

Chapter 6: Low-degree Hypergraph

Kai Yuen Cheong
Miyaji Lab, JAIST

Purpose of this chapter

- Prove Theorem 4.6 from Chapter 4
- Independent from the rest of the book
- The theorem is first stated in lattice form
- But it is more natural to present in terms of hyper-graph
- In this talk, we
 - Introduce and use hyper-graphs
 - Prove two related theorems
 - Prove the main theorem

The theorem in lattice form

- The main theorem: if we have
 - A set Z of binary vectors in $\{0,1\}^k$
 - Each vector has exactly h ones, $k-h$ zeros
 - An integer $n < k$ and a small ε
 - Fulfilling the condition

$$|Z| \geq h! k^{4\sqrt{hn}/\varepsilon}$$

The theorem in lattice form

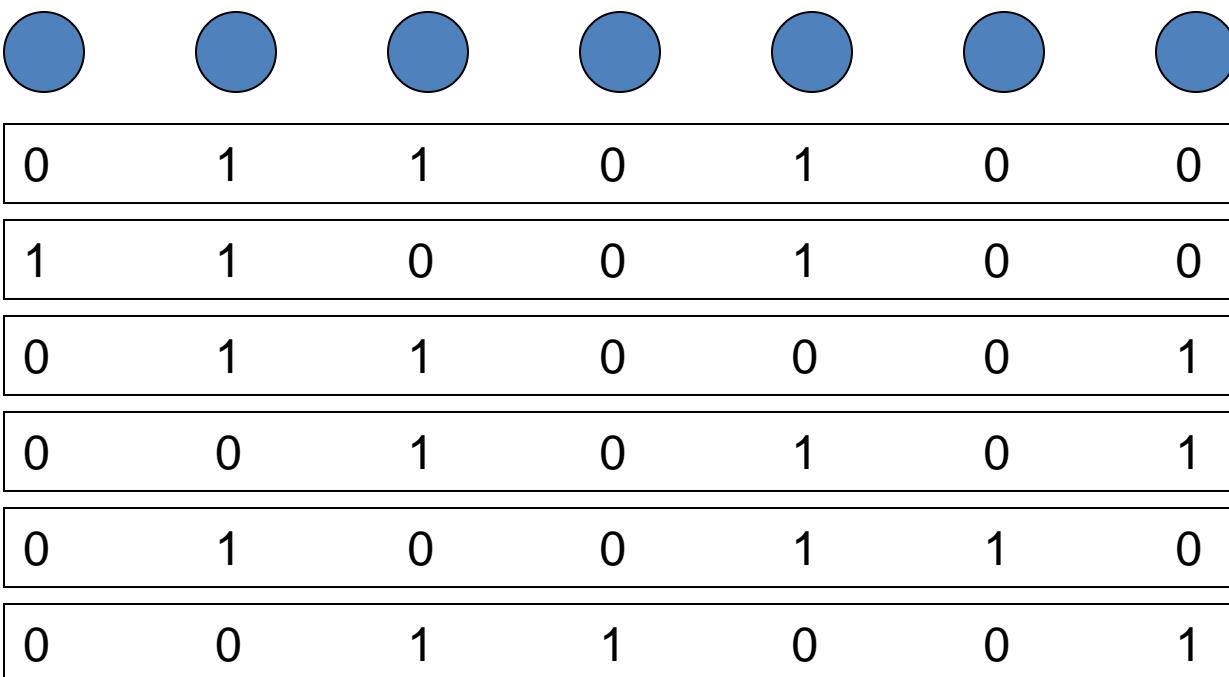
- Then:
 - There exists a binary matrix T in $\{0,1\}^{n \times k}$
 - Such that $\{0,1\}^n \subseteq T(Z) = \{Tz : z \in Z\}$
 - Moreover, if T is randomly chosen such that each element is 1 with probability $\varepsilon/(4hn)$
 - Then the event happens with probability at least $1-6\varepsilon$

Hyper-graph

- Graph: $\{V, E\}$
 - V : a set of vertices
 - E : a set of edges e , where each e must be a set of two vertices
- Hyper-graph: $\{V, Z\}$
 - V : set of vertices
 - Z : the set of hyper-edge z , where z can be any subset of V
- Regular hyper-graph
 - For each z in Z , the size $|z|$ is the same
 - All hyper-edges contains the same number of vertices
 - $h=|z|$ is called the degree of regular hyper-graph

Hyper-graph representation

V



Z

0	1	1	0	1	0	0
1	1	0	0	1	0	0
0	1	1	0	0	0	1
0	0	1	0	1	0	1
0	1	0	0	1	1	0
0	0	1	1	0	0	1

The theorem in hyper-graph

- Let (V, Z) be a regular hyper-graph, degree h , and $|V|=k$
- Let $T=(T_1, \dots, T_n)$ be a sequence of random subsets of V
 - Where in each T_i elements of V are picked independently with probability $\varepsilon/(4hn)$
- Let U be any subset of V , define

$$T(U) = (|T_1 \cap U|, |T_2 \cap U|, \dots, |T_n \cap U|)$$

The theorem in hyper-graph

- Define

$$T(Z) = \{T(U) : U \in Z\}$$

- The theorem:

- If $|Z| \geq h!k^{4\sqrt{hn}/\varepsilon}$

- Then $\{0,1\}^n \subseteq T(Z)$

- with probability at least $1-6\varepsilon$

Warm up before proving the main theorem

- Sauer's Lemma
 - (Lemma 6.1, 6.2)
- Weak version of the main theorem
 - (Lemma 6.3-6.7, Theorem 6.8)

Sauer's Lemma

- It is a warm up for the main theorem, by assuming that each T_i only contains one element of V
- Let G be a subset of V , define

$$Z|_G = \{A \cap G : A \in Z\}$$

- Define the number of choices for choosing at most n from k elements as

$$[k, n] = \sum_{i=0}^n \binom{k}{i}$$

Sauer's Lemma (6.1)

- If $|Z| \geq [k, n]$ then there exists a G of size n such that $Z|_G$ is the power set of G

V	●	●	●	●	●	●	●
Z	0	1	1	0	1	0	0
	1	1	0	0	1	0	0
	0	1	1	0	0	0	1
	0	0	0	1	1	0	1
	0	1	0	0	1	1	0
	0	0	1	1	0	0	1
G							

Sauer's Lemma

- The proof is done by induction
 - Case for $[k,k]=2^k$ is trivial
 - Case for $[k,0]=1$ is trivial
- Assume the Lemma holds for $[k-1,n]$, $[k-1,n-1]$, we show for the case $[k,n]$

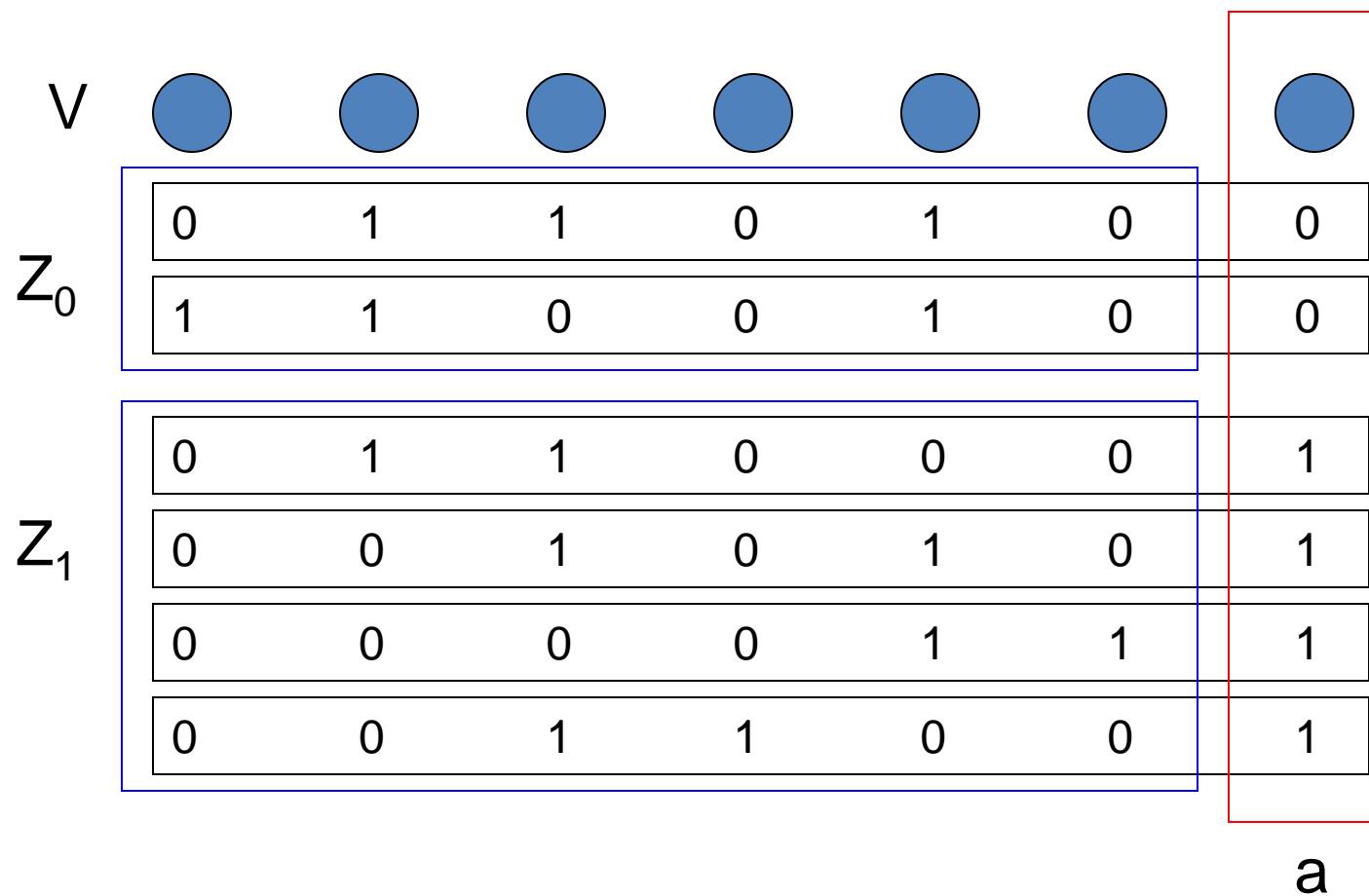
Sauer's Lemma

- Pick an element a from V and define $U = V \setminus \{a\}$
- Define

$$Z_0 = \{A \subseteq U : A \in Z\}$$

$$Z_1 = \{A \subseteq U : A \cup \{a\} \in Z\}$$

Hyper-graph representation



Sauer's Lemma

- Note that $[k, n] = [k-1, n] + [k-1, n-1]$
- So

$$|Z_0 \cup Z_1| + |Z_0 \cap Z_1| = |Z|$$

$$\geq [k, n]$$

$$= [k-1, n] + [k-1, n-1]$$

- Therefore either $|Z_0 \cup Z_1| \geq [k-1, n]$
- or $|Z_0 \cap Z_1| \geq [k-1, n-1]$

Sauer's Lemma

- If $|Z_0 \cup Z_1| \geq [k-1, n]$
- Then there exists G , a subset of U , with $|G|=n$, such that $(Z_0 \cup Z_1)|_G$ is the power set of G (by induction assumption on $[k-1, n]$ with $|U|=k-1$, $|G|=n$)
- Moreover $(Z_0 \cup Z_1)|_G = Z|_G$
 - Since $a \notin G$

Sauer's Lemma

- If $|Z_0 \cap Z_1| \geq [k-1, n-1]$
- Then there exists G' such that $(Z_0 \cap Z_1)|_{G'}$ is the power set of G'
- This is from inductive hypothesis, so we can only say that $|G'| = n-1$
- We set $G = G' \cup \{a\}$
 - Let A be any subset of G
 - $A \setminus \{a\}$ is in both $Z_0|_{G'}$ and $Z_1|_{G'}$
 - A is in $Z|_G$

Sauer's Lemma (6.2)

- Since $[k,n] < k^n$
- We get this corollary
 - Let Z be a subset of $\{0,1\}^n$, if $|Z| \geq k^n$ then there exists a matrix T in $\{0,1\}^{n \times k}$
 - such that $\{0,1\}^n \subseteq T(Z)$
 - Elements of Z need not be binary vectors of the same Hamming weight

The weak theorem

- It is the foundation of the strong theorem
- Purpose of the weak theorem:
 - For the given hyper-graph (V, Z)
 - A given x in $\{0,1\}^n$
 - And a random T
 - The probability that x is not in $T(Z)$ is bounded
- There are three steps in the proof
 - Step 1: Exponential bound
 - Step 2: Investigate well spread properties
 - Step 3: Proof of the weak theorem

Step 1: Exponential bound

- Lemma 6.3
 - Let x be a given binary vector in $\{0,1\}^n$
 - Let U, U' be two subsets of V of size d
 - While size of intersection of U, U' is r
 - Let $T = (T_1, \dots, T_n)$ be sequence of subsets of V
 - For each T_i , each element of V is picked independently with probability p
 - Then probability that $x = T(U) = T(U')$ is

$$\Phi(r) = (1-p)^{(2d-r)n} \left(\frac{pr}{1-p} + \left(\frac{p(d-r)}{1-p} \right)^2 \right)^{\|x\|_1}$$

Where $\|x\|_1$ denotes Hamming weight

Exponential bound

- Proof of Lemma 6.3
 - Since T_i are chosen independently

$$\Pr[T(U) = T(U') = x] = \prod_{i=1}^n \Pr[|T_i \cap U| = |T_i \cap U'| = x_i]$$

- We try to show that

$$\Pr[|T_i \cap U| = |T_i \cap U'| = x_i] = (1-p)^{2d-r} \left(\frac{pr}{1-p} + \left(\frac{p(d-r)}{1-p} \right)^2 \right)^{x_i}$$

Proof of Lemma 6.3

- For $x_i=0$ it is

$$\Pr[|T_i \cap U| = |T_i \cap U'| = 0] = (1-p)^{|U \cup U'|} = (1-p)^{2d-r}$$

- For T_i picking no elements from U or U'

- For $x_i=1$, that is $|T_i \cap U| = |T_i \cap U'| = 1$

- T_i has 1 element from intersection of U and U'

- or T_i has 1 element from $U \setminus U'$ and 1 element from $U' \setminus U$

Proof of Lemma 6.3

- Probability of the first case

$$|U \cap U'| \cdot p(1-p)^{|U \cup U'|-1} = (1-p)^{2d-r} \left(\frac{pr}{1-p}\right)$$

- Probability of the second case

$$|U \setminus U'| \cdot |U' \setminus U| \cdot p^2(1-p)^{|U \cup U'|-2} = (1-p)^{2d-r} \left(\frac{p(d-r)}{1-p}\right)^2$$

- These two cases are mutually exclusive

Proof of Lemma 6.3

- Therefore we get the sum

$$\Pr[|T_i \cap U| = |T_i \cap U'| = 1] = (1-p)^{2d-r} \left(\frac{pr}{1-p} + \left(\frac{p(d-r)}{1-p} \right)^2 \right)$$

- Thus

$$\Pr[|T_i \cap U| = |T_i \cap U'| = x_i] = (1-p)^{2d-r} \left(\frac{pr}{1-p} + \left(\frac{p(d-r)}{1-p} \right)^2 \right)^{x_i}$$

Corollary 6.4

- Set $U=U'$ we have

$$\Pr_T[T(U) = x]$$

$$= \Phi(d)$$

$$= (1-p)^{dn} \left(\frac{pd}{1-p} \right)^{\|x\|_1}$$

Exponential bound

- Proposition 6.5
 - Let (V, Z) be a regular hyper-graph, degree d
 - Let $T = (T_1, \dots, T_n)$ as defined before, using probability p
 - U, U' chosen randomly from Z
- Then $\Pr[x \notin T(Z)] \leq \mathop{E}_R[e^{\theta R}] - 1$
where

$$\theta = \frac{np}{1-p} + \frac{n}{pd^2}$$

$$R = |U \cap U'|$$

Proof of Proposition 6.5

- Define indicator $X_U=1$ if $T(U)=x$ and $X_U=0$ otherwise
- Define $X=\sum X_U$ for all U in Z
- $X=0$ if and only if x is not in $T(Z)$
- $\Pr[X=0] \leq \Pr[|X-E[X]| \geq E[X]]$
 $\leq \text{Var}[X]/(E[X])^2$ (Chebyshev inequality)

Proof of Proposition 6.5

- To continue we compute $E[X]$

$$E[X] = \sum_T E[X_U] = \sum_{U \in Z} \Pr[T(U) = x] = |Z| \cdot \Phi(d)$$

- And $E[X^2]$

$$\begin{aligned} E[X^2] &= E[(\sum_{U \in Z} X_U)^2] \\ &= E[\sum_{U, U' \in Z} X_U \cdot X_{U'}] = \sum_{U, U' \in Z} \Pr[T(U) = T(U') = x] \\ &= |Z|^2 E[\Phi(R)] \end{aligned}$$

Proof of Proposition 6.5

$$\begin{aligned} \Pr_T[x \notin T(Z)] &\leq \frac{E[\Phi(R)]}{\frac{R}{\Phi(d)^2} - 1} \\ &= E_R[(1-p)^{-nR} \left(\frac{(1-p)R}{pd^2} + \left(1 - \frac{R}{d}\right)^2 \right)^{\|x\|_1} - 1] \\ &< E_R[(1 + \frac{p}{1-p})^{nR} \left(\frac{R}{pd^2} + 1 \right)^n] - 1 \quad \text{Increase value of some terms} \\ &< E_R[e^{\frac{pnR}{1-p}} e^{\frac{nR}{pd^2}}] - 1 \quad (1+1/x)^x < e \\ &= E_R[e^{R\theta} - 1] \end{aligned}$$

Step 2: Well spread hyper-graph

- The previous result depends on R
- We investigate R in this part through well spread hyper-graph
- Definition: (V, Z) is well spread if for all subset of V (denoted by W) of size at most d , the fraction of hyper-edges containing W is limited by

$$\frac{|\{U \in Z : W \subseteq U\}|}{|Z|} \leq \frac{1}{d(d-1)\dots(d-|W|+1)} = \frac{(d-|W|)!}{d!}$$

Well spread hyper-graph

- Lemma 6.6
 - Let (V, Z) be a regular and well spread hyper-graph, degree d
 - Choose U and U' uniformly from Z independently
 - Let $R = |U \cap U'|$
 - Then for all $r > 0$, we have

$$\Pr[R \geq r] < \frac{1}{r!}$$

Proof of Lemma 6.6

- Proof: in the following we can assume U is fixed while U' is random

- If $|U \cap U'| \geq r$

- Then U' contains a subset of U of size r

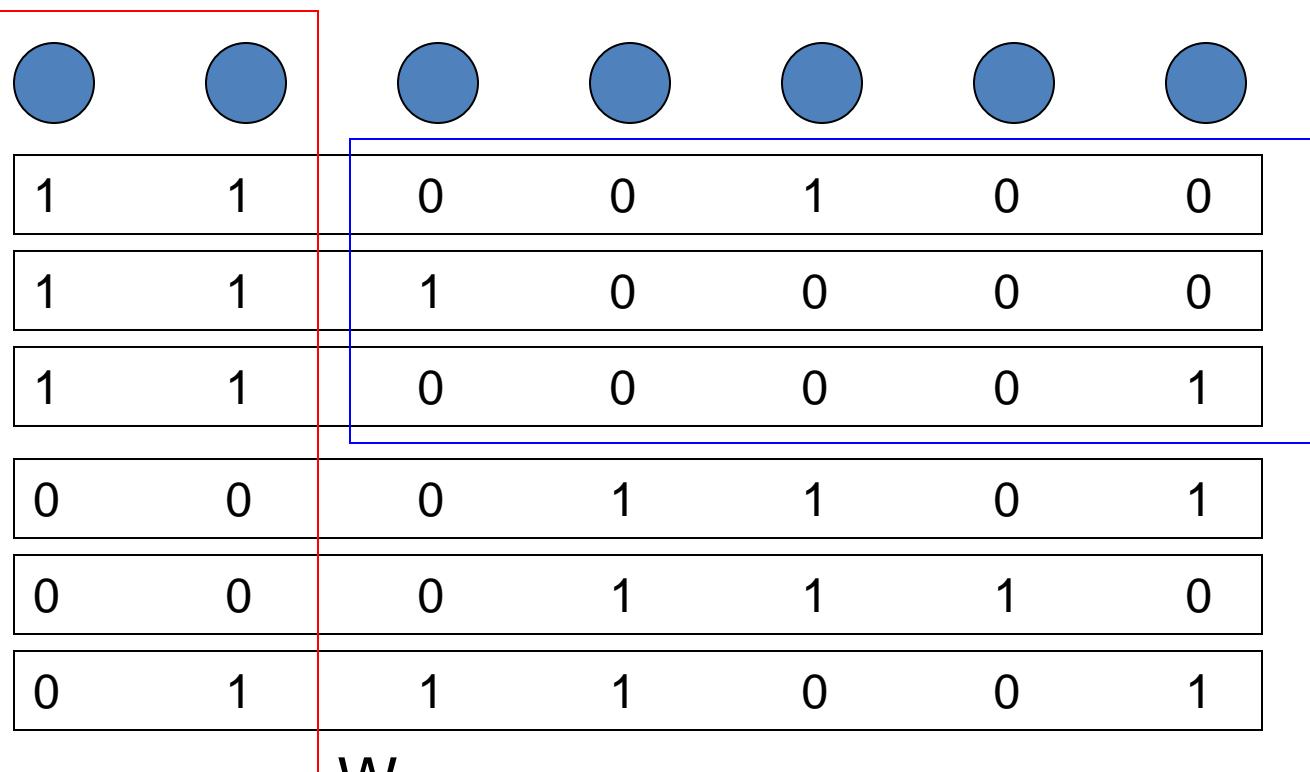
- So

$$\begin{aligned} \Pr_{U'}[|U \cap U'| \geq r] &\leq \sum_{\substack{W \subseteq U \\ |W|=r}} \Pr_{U'}[W \subseteq U'] \\ &= \sum_{\substack{W \subseteq U \\ |W|=r}} \frac{|\{U' \in Z : W \subseteq U'\}|}{|Z|} \leq \binom{d}{r} \frac{(d-r)!}{d!} = \frac{1}{r!} \end{aligned}$$

Well spread hyper-graph

- Definition: For any W which is subset of V , the induced hyper-graph is defined by

$$Z_W = \{U \subseteq V \setminus W : U \cup W \in Z\}$$



1	1	0	0	1	0	0
1	1	1	0	0	0	0
1	1	0	0	0	0	1
0	0	0	1	1	0	1
0	0	0	1	1	1	0
0	1	1	1	0	0	1

W

Z

Z_W

Well spread hyper-graph

- Properties of induced hyper-graphs
 - $|Z|$ is well spread if for every W of size at most d ,
$$|Z_W| \leq \frac{(d - |W|)!}{d!} |Z|$$
 - Z_W is regular with degree $d' = d - |W|$, where d is degree of Z
 - If $|W| = 0$ then $Z = Z_W$
 - If $W \cap W' = \emptyset$
 - Then $(Z_W)_{W'} = Z_{W \cup W'}$
 - Otherwise $(Z_W)_{W'}$ is empty

Lemma 6.7

- For any regular hyper-graph (V, Z) of degree h , there exists W such that (V, Z_W) is well spread, and $|Z_W| > |Z|/h!$
- Proof:
 - If (V, Z) is well spread, then set W to be empty (trivial case)
 - Otherwise (V, Z) is not well spread, by definition there is at least one W size at most h such that
$$|Z_W| > \frac{(h - |W|)!}{h!} |Z|$$
 - Observe that this cannot be true for all W

Lemma 6.7

- Let W be maximal (of size) in all sets fulfilling the condition (choose any if there are more than one)
- $|Z_W| > |Z|/h!$ is obviously true
- Z_W is of degree $d = h - |W|$
- Next, for any U that is subset of V
 - If U is empty $|(Z_W)_U| = |Z_W|$
 - If U and W intersect then $|(Z_W)_U| = 0$

Lemma 6.7

- Assume U is not empty and does not intersect with W

$$\begin{aligned}|(Z_W)_U| &= |Z_{W \cup U}| \\ &\leq \frac{(h - |W \cup U|)!}{h!} |Z| && \text{Maximality of } W \\ &= \frac{(h - |W| - |U|)!}{(h - |W|)!} \frac{(h - |W|)!}{h!} |Z| \\ &< \frac{(d - |U|)!}{d!} |Z_W|\end{aligned}$$

- This is true for any U , so Z_W is well spread

Step 3: The weak theorem

- Theorem 6.8: for sufficiently small ε , positive integer n and degree h hyper-graph (V, Z) such that $|Z| \geq h!|V|^{\sqrt{hn}/\varepsilon}$
- Choose $T = (T_1, \dots, T_n)$ where T_i are subsets of V picking elements of V independently with probability $p = \varepsilon/(hn)$
- Then for every x in $\{0,1\}^n$
$$\Pr[x \in T(Z)] > 1 - 5\varepsilon$$

Proof of theorem 6.8

- Lemma 6.7 says there is a W such that (V, Z_W) is well spread and also
$$|Z_W| \geq |Z|/h! > |V|^{\sqrt{hn/\varepsilon}}$$
- Let F be the event of having none of elements in W are in any of T_i
 - We have $\Pr[\sim F] \leq |W|np \leq hnp = \varepsilon$
- Also note that

$$\Pr_T[x \notin T(Z) \mid F] \leq \Pr_T[x \notin T(Z_W)]$$

Proof of theorem 6.8

- Let d be the degree of Z_w
- Since $|V|^{\sqrt{hn/\varepsilon}} < |Z_w| \leq \binom{|V|}{d} < |V|^d$
- We have $d > \sqrt{hn/\varepsilon}$
- Next, with Proposition 6.5

$$\Pr_T[x \notin T(Z_w)] \leq E[e^{R\theta}] - 1$$

- Where R is the size of intersection of two random elements in Z_w

Proof of theorem 6.8

$$\begin{aligned}\theta &= \frac{np}{1-p} + \frac{n}{pd^2} \\ &= \frac{\varepsilon}{h - \varepsilon/n} + \frac{hn^2}{\varepsilon d^2} && hnp = \varepsilon \\ &< \frac{\varepsilon}{1-\varepsilon} + \frac{hn^2}{\varepsilon d^2} \\ &< \frac{\varepsilon}{1-\varepsilon} + \varepsilon && d > \sqrt{hn}/\varepsilon\end{aligned}$$

Proof of theorem 6.8

- Z_W is well spread, so $\Pr[R \geq r] < 1/r!$

- So
$$\begin{aligned} E[e^{R\theta}] &= \sum_{r \geq 0} e^{r\theta} \Pr[R = r] \\ &= \sum_{r \geq 0} e^{r\theta} (\Pr[R \geq r] - \Pr[R \geq r + 1]) \\ &= \sum_{r \geq 0} e^{r\theta} \Pr[R \geq r] + \sum_{r \geq 1} e^{(r-1)\theta} \Pr[R \geq r] \\ &= 1 + (1 - e^{-\theta}) \sum_{r \geq 1} e^{r\theta} \Pr[R \geq r] \\ &< 1 + \theta \sum_{r \geq 1} \frac{e^{r\theta}}{r!} \end{aligned}$$
Because $1 - e^{-x} < x$

$$= 1 + \theta(e^{e^\theta} - 1)$$

Proof of theorem 6.8

$$\Pr[x \notin T(Z)]$$

$$= \Pr[x \notin T(Z) | F] \Pr[F] + \Pr[x \notin T(Z) | \bar{F}] \Pr[\bar{F}]$$

$$\leq \Pr[x \notin T(Z) | F] + \Pr[\bar{F}]$$

$$\leq \varepsilon + \theta(e^{e^\theta} - 1)$$

$$< \varepsilon + \varepsilon \left(1 + \frac{1}{1-\varepsilon}\right) \left(e^{e^{\varepsilon(1+\frac{1}{1-\varepsilon})}} - 1\right)$$

$$< 5\varepsilon$$

$$\begin{aligned} \left(1 - \frac{1}{1-\varepsilon}\right) &\rightarrow 2 \\ e^{e^\theta} &\rightarrow e \approx 2.7 \end{aligned}$$

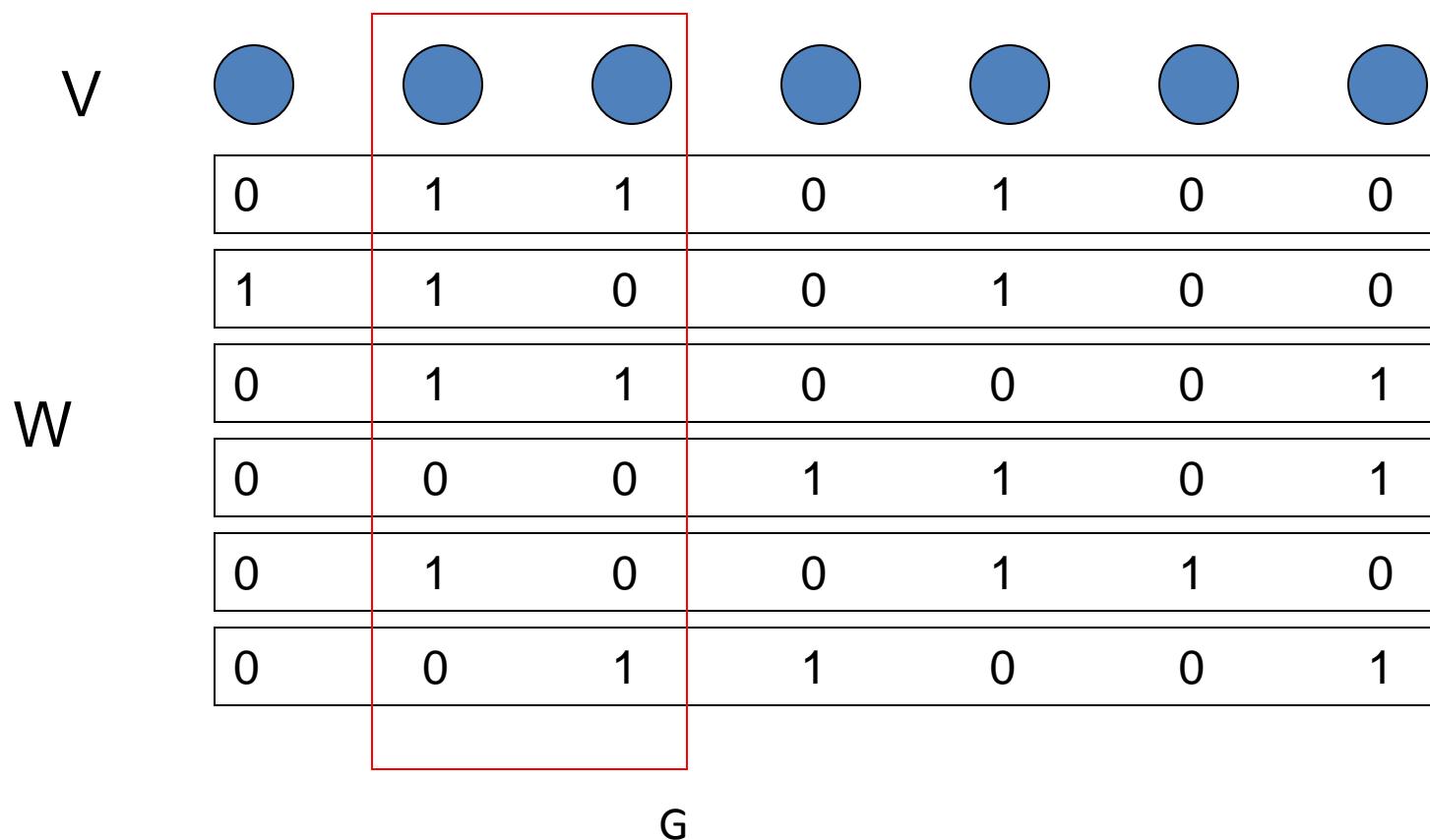
For sufficiently small ε

The final theorem

- The weak theorem is only about bounding the probability of failure for one x
- Before the proving the final theorem, we need the following probabilistic version of Sauer's Lemma
- Lemma 6.9: Let $|V|=n$. Let W be a set of hyper-edges and G is uniformly selected from all subsets of V , and $\rho(G)$ is the power set of G , then

$$\Pr_G[W|_G = \rho(G)] \geq \frac{|W|}{2^n}$$

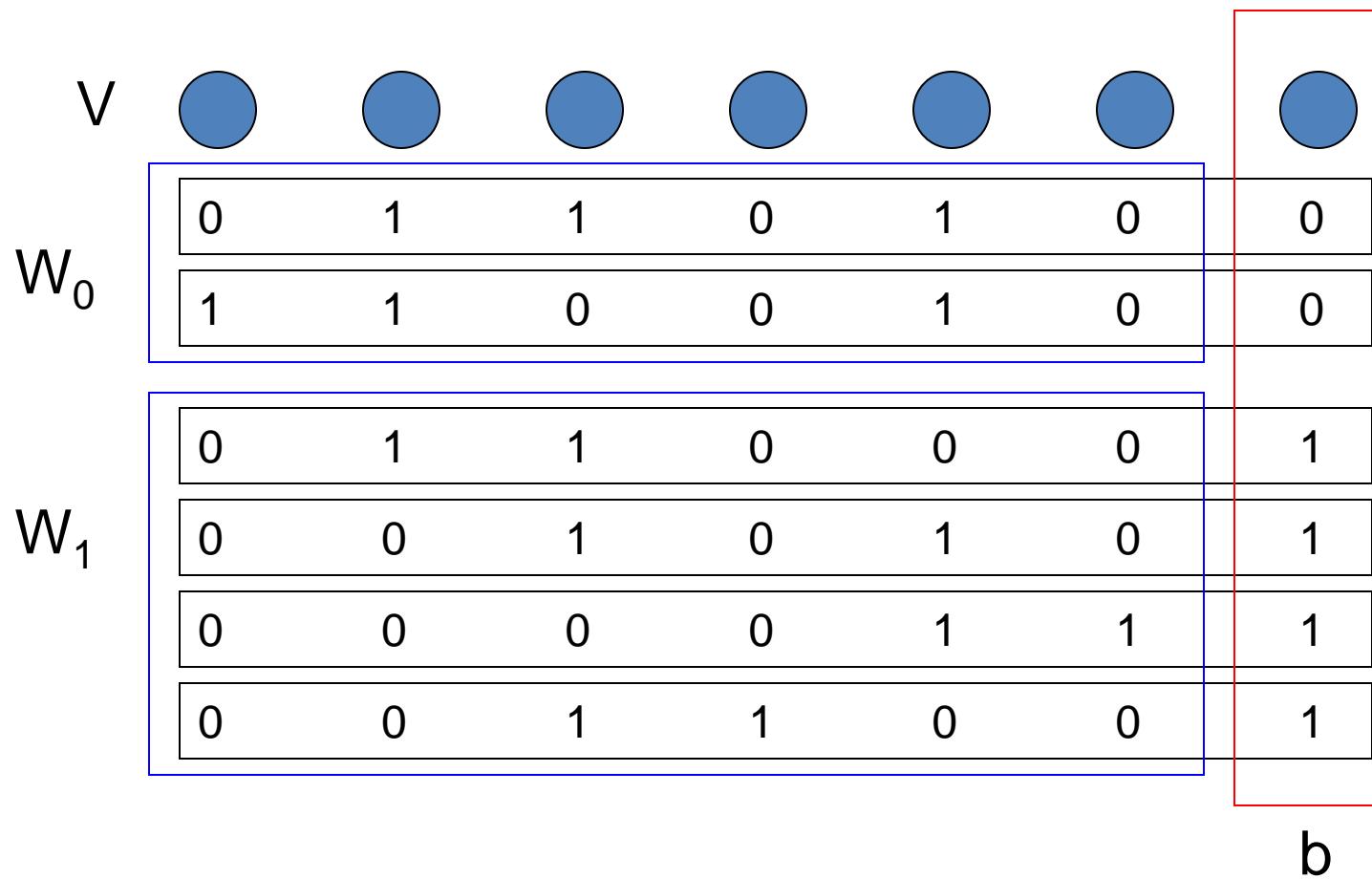
Hyper-graph illustration



Proof of Lemma 6.9

- Proof is by induction on n , which is trivial for $n=0$. If the statement is true for n , add a new element b to V
- For any hyper-graph (V, W)
- Define W_0 and W_1 same as Lemma 6.1 based on b
- Select G , define $G' = G \setminus \{b\}$

Hyper-graph representation



Proof of Lemma 6.9

- If b is not in G and $(W_0 \cup W_1)|_{G'} = \rho(G')$
 - Then $W|_G = \rho(G)$
- If b is in G and $(W_0 \cap W_1)|_{G'} = \rho(G')$
 - Then $W|_G = \rho(G)$ too
- These two events are mutually exclusive
- And b is in G with $\frac{1}{2}$ chance
- Also, induction hypothesis can be applied on W_0 and W_1

Proof of Lemma 6.9

$$\Pr[W|_G = \rho(G)]$$

$$\geq \frac{1}{2} \Pr[(W_0 \cap W_1)|_{G'} = \rho(G')] + \frac{1}{2} \Pr[(W_0 \cup W_1)|_{G'} = \rho(G')]$$

$$\geq \frac{1}{2} \left(\frac{|W_0 \cap W_1|}{2^n} \right) + \frac{1}{2} \left(\frac{|W_0 \cup W_1|}{2^n} \right)$$

$$= \frac{|W|}{2^{n+1}}$$

Finally... (Theorem 4.6)

- The trick is to use a larger T' in $\{0,1\}^{4n \times k}$ and then shrink it
- Each entry is 1 with probability $p=e/(4hn)$
- Next, choose a random G as subset of $\{1, \dots, 4n\}$
- If $|G| \geq n$, set T as the n by k matrix using rows of T' selected by first n elements of G
- If $|G| < n$, then select T randomly
- The change is only mental
 - Distribution of T is unchanged

Proof of theorem 4.6

- Define $W = T'(Z) \cap \{0,1\}^{4n}$
- If $|G| \geq n$ and $\{0,1\}^{|G|} \subseteq W|_G$
 - Then $\{0,1\}^n \subseteq T(Z)$

W

0	1	1	0	1	0	0
1	1	0	0	1	0	0
0	1	1	0	0	0	1
0	0	0	1	1	0	1
0	1	0	0	1	1	0
0	0	1	1	0	0	1

G

Proof of theorem 4.6

- We investigate separately the probability of $|G| < n$ and $\{0,1\}^{|G|} \subseteq W|_G$
- Note that $E[|G|] = 2n$ and $\text{Var}[|G|] = n$ from binomial distribution
- For sufficiently large n , using Chebyshev inequality

$$\Pr[|G| < n] < \Pr[|G| - E[|G|] < n] < \frac{1}{n} < \varepsilon$$

Proof of theorem 4.6

$$\begin{aligned} & \Pr_{G,T'}[\{0,1\}^{|G|} \subseteq W|_G] \\ &= E[\Pr_{T'}[\{0,1\}^{|G|} \subseteq W|_G]] \\ &\geq E\left[\frac{|W|}{2^{4n}}\right] && \text{Lemma 6.9} \\ &= E\left[\Pr_{x \in \{0,1\}^{4n}}[x \in W]\right] \\ &= \underset{x \in \{0,1\}^{4n}}{E} \left[\Pr_{T'}[x \in T'(Z)] \right] \\ &\geq \min_{x \in \{0,1\}^{4n}} \Pr_{T'}[x \in T'(Z)] \\ &\geq 1 - 5\epsilon && \text{Theorem 6.8} \end{aligned}$$

Proof of theorem 4.6

- So $\Pr[|G| < n] < \varepsilon$
- And $\Pr_{G,T}[\{0,1\}^{|G|} \not\subset W|_G] < 5\varepsilon$
- Therefore the probability that T satisfies theorem 4.6 is at least $1-6\varepsilon$

Thank you very much for
listening

Q&A session