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5 Sphere Packings (球充填)

問題 格子点間の最小距離が λ以上であるとき，半径 ρの n次元球の内部の格子点の最
大可能個数はいくらか．

この問題の答は λ/ρにのみ依存する．

(自明な)事実

• λ/ρが十分大きいとき，定数個の点しか詰め込めない．

– λ/ρ > 2のとき 1個．λ/ρ = 2のとき 2個．

• limn→∞ λ/ρ = 0のとき，指数的に多くの点が詰め込める．

– λ/ρ = 2/
√

nのとき，立方格子 2Znについて，λ = 2．中心 s = (1, 1, . . . , 1)T，
半径 ρ =

√
nの球を考える．この球を表す式は，

(x1 − 1)2 + (x2 − 1)2 + · · · + (xn − 1)2 = n .

したがって，2n個の点 (2 ± 2, 2 ± 2, . . . , 2 ± 2)Tを含む．

• 1より大きいある λ/ρについては，nに応じて増える任意に多くの点を含む．

– {x |x ∈ Znで∑n
i=1 xiは偶数 } を考える．これは，基底ベクトル bi = e1 + ei

(i = 1, . . . , n) により生成される格子で，λ =
√

2．中心 e1，半径 ρ = 1の球を
考える．このとき，λ/ρ =

√
2で，この球には 2n個の点 e1 ± ei (i = 1, . . . , n)

が含まれる．

次節以降で示される結果

1. λ/ρ >
√

2のとき，定数個の点しか詰め込めない．

2. λ/ρ =
√

2のとき，詰め込める点の最大個数は 2n．

3. 任意の λ/ρ <
√

2について，次元に関して指数的に多くの点が詰め込める．

上の 1, 2は格子点でない場合も成立する．
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5.1 Packing Points in Small Spheres

λ/ρ ≥
√

2の場合について

• 格子点という制約を考えない．（上界なので，格子点の場合にも成立）

• 一般性を失うことなく，λ = 2, ρ ≤
√

2と仮定．

定理 5.1 任意の ρ <
√

2について，半径 ρの球に詰め込むことのできる，互いの最小距
離が 2の点の最大数は b2/(2 − ρ2)cである．

証明 x1, x2, . . . , xN を以下を満たすベクトルの集合とする．

• ‖xi‖ ≤ ρ

• i 6= jのとき ‖xi − xj‖ ≥ 2

このとき

4N(N − 1) ≤
N∑

i=1

N∑
j=1

‖xi − xj‖2 =
N∑

i=1

N∑
j=1

(‖xi‖2 + ‖xj‖2 − 2〈xi,xj〉)

=
N∑

i=1

N‖xi‖2 +
N∑

j=1

‖xj‖2 − 2〈xi,
N∑

j=1

xj〉


= 2N

N∑
i=1

‖xi‖2 − 2

∥∥∥∥∥
N∑

i=1

xj

∥∥∥∥∥
2

≤ 2N2ρ2

したがって，2(N − 1) ≤ Nρ2で，N は整数だから，定理が成り立つ． �

定理 5.2 半径
√

2の n次元球に詰め込むことのできる，互いの最小距離が 2以上の点の
最大数は 2nである．

証明 nに関する帰納法．n = 1のときは明らか．ある nについて成立を仮定して，n + 1

の場合を考える．
x1, x2, . . . , xN ∈ Rn+1 を以下を満たすベクトルの集合とする．

• ‖xi‖ ≤
√

2

• i 6= jのとき ‖xi − xj‖ ≥ 2

i 6= jのとき，

〈xi,xj〉 =
1

2
(‖xi‖2 + ‖xj‖2 − ‖xi − xj‖2) ≤ 1

2
(2 + 2 − 4) = 0

なので，任意のベクトルの組の間の角度は π/2以上．
xN 6= 0に注意して（xN = 0なら，最小距離が 2以上とならない），

x′
i =

{
〈xN , xN〉xi − 〈xi, xN〉xN if 〈xN , xN〉xi 6= 〈xi,xN〉xN

xi otherwise

を定義し，x′′
i =

√
2x′

i/‖x′
i‖ とする．このとき，以下が成立することが確認できる．
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• ‖x′′
i ‖ =

√
2かつ，i 6= jのとき，‖x′′

i − x′′
j‖ ≥ 2

• x′′
i = ±x′′

N または 〈x′′
i , x

′′
N〉 = 0

x′′
1, . . . , x

′′
N は，高々2個を除いて，xN と直交する n次元部分空間に存在するので，帰納

法の仮定より，N ≤ 2(n + 1)． �

5.2 The Exponential Sphere Packing

λ/ρ <
√

2の場合について

• 任意の `pノルムを仮定 (p ≥ 1)

‖x‖p =

(∑
i

|xi|p
)1/p

5.2.1 The Schnorr-Adleman prime number lattice

補題 5.3 a1, . . . , akを互いに素な正の奇数の列とする．任意の`pノルムと任意の実数α > 0

について，

L̃ =


p
√

ln a1 0 0

0
. . . 0

0 0 p
√

ln ak

α ln a1 · · · α ln ak

 ∈ R(k+1)×k

の列により生成される格子のすべての非零ベクトルの `pノルムは p
√

2 ln αより大きい．

証明 すべての非零整数ベクトル z ∈ Zkについて，‖L̃z‖p
p > 2 ln α を示す．必ずしも自

明ではないが，単に計算による証明なので省略． �

格子の最短ベクトルの長さを大きくする自明な方法は，すべての座標を α倍すること．
一方，L(L̃)では，最後の座標のみα倍することで長さが大きくできる．ただし，αの対数．

5.2.2 Finding clusters

s̃ =


0
...

0

α ln b

 ∈ Rk+1

を中心とする球に含まれる格子点の個数を考える．aiの部分集合の積で bが近似できる
とき，s̃に近い格子点が存在することを示す．
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補題 5.4 L̃, s̃を先の定義のとおりとする．任意の `p ノルム，実数 α，b ≥ 1，正整数
a1, . . . , ak，z ∈ {0, 1}kについて，g =

∏
i ai

zi ∈ [b, b(1 + 1/α)]ならば，

‖L̃z − s̃‖p ≤ p
√

ln b + 2

が成立する．

証明 単に計算による証明なので，省略． �

0 < ε < 1について α = b1−εとすると

1. 補題 5.3より，格子点間の最小距離は λ = p

√
2(1 − ε) ln bより大きい．

2. 補題 5.4より，区間 [b, b + bε]が多数の∏
i∈S ai (S ⊆ {1, . . . , k}) を含めば，s̃から

p
√

ln b + 2 ≈ λ/ p
√

2以内の距離に多数の格子点が存在する．

a1, . . . , akを最初の k個の奇素数とすれば，上記 2の前提条件は，

区間 [b, b + bε]が多数の無平方で ak-smoothな奇数を含めば

となる．以下では，この前提条件が，どのような k, bについて成立するかを考える．

補題 5.5 任意の実数 ε ∈ [0, 1), µ > 1と，任意の整数H ≥ 1と，任意の有限集合M ⊂
[1, µ)について，bがM から無作為に選択されるとき，

Pr
[∣∣∣[b, b + bε) ∩ M

∣∣∣ < H
]

<
µ1−ε · H
κ(ε) · |M |

が成立する．ここで κ(ε) = 1 − 2ε−1である．

証明 集合Bを以下のように定義する．

B =
{
b | b ∈ M ∧

∣∣∣[b, b + bε) ∩ M
∣∣∣ < H

}
次に示すとおり，Bは (H − 1)個以下の要素からなるK < µ1−ε/κ(ε)個の集合に分割で
きる．したがって，bがM から無作為に選択されるとき，

Pr
[∣∣∣[b, b + bε) ∩ M

∣∣∣ < H
]

= Pr[b ∈ B] =
|B|
|M |

<
µ1−ε · H
κ(ε) · |M |

分割法は以下のとおり．

1. [1, µ)を [2m, 2m+1)に分割．m = 0, 1, . . . , dlog2 µe − 1．

2. 各 [2m, 2m+1)を大きさ 2εmの 2m/2εm個の区間に分割．

上記 2で得られる各区間は，ある y ≤ xεについて [x, x + y)と表される．したがって，
各区間はBの元を高々H − 1個しか含まない（さもないとBの定義に矛盾）．2で得られ
る区間の総数Kについて，K < µ1−ε/κ(ε)が成立することは，単純な数え上げで確認で
きる． �
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系 5.6 すべての実数 0 < ε < 1と δ > 0に対し，任意の十分大きな整数 hについて以下
を満たす定数 cが存在する．

k = hcとし，最初の k個の奇素数を a1, . . . , akとする．また，

M =

{∏
i∈S

ai

∣∣∣∣S ⊂ {1, . . . , k} ∧ |S| = h

}

とする．bがM から無作為に選択されるとき，

Pr
[∣∣∣[b, b + bε) ∩ M

∣∣∣ < hδh
]

<
1

2h

が成立する．

証明 ε, δについて，cを c > (1+δ)/ε > 1なる整数とする．µ = ak
hとすれば，M ⊂ [1, µ)．

また，

|M | =

(
k

h

)
=

h−1∏
i=0

k − i

h − i
≥

h−1∏
i=0

k

h
=

kh

hh
= h(c−1)h

である（上の不等号は k ≥ hより）．

Pr
[∣∣∣[b, b + bε) ∩ M

∣∣∣ < hδh
]

<
ak

(1−ε)h · hδh

κ(ε) · h(c−1)h

素数定理より，ak = O(k ln k) = O(hc ln h)．また，κ(ε) = 1 − 2ε−1．

Pr
[∣∣∣[b, b + bε) ∩ M

∣∣∣ < hδh
]

<
O(hc ln h)(1−ε)h · hδh

h(c−1)h

<

(
O(ln h)

hεc−(1+δ)

)h

<
1

2h

�

定理 5.7 すべての実数 0 < ε < 1と δ > 0に対し，以下を満たす定数 cが存在する．

• hを十分大きな正整数とし，k = hcとする．

• 最初の k個の奇素数を a1, . . . , akとする．

• bを {a1, . . . , ak}から無作為に選択した h個の素数の積とする．

• α = b1−εとし，

L̃ =


p
√

ln a1 0 0

0
. . . 0

0 0 p
√

ln ak

α ln a1 · · · α ln ak

 s̃ =


0
...

0

α ln b


とする．

• r̃ = p

√
(1 + ε) ln b > 1とする．
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このとき

1. L(L̃)のすべての非零ベクトルの `pノルムは p

√
2
(

1−ε
1+ε

)
r̃より大きい．

2. 少なくとも 1− 2−hの確率で，球B(s̃, r̃)に，hδh個以上の格子点 L̃zが含まれる．た
だし，z ∈ {0, 1}kで丁度 h個の 1を持つ．

証明 補題 5.3，補題 5.4，系 5.6から直ちに導かれる．

系 5.8 任意の 0 < γ <
√

2に対して，以下を満たす定数 0 < ε < 1が存在する．

任意の十分大きな正整数 kについて，最小距離が λの階数 kのある格子 L̃と
ある点 s̃が存在して，球 B(s̃, λ/γ)が 2kε 個の格子点を含む．

証明 定理 5.7で，p = 2とし，γ =

√
2
(

1−ε
1+ε

)
<

√
2 となるよう εを決める．したがって，

ε = 2−γ2

2+γ2．

5.2.3 Some additional properties

この節の内容は，この本の他の部分では利用されないので，省略して差し支えない．

命題 5.9 L̃の行列式は √√√√(1 + α2
k∑

i=1

ln ai

)
k∏

i=1

ln ai

定義 5.1 xを任意の（正の）実数とし，p/qを有理数とする．|p − qx| < δのとき，p/q

を xのディオファントス δ近似と呼ぶ．

命題 5.10 α > 0, b > 0を任意の正の定数とする．任意の整数ベクトル z について，
‖L̃z − s̃‖1 < ln bならば，∏ ai

zi は bのディオファントス b/α近似である．

命題 5.10は補題 5.4の逆．一般の `pノルムについても同様の結果が成立する．

5.3 Integer Lattices

L̃と s̃の適当な整数近似についても，前節と同様の結果が得られることを示す．

補題 5.11 すべての η ≥ 1とすべての整数ベクトル z ∈ Zkについて，

‖Lz‖p ≥ (η − 1)k‖L̃z‖p

ここで，L = b(kη)L̃eは，(kη)L̃の各要素をそれに最も近い整数で置き換えて得られる行
列である．

証明 単に計算による証明なので省略．
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補題 5.12 すべての η ≥ 0とすべての整数ベクトル z ∈ Zkについて，

‖Lz − s‖p ≤ (η + 1)k‖L̃z − s̃‖p

ここで，L = b(kη)L̃e, s = b(kη)s̃e．

証明 単に計算による証明なので省略．

定理 4.5の証明

定理 4.5 任意の p ≥ 1, γ ∈ [1, p
√

2), δ > 0について，整数 hが与えられたとき，以下を
満たす整数 k, r，行列 L ∈ Z(k+1)×k，整数ベクトル s ∈ Zk+1を出力する確率アルゴリズ
ムが存在する．なお，時間計算量は hの多項式である．

1. L(L)のすべてのベクトルの `pノルムは γrより大きい．

2. すべての十分大きな hについて，少なくとも 1− 2−hの確率で，球B(s, r)は少なく
とも hδh個の格子点 Ly を含む．ここで，yは丁度 h個の 1を持つ {0, 1}ベクトル
である．

証明 1については，定理 5.7と補題 5.11を用いる．定理 5.7より，k = hcとする．また，
補題 5.11について，η = 1/εとし，r = d(1 + 1/ε)kr̃eとする．ただし，εは定理 5.7の ε．

2については，定理 5.7と補題 5.12を用いる．1の場合と同様に，補題 5.12について，
η = 1/εとする． �

5.4 Deterministic Construction

予想 1 任意の ε > 0に対して，ある dが存在して，十分大きなすべての nについて，区
間 [n, n + nε]に無平方で (logd n)-smoothな奇数が存在する．

定理 4.9 予想 1が正しければ，任意の p ≥ 1, γ ∈ [1, p
√

2)について，整数 hが与えられ
たとき，以下を満たす整数 k(> h), r，行列L ∈ Z(k+1)×k，整数ベクトル s ∈ Zk+1を出力
する決定性アルゴリズムが存在する．なお，時間計算量は hの多項式である．

1. L(L)のすべてのベクトルの `pノルムは γrより大きい．

2. 任意のx ∈ {0, 1}hに対して，あるy ∈ {0, 1}k−hが存在して，L(yT, xT)Tが球B(s, r)

に含まれる．

証明 0 < ε < 1を実数とする．十分大きなすべての nについて，区間 [n, n + nε/2]に無
平方で (logd n)-smoothな奇数が存在するような整数 dを考える（予想 1）．

k = hd+1 + hとし，a1, . . . , akを最初の k個の奇素数，b = ak
2h/ε, α = b1−εとする．k

が hの多項式であることに注意する．
補題 5.3より，すべての z ∈ Zk \ {0}について

‖L̃z‖p ≥ p

√
2(1 − ε) ln b
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が成立する．
以下では，すべての x ∈ {0, 1}hに対して，∥∥∥∥∥L̃

(
y

x

)
− s̃

∥∥∥∥∥
p

<
p
√

ln b + 2

を満たす y ∈ {0, 1}hd+1が存在することを示す．
gx =

∏h
i=1(ahd+1+i)

xi とおくと，

b

gx

>
b

ak
h

= ak
(2/ε−1)h > 2h

したがって，十分大きなすべての hについて，区間 [b/gx, b/gx + (b/gx)ε/2]に無平方で
logd(b/gx)-smoothな奇数が存在する．ところで，素数定理より ak = O(k ln k)なので，

logd(b/gx) ≤ logd b = O(h log h)d < hd+1

である．したがって，この奇数は，ある y ∈ {0, 1}hd+1を用いて，

gy =
hd+1∏
i=1

ai
yi

と表すことができる．gy ∈ [b/gx, b/gx + (b/gx)ε/2], gx ≤ ak
h = bε/2より，

gygx ∈ [b, b + bε/2gx
1−ε/2] ⊂ [b, b + bε]

が成立するので，補題 5.4より，∥∥∥∥∥L̃
(

y

x

)
− s̃

∥∥∥∥∥
p

<
p
√

ln b + 2

が成立する．r = p
√

ln b + 2として，

p

√
2(1 − ε) ln b

r
=

p
√

2

(
(1 − ε) ln b

ln b + 2

)1/p

> λ

を満たすように εを選ぶ．L, sは，補題 5.11と補題 5.12を用いて得ることができる．�

5.5 Notes

省略
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