
自己評価書

1 背景

楕円暗号は楕円曲線上の離散対数問題 (ECDLP)の困難さに基づく暗号である．ECDLPに対
する解法として現在提案されている方法に，Pohlig-Hellman法 [12]，Pollard-�法 [13]等の全数
探索的な攻撃と，SSSAアルゴリズムと呼ばれる楕円曲線の位数の標数 p-divisible part,すなわ
ち楕円曲線の位数の pべき部に対する攻撃 [17, 18, 1]がある．これらは，どちらも簡単に回避で
きる攻撃である．前者の全数探索的な攻撃は，ベースポイントの位数が大きな素数であれば回避
でき，後者の SSSA攻撃については Fp 上の楕円曲線ならば，トレースが 1の場合を除けばよい
ので，いずれも容易に回避できる．さらに，ECDLPを k次拡大体上の離散対数問題（DLP）に
確率的多項式時間内で帰着し，DLPに対する解法を適用する FR-帰着法 [4]がある．MOV-帰着
法は FR-帰着法と本質的に同じなので以下，FR-帰着法のみを述べる．現在，DLPに対する解法
として提案されている最高速のアルゴリズムは数体ふるい法であるが，任意の体に適用すること
はできない．現実的な仮定のもとでの最高速なアルゴリズムは 2次ふるい法で，オーダーとして
Lq[1=2; c] = exp((c+ o(1))(log q)1=2(log log q)1=2)の準指数時間アルゴリズムとなる．このことか
ら，拡大次数が k > log qを満たすとDLPへの帰着攻撃は指数時間になり，FR-帰着法が脅威にな
らない [14]．したがって，曲線を構成する際にはFR-帰着法が脅威にならない条件，FR-condition,
i.e.

FR� condition：1 � k � log qに対して qk 6= 1 (mod n)が成り立つ

ように構成する必要がある．ここで，Fq 上定義された楕円曲線を E=Fq，ベースポイントをG 2
E(Fq )，その位数を n := ord(G)とする．
通常，楕円曲線を構成する場合は，上で述べたような既知の攻撃に対する安全性のチェックを
行う．つまり，E=Fq，G 2 E(Fq )，n = ord(G)（最大素数位数）を n � qかつ n 6= ch(Fq )，FR-

conditionを満たすように構成する．構成方法としては SEA[16]と呼ばれる元の個数を計算する方
法，CM法を用いる方法がある．どちらも高速に動くが，スマートカード等の小メモリサイズで
実現するには何らかの工夫が必要である．通常，楕円曲線暗号を構築する際，そこで用いる楕円
曲線を全ユーザで固定する場合が多い．しかし安全性の観点からは，ユーザ毎に異なる楕円曲線
を用いることが望ましい．特に近年の特定の楕円曲線に対する攻撃は，全ユーザが同じ曲線を利
用する危険性に対する警告ともいえる．また，近年の携帯電話をはじめとする携帯端末の普及を
考えると，小メモリ，小CPUで，楕円曲線を生成できることは，安全性，汎用性の観点からも望
ましい．このような容易な楕円曲線の生成が可能になれば，ユーザ毎に異なる楕円曲線を生成す
る状況も十分想定できるようになるだろう．その観点からは，現在の SEA, CM-法により単純に
楕円曲線を生成するには限界がある．これらの方法に，なんらかの工夫を付加する必要がある．
そこで我々は，99年度より FR-conditionについて explicitな条件を与える研究を行ってきた．

[9]では，FR-帰着法に対して弱い曲線の explicitな条件を示したが，今回はじめて FR-帰着法に
対する安全性が保証できる explicitなトレースの条件を導き出した．本条件を用いることで FR-

帰着法に対する安全性が保証された楕円曲線を容易にシステマティックに生成することができる．
本提案では，この楕円曲線を用いて ECDH鍵共有方とその一般化を実現する．
本評価書の構成は以下のとおりである．2章で提案する基本関数である ECDLPの安全性，そ
してECDH鍵共有方及びその一般化である提案ECDH鍵共有方の安全性について述べる．3章で
は提案楕円曲線の生成アルゴリズムについて実験的な評価を行う．4章では，ECDH鍵共有方及
び提案鍵共有方の実装評価について述べる．3章は，自己評価書としては必須の項目ではないが，
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本提案の 1つの特徴であるのであえて記述する．

2 安全性に対する評価

2.1 楕円曲線上の離散対数問題に関する安全性評価

2.1.1 楕円曲線上の離散対数問題への既存攻撃

pを素数とする．有限体 Fp 上定義された楕円曲線E=Fp : y
2 = x3 + ax+ b; a; b 2 Fp に対し，

楕円曲線の位数 n = #E(Fp)は素数とする．

定義 1 楕円曲線上の離散対数問題
G 2 E(Fp)，ord(G) = n，R 2< G >が与えられたときに，R = lG := G+G+ � � �+G

| {z }

l

を満たす

整数 0 < l < nを求める問題を楕円曲線上の離散対数問題（ECDLP）と呼ぶ．

ECDLPに対して有効な解法（準指数時間または多項式時間で解けるアルゴリズム）として，一
般的な方法は確立されておらず，特殊な曲線に対する解法のみが存在する．Pohlig-Hellman法や
Pollard-�法等は，任意のECDLP に適用できる攻撃であるが，いずれも指数時間のアルゴリズム
である．したがって，安全な楕円曲線を構成する際には，そのような特殊な曲線を避けなければな
らない．具体的な既知の攻撃方法としては，特定の楕円曲線のクラスに限定した攻撃に，MOV-帰
着法 [8]，FR-帰着法，SSSAアルゴリズム [17, 18, 1]がある．MOV-帰着法と FR-帰着法では Fp

上定義されたECDLPを F
�

pk
の部分群上のDLPに帰着し，SSSAアルゴリズムは定義体の加法群

に帰着する．以下で各攻撃について記載する．ここで，定義体を位数 pの素体，楕円曲線の位数
n = #E(Fp)，トレース t := p+ 1�#E(Fp)とする．

� MOV-帰着法
E(Fpk ) � E[n] := fP 2 E(Fp) j nP = Og を満たす最小の kについて，Weil Paringを用い
ることで，ECDLPを F

�

pk
上のDLPに帰着する．

曲線を supersingularに限定した場合，拡大次数が k = 1; 2; 3; 4; 6のいずれかになり，群の
構造が分かるのでWeil Paringが簡単に計算でき，容易に攻撃される．最近の研究では，群
の構造が未知の場合でも，効率良くWeil Paringを計算するアルゴリズムの提案がなされて
おり [5, 6, 19, 20]，supersingularでない曲線に対してもMOV-帰着法を適用させる研究は
進んでいる．

� FR-帰着法
n j pk � 1 (FR-condition)を満たす最小の kについて，Tate Paringの変形を用いることで，
F
�

pk
上のDLPに帰着する．

[2]により，FR-帰着アルゴリズムの適用範囲は，MOV-帰着アルゴリズムの適用範囲を完全
に含むことが指摘されている．したがって，楕円曲線の安全性を検討する際には，FR-帰着
法に対する安全性を考えれば良い．[5]では，適用範囲及び効率の観点からMOV-帰着アルゴ
リズムとの比較を行っている．それまで概念的に提示されていた FR-帰着アルゴリズムを実
装し，アルゴリズムの立場から，FR-帰着アルゴリズムはMOV-帰着アルゴリズムよりも効
率が良いことを指摘している．また，[6, 14]では，理論研究の立場から t = 2の場合は FR-

帰着アルゴリズムの中で利用されている写像とは異なる写像を利用することで FR-帰着アル
ゴリズムよりも効率の良い帰着アルゴリズムを提案している．
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� SSSAアルゴリズム
t = 1である楕円曲線に対して Fp の加法群のDLPに帰着する．

安全性の観点から，FR-帰着法が適用された場合の埋め込まれる体 Fpk の拡大次数 kは k > log q

を満たす必要がある [15]．

2.1.2 FR-帰着法に対する安全性

本章では，素体 Fp 上の楕円曲線に対する FR-帰着法について述べる．FR-帰着法に対する安全
性を考察する際に，最も重要なポイントは帰着される有限体の拡大次数 kの大きさである．この
点についてはじめて触れているのは，MOV-帰着法の提案の直後の [7]の文献である．Koblitzは
[7]で，k次拡大体上の DLPの解法として，Lp[1=3; c] = exp((c + o(1))(log p)1=3(log log p)2=3)の
準指数時間アルゴリズムを想定した場合，MOV-帰着法が準指数時間になるのは，k � (log p)2の
ときであることを指摘している．さらに [2]において，素体上定義された素数位数楕円曲線をラン
ダムに選ぶ場合，k � (log p)2なる kに対して n j pk � 1が成り立つ確率の上界を以下のように与
えている．

Pr � c
(logM)9(log logM)2

M

ここで，c;M は M
2 � p �M を満たす任意の整数である．これに対して，斎藤，内山らは [15]に

おいて上の確率評価を一般化させ，次の結果を導いている．素体上定義された素数位数楕円曲線
をランダムに選ぶ場合，0 < a < 1に関して，k � (log p)aなる kに対して n j pk � 1が成り立つ
確率の上界は

Pr � c
(logM)2a+5(log logM)2

M
(1)

となる．ここで，c;M は M
2 � p �M を満たす任意の整数である．

Koblitzが指摘するように，DLPの解法としてLp[1=3; c] = exp((c+o(1))(log p)1=3(log log p)2=3)

の準指数時間アルゴリズムを想定した場合，MOV-帰着法が準指数時間になるのは，k � (log p)2

のときであるが，現在のところ，そのようなアルゴリズムとして数体ふるい法と呼ばれるアルゴ
リズムがある．しかし，数体ふるい法が適用できるためには pに関していくつかの条件があり，斎
藤，内山らが [14]で触れているように，現実的には，DLPの解法としては 2次ふるい法と呼ばれ
る Lp[1=2; c] = exp((c + o(1))(log p)1=2(log log p)1=2)の準指数時間アルゴリズムを想定すれば十
分である．その場合，MOV-帰着法が準指数時間になるのは，k � log pのときとなる．この結果，
MOV-帰着法が準指数時間になる確率の上界は，(1)より，

Pr � c
(logM)7(log logM)2

M
(2)

となる．ここで，c;M は M
2 � p �M を満たす任意の整数である．

以上より，FR-帰着法が準指数時間になるのは k � log pのときであり，その存在確率の上界は
最大でも (2)の形で表される程度である．しかしながら，これはあくまでも確率的な議論であり，
どのようなトレースの時に拡大次数が十分高いことが保証されるかなどの議論はされていない．実
際これまでに知られている条件は，t = 0 (supersingular)と t = 2のみであるが，どちらも攻撃さ
れる条件であった．
一方で我々は FR-conditionに関する explicitな条件についての研究を'99年度より行ってきた．

[9]において我々は supersingular及び t = 2以外の場合で FR-帰着法を適用したときの拡大次数 k

が k = 3; 4; 6となるための explicitな必要十分条件を pと nを用いて示した．しかし，残念なこと
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にこれらはすべて解読される条件であり，FR-conditionを満たす安全なトレースの条件は全く明
らかになっていなかった．
そこで，今回，初めて FR-conditionを満たす安全な素数位数楕円曲線の explicitな条件を，ト
レースを用いて導いたのでそれを以下に示す．

定理 1 ([11]) E=Fp を Fp 上定義された楕円曲線，tを E=Fp のトレース，とする．FR-帰着に
よって，E=Fp 上のECDLPが F

�

pk
上のDLPに帰着するとする．この時，t � 3に対して，拡大次

数 kは次を満たす．

k >
log p

log (t� 1)

証明: FR-帰着によって，E=Fp 上の ECDLPが F
�

pk
上のDLPに帰着できるのは次の条件を満

たす時かつその時に限る．

pk � 1 (mod n) (3)

n = p+ 1� tを，(3)に代入して，次を得る．

(t� 1)k � 1 (mod n) (4)

ここで，n > (t� 1)kの時には，Z上の演算とZ=nZ上の演算は一致する．仮定より t � 3なので，
n � (t � 1)k のとき，すなわち k < log n

log (t�1) のとき，(t � 1)k 6= 1 (mod n)となる．したがって，
帰着する拡大次数は

k >
logn

log (t� 1)

を満たす．ここで，Hasseの定理より，log p � lognが成り立つから，以下の結果を得る．

k >
log p

log (t� 1)

定理 1より，以下の系が導かれる．

系 1 ([11]) E=Fp を Fp上定義された楕円曲線，E=Fpのトレースを t = 3とする．FR-帰着によっ
て，E=Fp 上の ECDLPが F

�

pk
上のDLPに帰着するとする．この時，拡大次数 kは次を満たす．

k > log p

このことより，特に t = 3の素数位数楕円曲線では，FR-帰着による ECDLPの解法は指数時間に
なり，上で挙げた既知の攻撃に対する計算量的耐性を保証できる．

2.1.3 提案楕円曲線の安全性

我々の用いる楕円曲線E=Fp は以下の性質を持つ．

1. 近年のWeil Decentの攻撃可能性を削減するために，F2r を用いずに素体上の楕円曲線E=Fp

とする．
2. ECDLPに対する exhaustive攻撃に相当するPohlig-Hellman[12]，Pollard-�法 [13]に対する
耐攻撃性を高めるため，素数位数 n = #E(Fp)の楕円曲線E=Fp とする．

3. SSSAに対する耐攻撃性を確保するため，#E(Fp) 6= pとする．
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4. FR-帰着法に対する計算量的耐性（i.e. 帰着拡大次数 k > log p）を保証する．
5. 楕円曲線がシステマティックに容易に効率的に構成できる．

現時点で，問題となる攻撃は exhaustive攻撃，SSSA攻撃，FR-攻撃法である．上記 2.3及び前章
の定理より，我々の提案する楕円曲線上のECDLPの解読にはO(

p
n)時間の，すなわちHasseの

定理よりO(
p
p)解読時間を要する．これは Fp 上の ECDLPで実現できる最強の安全性を持つこ

とを意味する．特に推奨パラメータ p ： 160ビット（仕様書 3.1.3）においてはおおざっぱで 280

回の試行回数が解読には必要であり，十分な安全性を確保できる．

2.2 汎用楕円曲線DiÆe-Hellman鍵共有アルゴリズム

2.2.1 鍵共有アルゴリズム

ここでは本提案スキームについて述べる．本提案スキームはECDH鍵共有法 [3]である．ECDH
は各ユーザが同じ楕円曲線を利用することを前提にする．本提案では，ユーザに対する汎用性，柔
軟性を持たせるために，ユーザ毎のシステムパラメータが異なる場合についても，利用可能なよ
うに ECDHを拡張する [10]．

前提
各ユーザはそれぞれ通信相手の公開鍵の正当性をあらかじめチェックすることを前提にする．
公開鍵の正当性については，認証局の証明書を利用するなどの一般的な方法を用いると良い．

補助関数
各アルゴリズムでは，範囲内の任意の整数を生成する際に擬似乱数生成関数を利用する．擬
似乱数生成関数については，暗号技術仕様書の 1.2.3章に記載した性質を満たすものを利用
する．ここでは，一般的に用いられている方法として，時刻（ミリ秒）やユーザーによる適
当なキー入力等をもとに乱数の種（seed）を決定し，それをもとに計算したハッシュ値を擬
似乱数とする．ハッシュ関数としては SHA-1やMD-5を用いる．

初期設定
ユーザ Aは以下の初期設定を行う．
1. t = 3の素数位数楕円曲線 EA=FpA を生成する．
2. ベースポイントGA 2 EA(FpA )をランダムに選ぶ．
3. 整数 xA (0 < xA < pA � 2)をランダムに選び，秘密鍵とする．
4. YA = xAGAを計算し，(EA=FpA，YA，GA)を公開鍵とする.

同様にして Bの公開鍵を (EB=FpB，YB，GB)とする．

鍵の共有 [共通システムパラメータの場合（楕円曲線とベースポイントが同じ）]

楕円曲線を E=Fp = EA=FpA = EB=FpB，ベースポイントをG = GA = GB とする．

鍵共有

� Aは，K = xAYB = xAxBGを計算し，K を共有する．

� Bは，K = xBYA = xBxAGを計算し，Kを共有する．

鍵の共有 [個別システムパラメータの場合（楕円曲線とベースポイントが異なる）]

利用者A
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1. rA (0 < rA < pB � 2)となる任意の整数を選ぶ．
2. RA = rAGB をEB=FpB 上で計算する．
3. RAを Bに送る．

利用者B

1. rB (0 < rB < pA � 2)となる任意の整数を選ぶ．
2. RB = rBGAを EA=FpA 上で計算する．
3. RB をAに送る．

鍵共有

� Aは，
KA = xARB = xArBGA， KB = rAYB = xBrAGB

を計算し，(KA;KB)を共有する．

� Bは，
KB = xBRA = xBrAGB， KA = rBYA = xArBGA

を計算し，(KA;KB)を共有する．

注意：実際の共有鍵は (KA;KB)より計算できる値としてよい．例えば各々のx座標成分KAx ;KBx

を用いてK = KAx �KBx（�はビット毎の排他的論理和）とする．これはアプリケーションに応
じて設定可能である．

2.2.2 安全性評価

提案するスキームは従来の楕円曲線DiÆe-Hellman鍵共有法（ECDH鍵共有法）を異なるシス
テムパラメータでも鍵共有が可能になるように拡張したものである．各ユーザの利用するシステ
ムパラメータが同じ場合は，ECDHと一致する．IEEE P1363で明記されているように，各々の
公開鍵の正当性を各々が検証する．
我々の提案するスキームは，従来から知られているECDH鍵共有法であるが，ここで改めて定
義する．

定義 2 ECDH問題
G 2 E(Fp)，ord(G) = n， P;R 2< G >が与えられたとき，S 2< G >を求める問題である．こ
こで，P = lG; R = mG; S = lmGである．

さらに，異なるシステムパラメータにおける鍵共有法に対する，汎用 ECDH問題を定義する．

定義 3 汎用 ECDH問題
G1 2 E1(Fp1 )，ord(G1) = n1， P1; R1 2< G1 >及び
G2 2 E2(Fp2 )，ord(G2) = n2， P2; R2 2< G2 >が与えられたとき，
S1 2< G1 >と S2 2< G2 >の両方を求める問題である．ここで，
P1 = l1G1; R1 = m1G1; S1 = l1m1G1

P2 = l2G2; R2 = m2G2; S2 = l2m2G2である．

公開鍵暗号系における攻撃方法の種類は，能動的攻撃と受動的攻撃に大別できる．

� 受動的攻撃
盗聴や傍受等によって 2者間の通信から何らかの情報を獲得し，それを用いて共有する鍵を
復元するような，受動的攻撃が考えられる．この場合，各々のユーザの利用する楕円曲線上
の ECDH問題はそれぞれを統合した汎用 ECDH問題に帰着する [10]．

6



� 能動的攻撃
攻撃者が 2者間の通信の間に入り込み，Aに対しては Bになりすまし，Bに対しては Aに
なりすますという中間侵入攻撃が考えられる．それを防ぐためには，通信相手の公開鍵の正
当性を仮定（もしくはユーザがチェック）するなどの認証機能が必要である．これに関して
は，ECDHも汎用 ECDHも同じ安全性である．

我々の提案はあくまでも汎用的に利用されている ECDH鍵共有法に我々の楕円曲線を適用するこ
とであり，全ての安全性の議論（公開鍵の正当性のチェック）等は ECDH鍵共有法に準ずる．
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3 楕円曲線生成アルゴリズムの評価

本提案は楕円曲線を用いた鍵共有法であるが，初期設定部についての計算時間の評価は，本提
案の特徴である FR-帰着に対する計算量的安全性の保証された楕円曲線の生成に相当するので詳
細に記載する．時間評価として本質的な部分はトレース 3の楕円曲線の生成と，楕円曲線上の 1回
のべき倍演算の時間となる．
評価の対象となる項目は次の通りである．

� 初期設定部
{ トレース 3の楕円曲線 EA=FpA の生成時間

{ 秘密鍵 xAの生成時間

{ 公開鍵GA，YA = xAGAの生成時間

3.1 トレース 3の曲線の生成に関する評価

トレース 3の楕円曲線 EA=FpA の生成時間については，評価として本質的な部分は双子素数の
生成である．これは一般的な素数判定法を用いれば良いので，素数判定時間を評価の対象とする
のではなく，双子素数の出現頻度を評価すれば良い．ここで，出現頻度とは探索回数を nl，個数
を npすると，

np
nl
で表す．双子素数が一様に分布しているとすれば，nl が十分に大きいとき，大

数の法則より上で示した出現頻度は双子素数が存在する真の確率に近づく．したがって，

双子素数の生成時間 =
nl
np

�素数判定時間

として評価すれば良い．次に我々の実験結果を示す．
整数 lに対して p = dl2 + dl + d+9

4 とおくとき，276 � 220 � l � 276 + 220，すなわち nl = 221

に対して双子素数 (p; p� 2)の出現頻度について表 1の結果が得られている．
双子素数の出現確率は dによって異なる．最も出現確率の高いもので，160bitsの双子素数の確
率はおおよそ 0:00245953程度である．したがってこの場合，双子素数の生成時間はおおよそ以下
で与えられる．

双子素数の生成時間 = 406:582 �素数判定時間
実験的な議論ではあるが，これは FR-conditionの判定を除いた単純なCM法による楕円曲線の構
成とほぼ同等の速度で楕円曲線の生成を意味する．

4 ソフトウェアでの実装評価

評価の対象となる項目は次の通りである．

� 鍵共有部
{ rAの生成時間

{ RA = rAGB の計算時間

{ KA = xARAの計算時間

{ KB = rAYB の計算時間

鍵共有部についての計算時間の評価として本質的な部分は楕円曲線上の 3回のべき倍演算の時
間となる．
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表 1: 双子素数の出現頻度 nl = 221

d # 双子素数の個数 np 双子素数の出現頻度 np
nl

19 190 0.00009059

43 1,157 0.00055170

67 1,902 0.00090694

91 450 0.00021457

115 1,036 0.00049400

139 139 0.00006628

163 5,158 0.00245953

187 1,402 0.00066852

211 292 0.00013923

235 2,523 0.00120306

259 247 0.00011777

283 645 0.00030756

307 696 0.00033187

331 458 0.00021839

355 635 0.00030279

379 583 0.00027799

403 3,392 0.00161743

4.1 鍵共有に関する速度評価

ECDH鍵共有法を用いる場合は，1回の楕円曲線上のべき倍演算，ユーザ間のシステムパラメー
タが異なる場合，すなわち汎用ECDH鍵共有法では，3回の楕円曲線上のべき倍演算が必要になる．
我々の提案方式ではベースポイントを固定することを仮定せずに，任意の点に関するべき倍演
算で可能なアルゴリズムを利用する．効率良く計算を行うために我々は，符合付 2 進法とウィン
ドウ法を組み合わせた加算連鎖をヤコビ座標系を用いて実現した．

4.1.1 楕円曲線上のべき倍演算の速度評価及び，プログラムサイズとRAMサイズ

演算速度の測定方法は clock()関数を使用して 10,000回の処理時間の平均である．なお，多倍
長演算については松下電器（株）製の多倍長演算ライブラリ，ANRI97を使用した．
必要な RAMサイズについては，多倍長演算部 (ANRI)は除外し，プログラムソースコードか
ら直接算出した結果以下のように合計して，おおよそ 7 KBである．

static table 4,353 Byte

stack 2,679 Byte

以上より，PentiumII 400MHzにおいては，152 KBのプログラムサイズで，7 KB程度のRAM

を用いて，ECDH 鍵共有法を，約 3.1msec，汎用 ECDH 鍵共有法を，約 9.3msecで実行できる．
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表 2: 楕円曲線上のべき倍演算の速度評価とライブラリのサイズ

評価プラットフォーム Sun Solaris 5.6, MS-Windows NT 4.0 SP5,

UltraSparc-IIi 300MHz, PentiumII 400MHz,

512MB 128MB

コンパイラ gcc 2.95.2 MS-Visual C++ 6.0

1回の楕円べき倍算 7.8 msec 3.1 msec

ECDH 鍵共有 7.8 msec 3.1 msec

汎用 ECDH 鍵共有 23.4 msec 9.3 msec

ライブラリのオブジェクトサイズ 108 KB 152 KB

4.1.2 テストベクタサンプル

以下にテストベクタのサンプルを示す．出力形式は，Big Endian 16進表記である．
pを定義体の位数，nを楕円曲線の位数，Gxをベースポイントの x座標，Gyをベースポイントの
y座標とする．これらがシステムパラメータである．

p : 0x80000000 0x00000005 0x53f0e64c 0xa74b83fa 0x9d08fa01

n : 0x80000000 0x00000005 0x53f0e64c 0xa74b83fa 0x9d08f9�

Gx : 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

Gy : 0x5be84c4c 0x3ba3fb4e 0x6a6c84cb 0xa7c1fb13 0x60631734

Aの秘密鍵を kとすると，公開鍵は (kGx, kGy)となる．
k : 0x3aad44ed 0x12861afb 0x5e5c4131 0x68f84d42 0x04f27b57

kGx : 0x787134cc 0x5608bd57 0x83eddccf 0x5eb93300 0x5bd1f7f0

kGy : 0x3945af93 0x7964ba1a 0xc3871f83 0x9af45e55 0x9dc280b1

Bの秘密鍵を lとすると，公開鍵は (lGx, lGy)となる．
l : 0x2dd449a9 0x5f1b0da4 0x596327f3 0x011f678e 0x4cc93293

lGx : 0x7bf844d4 0xd30e66c2 0x2a7d7d9c 0xedbdd077 0x0b95207e

lGy : 0x0a7fdd� 0x5f8d25a7 0x6a054f37 0x22397d81 0x364efbab

A,Bは以下の情報を共有する．
klGx : 0x2cee5cd1 0x7562facf 0x2eda9ae8 0xdbdb91d7 0x01fe8086

klGy : 0x32bec425 0xcbe0c28a 0xae4df559 0xaa6b20ef 0x63c070b2

4.1.3 テストベクタファイル出力形式

テストベクタについてはTestVector**.txtというファイルを 10個添付した．1つのファイルは
各システムパラメータ，すなわち定義体，楕円曲線，ベースポイントに対応している．各ファイル
には，そのシステムパラメータに基づいた出力例を 20個出力した．出力形式は，以下の通りであ
る．いずれも，Big Endian 16進表記である．
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********* 出力結果 *********

a : 楕円曲線の 1次係数
b : 楕円曲線の 0次係数

p : 定義体
n : 楕円曲線の位数
Gx : ベースポイントの x座標
Gy : ベースポイントの y座標

k : 整数 0 < k < p（秘密鍵）
kGx : 公開鍵の x座標
kGy : 公開鍵の y座標
l : 整数 0 < l < p（秘密鍵）
lGx : 公開鍵の x座標
lGy : 公開鍵の y座標
klGx : 共有情報の x座標
klGy : 共有情報の x座標
*****************************

最初の 6個のデータがシステムパラメータであり，これらに基づいた出力例が続く 8個のデータ
である．各ファイルでは，この出力例を 20組出力した．
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