

が L(B’) のγ近似最短ベクトルならば，|w| ≦ 1
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補題4.1の証明（1）
 格子 L(B’) は，

 x ： ただし，t と Bx の距離がμ （=dist(t, L(B)）
 w = –1

について，ベクトル

v := B’[xT, –1]T = [(Bx – t)T, – c]T

を含む．||v|| = (μ2 + c2)(1/2) であるから，

||s||2 ≦ γ2 (μ2 + c2)
また，||s||2 = ||Bx + wt||2 + (wc)2 ≧ (wc)2

以上より， (wc)2 ≦ γ2 (μ2 + c2)
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補題4.1の証明（2）

 （続き）
w について解き， を使って，

w は整数なので， |w| ≦ 1 （証明終）
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定理4.2

 格子の階数 n，任意の近似因子γ∈ [1, 2) と任意の関
数

に対して，CVPγ'(n) 探索問題は SVPγ探索問題に
Cook 帰着可能である．さらに，帰着がオラクルを呼び
出す回数は O(n log n) である．
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定理4.2の証明の流れ

 因子γ内で SVP を近似するオラクルがあるとき，因子
γ' 内で CVP を効率的に近似できることを示す

 補題4.1のB’ について，SVPγオラクルが返すベクトル
において |w| ≦ 1が成立するような c を求める

 c のある範囲について，SVPγオラクルを呼び出しつつ2分探索
を行う

 w = ±1，w = 0 で場合分け

 w = ±1の場合は容易に題意を示せる

 w = 0 のとき． SVPγオラクルが返す s = Bx は，L(B) の短い
非零ベクトル．このとき，B, t を s の直交補空間に射影し，階
数を減らしながら，再帰的に解いていく．
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定理4.2の証明（1 of 10）
 任意の因子γ∈ [1, 2) ，ある定数 ε∈(0,1]について，

とおく．

 B ： 階数 n の格子基底，t ： 目標ベクトル

 B'，μ，c ： 補題4.1と同様

 因子γ内で SVP を近似するオラクルが与えられたとき，
因子γ' 内で CVP を効率的に近似できることを示したい
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定理4.2の証明（2 of 10）

 c の値は，補題4.1より， よりわずかに大
きい値，たとえば，

とすればよい

 しかし，現段階では μ の値が分からないので，
とすることはできない！

 ではどうするか？
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定理4.2の証明（3 of 10）
 最近平面CVP近似アルゴリズム（2章，43ページ参照）によ

り，多項式時間で となる実数 M を
求める．さらに，k≧0 について単調減少列

を考える．すると，特に であるから，c = c0 と
すると，補題4.1より，SVPγオラクルは，B'の最後の列を
|w|≦1回使う最短ベクトルを返す．

 しかし， とは限らない！
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定理4.2の証明（4 of 10）

 次に， とする．

 このとき， は満たされるが，今度
は を満たすとは限らない．

 そこで，{0, …, K } において， SVPγオラクルを呼び出し
つつ2分探索を実行し，

 c = ck のとき， SVPγオラクルが返すベクトルにおいて |w| ≦ 1
 c = ck+1 のとき， SVPγオラクルが返すベクトルにおいて |w| > 1
となるような k を求める (ck は k の単調減少列であるこ
とに注意)．

 このときの，SVPγオラクルの呼出し回数は O( log n) 
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定理4.2の証明（5 of 10）

 いま求めた k について， |w| ≦ 1
 w = ±1，w = 0 で場合分けして考える．一般性
を失うことなく n ≧ 3 と仮定．

 w = ±1 のとき．

 – wBx が CVP例題 (B, t) のγ'近似解であることを
容易に示すことができる．すなわち，
||t – (– wBx)|| ≦ γ'μ．

 導出は，教科書81，82ページ参照．ただし，82ページ
の最初の式に typo があるので注意．
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定理4.2の証明（6 of 10）

 w = 0 のとき

 このとき，s := Bx は，L(B) の短い非零ベクトル

 すると，||s||2 ≦ γ2 (μ2 + c2) （補題4.1の証明参
照）， より，

 次に，B，t を，s の直交補空間に射影する
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定理4.2の証明（7 of 10）
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定理4.2の証明（8 of 10）
 ： B, t を，s の直交補空間に射影したもの

 の階数は n – 1 になる

 Bx ： CVP例題（B，t） の解

 よって，|| Bx – t || = μ = dist(t, L(B))

 以上より，CVP例題 の近似解を再帰的に探せば，
から距離 γ'(n – 1)×μ以内，すなわち，

のようなベクトル を求められる．
（n≦2のとき，CVPを厳密に解くことができることに注意）
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定理4.2の証明（9 of 10）

 直線

 に射影するすべての点の集合

 u ： t の直線 l の上への直交射影

 一般性を失うことなく，Bz が射影 u に最も近い，直線 l
上の格子点と仮定できる

 もしそうでなければ，s の適当な整数倍を Bz に加えればよい

 また，このことから，||u – Bz||≦(1/2)||s||がいえる

{ }R~: ∈+= ααsu
u~
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定理4.2の証明（10 of 10）
 以上まとめて，Bz がもとの CVP例題のγ' 近似解であ

ることが示せる．これは以下のとおり：

 第一項：

 第二項：

 以上まとめて，
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定理4.2の帰着の問題点

 再帰的に格子の階数を減らすことにより帰着し
ている

 以降では，ある CVP例題を SVP の単一の例題

に埋め込む，より効率の良い帰着について考え
る

再帰の各段階での誤差が累積して，
最適解から O(n1/2) 離れる可能性がある
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準備 ― 約定問題（promise problems）

 判定問題の一般化
 近似の困難さを研究するのに適している．

 約定問題の定義：
 互いに素な言語，すなわち，ΠYES, ΠNO ⊆Σ* かつ，
ΠYES ∩ΠNO = φ，の対 (ΠYES, ΠNO)

 約定問題を解くとは
 例題 I ∈ΠYES∪ΠNO が入力されるとき， I ∈ΠYES 
か I ∈ΠNO かを正しく決定することをいう

 判定問題
 約定問題において ΠNO = Σ*–ΠYES となる場合．
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約定問題における帰着

 関数 f : Σ* → Σ* が (ΠYES, ΠNO)から
(ΠYES

’, ΠNO
’) への帰着であるとは，f がYES例

題をYES例題に，NO例題をNO例題に写像する
ことをいう

 すなわち，f (ΠYES)⊆ΠYES
’，かつ， f (ΠNO)⊆ΠNO

’
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約定問題 GapSVPγ

 ギャップ関数γ(階数 n の関数)によって，以下
のように定義する：

 YES例題： 基底 B ∈ Zm×n ，ある z ∈ Zn － {0} に
ついて||Bz|| ≦ r となるような有理数 r ∈Q，につい
て，対（B，r）．

 NO例題： 基底 B ∈ Zm×n ，すべての z ∈ Zn － {0} 
について||Bz|| > γr となるような有理数 r ∈Q，につ
いて，対（B，r）．

 γ= 1 のとき，GapSVPγは，厳密な SVP判定
問題と同値
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約定問題 BinCVPγ

 基底 B ∈ Zm×n ，目標ベクトル t ∈ Zm ，r を正
の整数，とする．このとき，

 （B, t, r） は，t – Bz が高々 r 個の1を含む 0-1 ベクト
ルであるようなベクトル z ∈{0,1}n が存在するなら，
YES 例題．

 （B, t, r） は，すべての z ∈Zn とすべての w ∈ Z –
{0} に対し，ベクトル wt – Bz がγ（m）・r より多くの
非零成分をもつなら，NO 例題．
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Ajtai – Micciancio 埋め込みの概要（1）

 NP困難問題（BinCVPγ）を， GapSVPγに帰着
する

 格子基底 B ∈ Zm×n ，目標ベクトル t ∈ Zm

 整数行列 T ∈ Zn×k をかけて B をランダム化

 BT と t を，特殊な格子 L を使って高い次元に埋
め込む

 格子 L の性質：
 任意の格子間の距離が大きい

 しかし，「密集した」格子点の集合があり，それらの点
すべては span(L) の一点 s に近い

2010/3/16 39情報セキュリティ研究会



Ajtai – Micciancio 埋め込みの概要（2）

 （続き）格子

を考える．a, b は適当な因子．

 基本的なアイディア： t に近い格子ベクトル
v∈ L(B) が存在すれば， B’ の最後の列に –1 を掛け
て，BTz = v となるような s に近い格子点 Lz を探すこ
とで， B' の中に短いベクトルを見出すことができる．









=′

sL
tBT

B
bb
aa

:
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補題4.3 （球充填補題）

 任意の lp ノルム（p≧1）と定数γ< 21/p に対し，n が入力されると
き，n の多項式時間で，
 格子 L ∈ Zk'×k

 ベクトル s ∈ Zk’

 行列 T ∈ Zn×k

 有理数 r
を出力する多項式時間アルゴリズム（確率的または非一様の可能

性あり）が存在する．ただし，L，s，T，r は以下を満たすものとする．
 すべての z ∈ Zk － {0} に対して||Lz ||p >γr ．
 （高い確率で）すべてのブールベクトル x ∈ {0, 1}n に対して，

Tz = x かつ||Lz –s ||p < r である z ∈ Zk が存在する．

 上記の種々のアルゴリズム（確定的，確率的，非一様）の証明は
後ほど！
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同次化の仕掛け

r

s

z

L
1λ

2n

Zk

T

格子Lの最小距離λ1>γr

x

次元 n の任意のブールベクトル x は，
s から距離 r 内にある，ある格子ベクトル
Lz に関して，Tz = x と表せる

s を中心とする半径 r の球が，
少なくとも 2n 個の格子点を含む
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定理4.4

 任意の p ≧ 1 に対し，補題4.3のアルゴリズム
が与えられると，NP困難問題を lp における
GapSVPγに，任意の定数近似因子γ<21/p に
対し，多項式時間で帰着することができる．
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定理4.4 の証明（1）

 lp ノルムとγ<21/p を固定し， とする

 さらに

とする

 を， に帰着する． は n に

独立なので， は NP 困難．

)2,(~ pγγ <

pp

p

)~/1()/1(
2:ˆ

γγ
γ

−
=

γ̂BinCVP γGapSVP γ̂

γ̂BinCVP
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定理4.4 の証明（2）

 （B, t, d） を， の例題とする．ここで，B ∈
Zm×n ，t ∈ Zm ．

 補題 4.3 のアルゴリズムを実行し，以下のような L ∈
Zk'×k ，s ∈ Zk' ，T ∈ Zn×k ，有理数 r を得る：

 すべての z ∈ Zk － {0} に対して ．

 （高い確率で）すべての x ∈ {0, 1}n に対して， Tz = x
かつ||Lz – s ||p < r である z ∈ Zk が存在する．

γ̂BinCVP

r
p

γ~>Lz
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定理4.4 の証明（3）

 a, b を，

を満たす二つの整数とする．

 このとき，

となる有理数 d' を見出せる．導出は略（教科書は typo 
があるので注意）

p

p

p
p

p

p d
r

b
a

d
r 1

~
1
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2
−








<<−








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γ

γ
γ









<′<+

γ
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定理4.4 の証明（4）

 格子

を考える

 （B, t, d） が のYES例題なら （B‘, d’） は
のYES例題であり，もし（B, t, d） がNO例題

であれば， （B‘, d’）もNO例題になることを示せばよい．









=′

sL
tBT

B
bb
aa

:

γ̂BinCVP
γGapSVP
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定理4.4 の証明（5）
 （B, t, d） を， のYES例題とする

 すなわち，t – Bx が 0-1 ベクトルでありかつその1の
個数が高々 d であるような，x ∈{0, 1}k が存在する．
このとき，||Bx – t ||p ≦ d1/p ．

 構成より，Tz = x かつ ||Lz – s ||p < r であるよ
うな，z ∈Zk が存在．ここで，w = [zT, -1]Tとする
と，

これは，(B’, d’) がYES例題であることを意味す
る．
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定理4.4 の証明（6）

 （B, t, d） を， のNO例題とし，w = 
[zT, w]T とする．

ここで，a||Bx + wt ||p >γd’ あるいは b||Lz + w
s ||p >γd’ を証明することができる．詳細は教科
書参照．

（証明終）
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今日の内容

 いくつかの基本的な概念

 第4章の概要

 Kannan の同次化技法

 Ajtai – Micciancio 埋め込み

 SVPのNP困難性

 まとめ

2010/3/16 50情報セキュリティ研究会



SVP のNP困難性について

 補題4.3において（L, T, s, r） を計算するアルゴリズ
ムがあれば，NP困難問題を，GapSVPに効率よく帰
着できた

 しかし，決定性多項式時間で計算するアルゴリズム
は知られていない

 定理4.4 は，Karp or Cook 帰着ではない

 以降では，NP困難問題が，GapSVPに異なるタイプ
で帰着されることを考察

 ランダム帰着の下での困難性

 非一様帰着の下での困難性

 決定性帰着の下での困難性
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各種の帰着について

 具体的な内容は本発表では省略，教科書を参
照されたい
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今日の内容

 いくつかの基本的な概念

 第4章の概要

 Kannan の同次化技法

 Ajtai – Micciancio 埋め込み

 SVPのNP困難性

 まとめ
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まとめ

 最短ベクトル問題（SVP）を近似する困難性につ
いて考察

 Kannan の同次化（同質化，homogenization）
技法を拡張して，近似CVPを，近似SVPに帰着

 lp ノルムにおいて，21/p より小さな近似因子で
SVP を近似することが困難であることを示した
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