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Purpose of this chapter

• Prove Theorem 4.6 from Chapter 4

• Independent from the rest of the book

• The theorem is first stated in lattice form

• But it is more natural to present in terms of 
hyper-graph

• In this talk, we
– Introduce and use hyper-graphs

– Prove two related theorems

– Prove the main theorem
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The theorem in lattice form

• The main theorem: if we have

– A set Z of binary vectors in {0,1}k

– Each vector has exactly h ones, k-h zeros

– An integer n<k and a small e

– Fulfilling the condition

e/4! nhkhZ 
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The theorem in lattice form

• Then:

– There exists a binary matrix T in {0,1}n x k

– Such that 

– Moreover, if T is randomly chosen such that each 
element is 1 with probability e/(4hn)

– Then the event happens with probability at least 
1-6e

}:{)(}1,0{ ZzTzZTn 
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Hyper-graph

• Graph: {V,E}
– V: a set of vertices

– E: a set of edges e, where each e must be a set of two 
vertices

• Hyper-graph: {V,Z}
– V: set of vertices

– Z: the set of hyper-edge z, where z can be any subset of V

• Regular hyper-graph
– For each z in Z, the size |z| is the same

– All hyper-edges contains the same number of vertices

– h=|z| is called the degree of regular hyper-graph   
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Hyper-graph representation 

V

Z

0 1 1 0 1 0 0

1 1 0 0 1 0 0

0 1 1 0 0 0 1

0 0 1 0 1 0 1

0 1 0 0 1 1 0

0 0 1 1 0 0 1
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The theorem in hyper-graph

• Let (V,Z) be a regular hyper-graph, degree h, 
and |V|=k

• Let T=(T1,…Tn) be a sequence of random 
subsets of V

– Where in each Ti elements of V are picked 
independently with probability e/(4hn)

• Let U be any subset of V, define

|)||,...||,(|)( 21 UTUTUTUT n 
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The theorem in hyper-graph

• Define

• The theorem: 

– If 

– Then

– with probability at least 1-6e

}:)({)( ZUUTZT 

e/4! nhkhZ 

)(}1,0{ ZTn 
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Warm up before proving the main 
theorem

• Sauer’s Lemma 

– (Lemma 6.1, 6.2)

• Weak version of the main theorem

– (Lemma 6.3-6.7, Theorem 6.8)
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Sauer’s Lemma

• It is a warm up for the main theorem, by 
assuming that each Ti only contains one 
element of V

• Let G be a subset of V, define

• Define the number of choices for choosing at 
most n from k elements as 
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Sauer’s Lemma (6.1)

• If |Z|r[k,n] then there exists a G of size n such 
that Z|G is the power set of G

V

Z

0 1 1 0 1 0 0

1 1 0 0 1 0 0

0 1 1 0 0 0 1

0 0 0 1 1 0 1

0 1 0 0 1 1 0

0 0 1 1 0 0 1

G
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Sauer’s Lemma

• The proof is done by induction

– Case for [k,k]=2k is trivial

– Case for [k,0]=1 is trivial

• Assume the Lemma holds for [k-1,n], [k-1,n-1], 
we show for the case [k,n]
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Sauer’s Lemma

• Pick an element a from V and define U=V¥{a}

• Define
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Hyper-graph representation 

V

Z0

0 1 1 0 1 0 0

1 1 0 0 1 0 0

0 1 1 0 0 0 1

0 0 1 0 1 0 1

0 0 0 0 1 1 1

0 0 1 1 0 0 1

a

Z1
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Sauer’s Lemma

• Note that [k,n]=[k-1,n]+[k-1,n-1]

• So

• Therefore either

• or
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Sauer’s Lemma

• If

• Then there exists G, a subset of U, with |G|=n, 
such that  

is the power set of G (by induction assumption 
on [k-1,n] with |U|=k-1, |G|=n)

• Moreover

– Since 

],1[10 nkZZ 
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Sauer’s Lemma

• If

• Then there exists G’ such that

is the power set of G’

• This is from inductive hypothesis, so we can 
only say that |G’|=n-1   

• We set  
– Let A be any subset of G

– A¥{a} is in both Z0|G’ and Z1|G’

– A is in Z|G

]1,1[10  nkZZ 

'10 )(
G

ZZ 

}{' aGG 
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Sauer’s Lemma (6.2)

• Since [k,n]<kn

• We get this corollary

– Let Z be a subset of {0,1}n, if |Z|rkn then there 
exists a matrix T in {0,1}n x k

– such that 

– Elements of Z need not be binary vectors of the 
same Hamming weight 

)(}1,0{ ZTn 
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The weak theorem

• It is the foundation of the strong theorem

• Purpose of the weak theorem:
– For the given hyper-graph (V,Z) 

– A given x in {0,1}n

– And a random T

– The probability that x is not in T(Z) is bounded

• There are three steps in the proof
– Step 1: Exponential bound

– Step 2: Investigate well spread properties

– Step 3: Proof of the weak theorem
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Step 1: Exponential bound

• Lemma 6.3
– Let x be a given binary vector in {0,1}n

– Let U,U’ be two subsets of V of size d
• While size of intersection of U,U’ is r

– Let T=(T1,…Tn) be sequence of subsets of V
• For each Ti, each element of V is picked independently with 

probability p

– Then probability that x=T(U)=T(U’) is

Where ||x||1 denotes Hamming weight
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Exponential bound

• Proof of Lemma 6.3

– Since Ti are chosen independently

– We try to show that
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Proof of Lemma 6.3

• For xi=0 it is

– For Ti picking no elements from U or U’ 

• For xi=1, that is

– Ti has 1 element from intersection of U and U’

– or Ti has 1 element from U¥U’ and 1 element from 
U’¥U 

rdUU
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Proof of Lemma 6.3

• Probability of the first case

• Probability of the second case

• These two cases are mutually exclusive
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Proof of Lemma 6.3

• Therefore we get the sum

• Thus
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Corollary 6.4

• Set U=U’ we have
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Exponential bound

• Proposition 6.5

– Let (V,Z) be a regular hyper-graph, degree d

– Let T=(T1,…Tn) as defined before, using probability 
p

– U,U’ chosen randomly from Z

• Then

where
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Proof of Proposition 6.5

• Define indicator XU=1 if T(U)=x and XU=0 
otherwise

• Define X=S XU for all U in Z

• X=0 if and only if x is not in T(Z)

• Pr[X=0] b Pr[|X-E[X]|rE[X]]

bVar[X]/(E[X])2          (Chebyshev inequality)
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Proof of Proposition 6.5

• To continue we compute E[X]

• And  E[X2]
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Proof of Proposition 6.5
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Step 2: Well spread hyper-graph

• The previous result depends on R

• We investigate R in this part through well 
spread hyper-graph

• Definition: (V,Z) is well spread if for all subset 
of V (denoted by W) of size at most d, the 
fraction of hyper-edges containing W is 
limited by 
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Well spread hyper-graph

• Lemma 6.6 

– Let (V,Z) be a regular and well spread hyper-graph, 
degree d

– Choose U and U’ uniformly from Z independently

– Let 

– Then for all r>0, we have

'UUR 
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Proof of Lemma 6.6

• Proof: in the following we can assume U is 
fixed while U’ is random

– If 

– Then U’ contains a subset of U of size r

– So 
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Well spread hyper-graph

• Definition: For any W which is subset of V, the induced hyper-

graph is defined by

}:\{ ZWUWVUZW  

Z

1 1 0 0 1 0 0

1 1 1 0 0 0 0

1 1 0 0 0 0 1

0 0 0 1 1 0 1

0 0 0 1 1 1 0

0 1 1 1 0 0 1

ZW

W
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Well spread hyper-graph

• Properties of induced hyper-graphs

– |Z| is well spread if for every W of size at most d,

– ZW is regular with degree d’=d-|W|, where d is 
degree of Z

– If |W|=0 then Z=ZW

– If

• Then

• Otherwise (ZW)W’ is empty 
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Lemma 6.7

• For any regular hyper-graph (V,Z) of degree h, there 
exists W such that (V,ZW) is well spread, and 

• Proof: 
– If (V,Z) is well spread, then set W to be empty (trivial case)

– Otherwise (V,Z) is not well spread, by definition there is at 
least one W size at most h such that

– Observe that this cannot be true for all W 
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Lemma 6.7

• Let W be maximal (of size) in all sets fulfilling 
the condition (choose any if there are more 
than one)

• |ZW|>|Z|/h! is obviously true

• ZW is of degree d=h-|W|

• Next, for any U that is subset of V

– If U is empty |(ZW)U|=|ZW|

– If U and W intersect then |(ZW)U|=0 
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Lemma 6.7

• Assume U is not empty and does not intersect 
with W

• This is true for any U, so ZW is well spread 
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Step 3: The weak theorem 

• Theorem 6.8: for sufficiently small e, positive 
integer n and degree h hyper-graph (V,Z) such 
that

• Choose T=(T1,…Tn) where Ti are subsets of V 
picking elements of V independently with 
probability p=e/(hn)

• Then for every x in {0,1}n

e/
!

nh
VhZ 

e51)](Pr[  ZTx
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Proof of theorem 6.8

• Lemma 6.7 says there is a W such that (V,ZW) 
is well spread and also 

• Let F be the event of having none of elements 
in W are in any of Ti 

– We have Pr[~F]b |W|np b hnp = e

• Also note that
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Proof of theorem 6.8

• Let d be the degree of ZW

• Since

• We have

• Next, with Proposition 6.5 

• Where R is the size of intersection of two 
random elements in ZW
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Proof of theorem 6.8
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Proof of theorem 6.8

• ZW is well spread, so Pr[Rrr]<1/r!

• So 
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Proof of theorem 6.8

e

e
ee

e

e
e



5

)1)(
1

1
1(

)1(

]Pr[]|)(Pr[

]Pr[]|)(Pr[]Pr[]|)(Pr[

)](Pr[

)
1

1
1(



















e

e

e

e

FFZTx

FFZTxFFZTx

ZTx

7.2

2)
1

1
1(








eee

e

For sufficiently small e



44

The final theorem

• The weak theorem is only about bounding the probability of 
failure for one x

• Before the proving the final theorem, we need the following 
probabilistic version of Sauer’s Lemma

• Lemma 6.9: Let |V|=n. Let W be a set of hyper-edges and G is 
uniformly selected from all subsets of V, and r(G) is the power 

set of G, then
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Hyper-graph illustration 

V

W

0 1 1 0 1 0 0

1 1 0 0 1 0 0

0 1 1 0 0 0 1

0 0 0 1 1 0 1

0 1 0 0 1 1 0

0 0 1 1 0 0 1

G
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Proof of Lemma 6.9

• Proof is by induction on n, which is trivial for 
n=0. If the statement is true for n, add a new 
element b to V

• For any hyper-graph (V,W)

• Define W0 and W1 same as Lemma 6.1 based 
on b

• Select G, define G’=G¥{b} 
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Hyper-graph representation 

V

W0

0 1 1 0 1 0 0

1 1 0 0 1 0 0

0 1 1 0 0 0 1

0 0 1 0 1 0 1

0 0 0 0 1 1 1

0 0 1 1 0 0 1

b

W1



48

Proof of Lemma 6.9

• If b is not in G and

– Then W|G=r(G) 

• If b is in G and

– Then W|G=r(G) too

• These two events are mutually exclusive

• And b is in G with ½ chance

• Also, induction hypothesis can be applied on 
W0 and W1
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Proof of Lemma 6.9
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Finally… (Theorem 4.6)

• The trick is to use a larger T’ in {0,1}4n x k and then 
shrink it

• Each entry is 1 with probability p=e/(4hn)

• Next, choose a random G as subset of {1,…4n} 

• If |G|rn, set T as the n by k matrix using rows of T’ 
selected by first n elements of G

• If |G|<n, then select T randomly

• The change is only mental

– Distribution of T is unchanged
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Proof of theorem 4.6

• Define

• If |G|rn and

– Then    
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Proof of theorem 4.6

• We investigate separately the probability of 
|G|<n and

• Note that E[|G|]=2n and Var[|G|]=n from 
binomial distribution  

• For sufficiently large n, using Chebyshev 
inequality
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Proof of theorem 4.6
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Proof of theorem 4.6

• So

• And

• Therefore the probability that T satisfies 
theorem 4.6 is at least 1-6e
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Thank you very much for 
listening

Q&A session


