

Constrained Verifiable Random Functions from Indistinguishability Obfuscation

Bei Liang, Hongda Li, Jinyong Chang

State Key Laboratory of Information Security,

Institute of Information Engineering,

Chinese Academy of Sciences.

liangbei@iie.ac.cn

Constrained PRFs

- Constrained PRFs [BW13]

- Functions $F : \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

- with respect to a set system $\mathcal{S} \subseteq 2^{\mathcal{X}}$

- Algorithms:

- ◆ $\text{Constrain}(K, S \in \mathcal{S}) \rightarrow K_S$

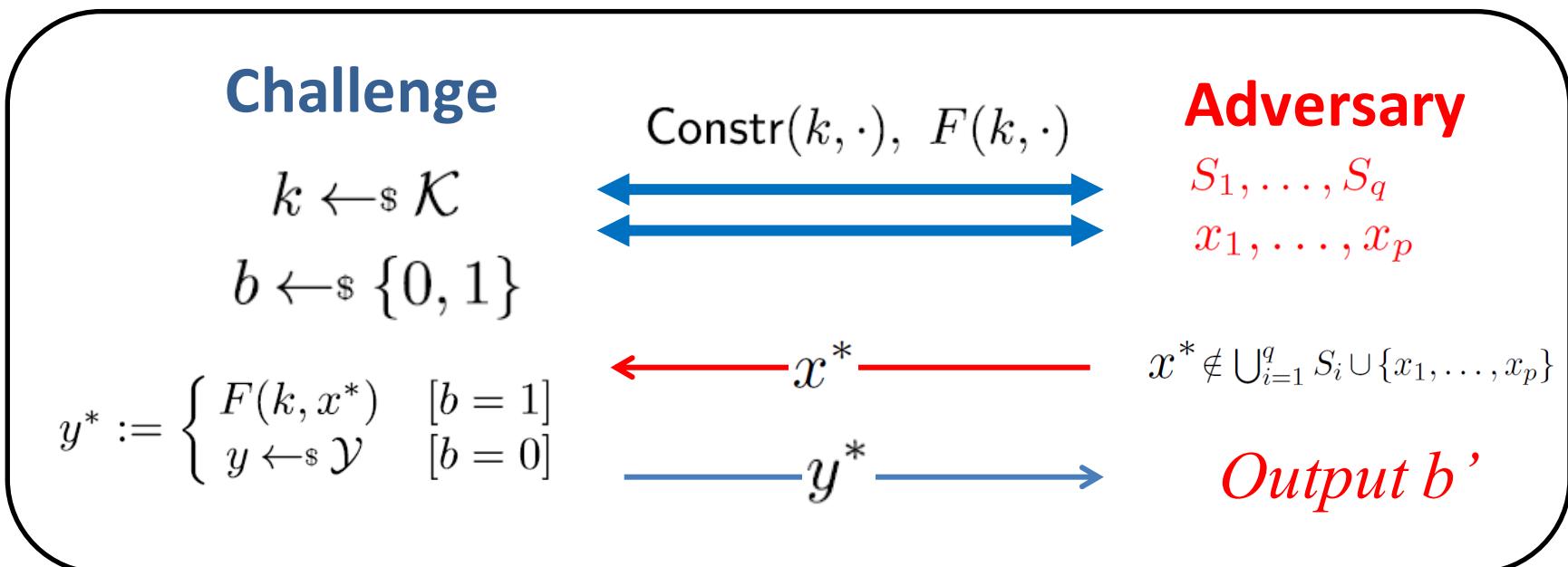
- ◆ $\text{Eval}(K_S, x \in S) \rightarrow y$

$K_S \leftarrow \text{Constrain}(K, S)$

$\Rightarrow \text{Eval}(K_S, x) = \begin{cases} F(K, x), & \text{if } x \in S; \\ \perp, & \text{otherwise.} \end{cases}$

Security of Constrained PRFs

- *Pseudorandomness* of constrained PRFs:
 - *Function should look random where:*
 - we have not seen its value
 - we cannot evaluate it using a constrained key



Verifiable Random Functions

- VRFs [MRV99]

- Functions: $F : \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

- Algorithms:

- $\text{Setup}(1^\lambda) \rightarrow (\text{pk}, \text{sk})$
 - $\text{Prove}(\text{sk}, x) \rightarrow (y, \pi)$
 - $\text{Verify}(\text{pk}, x, y, \pi) \rightarrow 0/1$

Prove(sk, x) algorithm
contains: $y = F(\text{sk}, x)$
and $\pi = P(\text{sk}, x)$

π is to prove the function
value is computed correctly.

Security of VRFs

- Provability (Correctness):

$$y = F(\text{sk}, x) \text{ and } \text{Verify}(\text{pk}, x, y, \pi) = 1$$

- Uniqueness:

For (x, y_0, π_0) , (x, y_1, π_1) :

$$y_0 \neq y_1 \Rightarrow \begin{cases} \text{Verify}(\text{pk}, x, y_0, \pi_0) = 0 \\ \vee \text{Verify}(\text{pk}, x, y_1, \pi_1) = 0 \end{cases}$$

- Pseudorandomness:

- Adversary gets Prove oracle.
- submits x^* that has not been queried
- receives either $F(\text{sk}, x^*)$ or $y \leftarrow_{\$} \mathcal{Y}$.

Constrained VRFs

- Constrained VRFs [Fuc14]:

➤ Functions $F : \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

with respect to a set system $\mathcal{S} \subseteq 2^{\mathcal{X}}$

➤ Algorithms:

- $\text{Setup}(1^\lambda) \rightarrow (\text{pk}, \text{sk})$
- $\text{Constr}(\text{sk}, S) \rightarrow \text{sk}_S$
- $\text{Prove}(\text{sk}_S, x) \rightarrow (y, \pi)$
- $\text{Verify}(\text{pk}, x, y, \pi) \rightarrow 0/1$

- Provability (correctness):

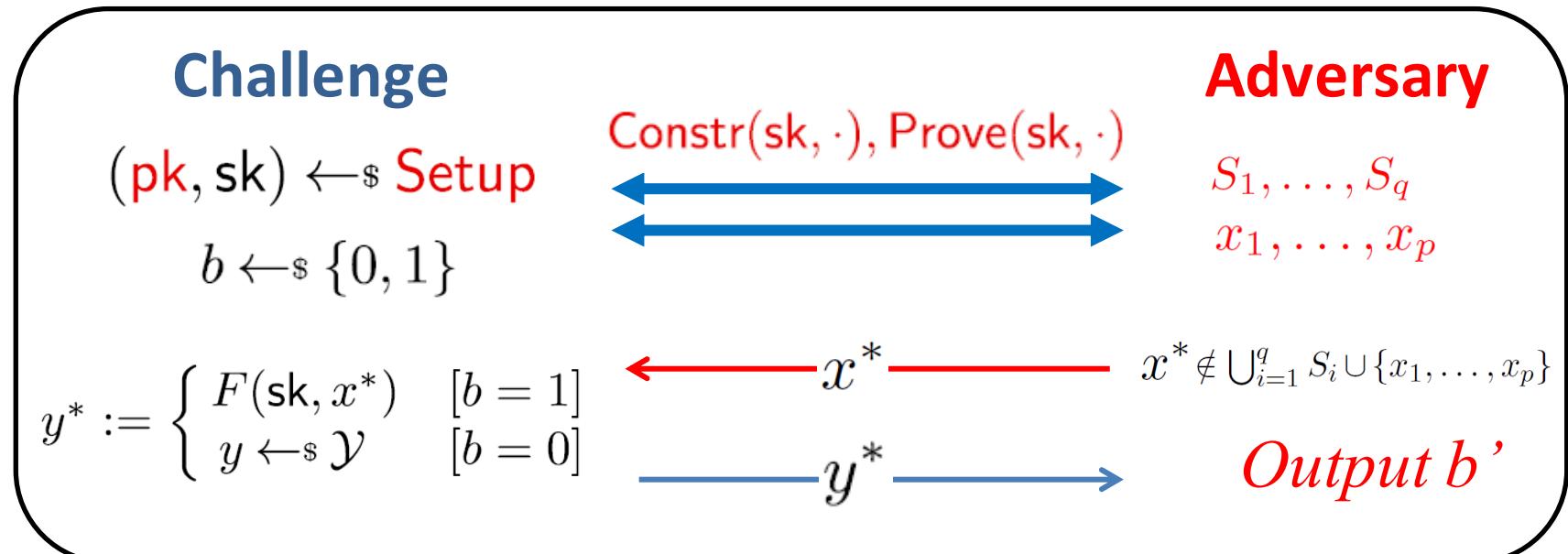
$$\begin{aligned} \text{sk}_S &\leftarrow \text{Constr}(\text{sk}, S) \Rightarrow \begin{cases} x \in S \Rightarrow y = F(\text{sk}, x) \text{ and } \text{Verify}(\text{pk}, x, y, \pi) = 1 \\ x \notin S \Rightarrow (y, \pi) = (\perp, \perp) \end{cases} \\ (y, \pi) &\leftarrow \text{Prove}(\text{sk}_S, x) \end{aligned}$$

Security of Constrained VRFs

- Uniqueness:
- Constraint-hiding:

$$\text{Prove}(\text{sk}, x) = \text{Prove}(\text{Constr}(\text{sk}, S), x)$$

- Pseudorandomness:

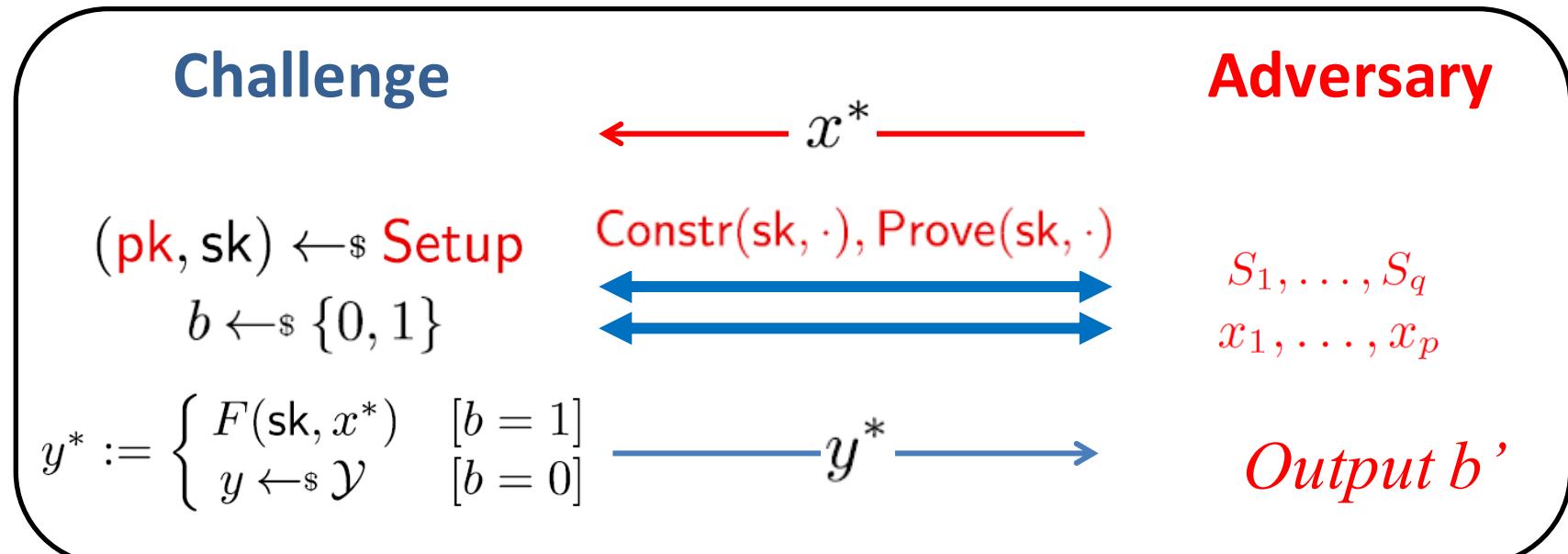


Security of Constrained VRFs

- Uniqueness:
- Constraint-hiding:

$$\text{Prove}(\text{sk}, x) = \text{Prove}(\text{Constr}(\text{sk}, S), x)$$

- Pseudorandomness (*selective*):



Construction of VRFs

- Constrained PRFs [BW13]
 - bit-fixing, circuit-constr:
 - from multilinear Maps
- Constrained VRFs [Fuc14]
 - bit-fixing, circuit-constr:
 - from multilinear Maps

Construction of VRFs

- **Constrained PRFs**

- bit-fixing, circuit-constr:
 - from multilin. Maps

[BW13]

- **Constrained VRFs**

[Fuc14]

- bit-fixing, circuit-constr:
 - from multilin. Maps

- **VRFs**

[HW10]

- *under q -type assumptions*

Negative results of VRFs

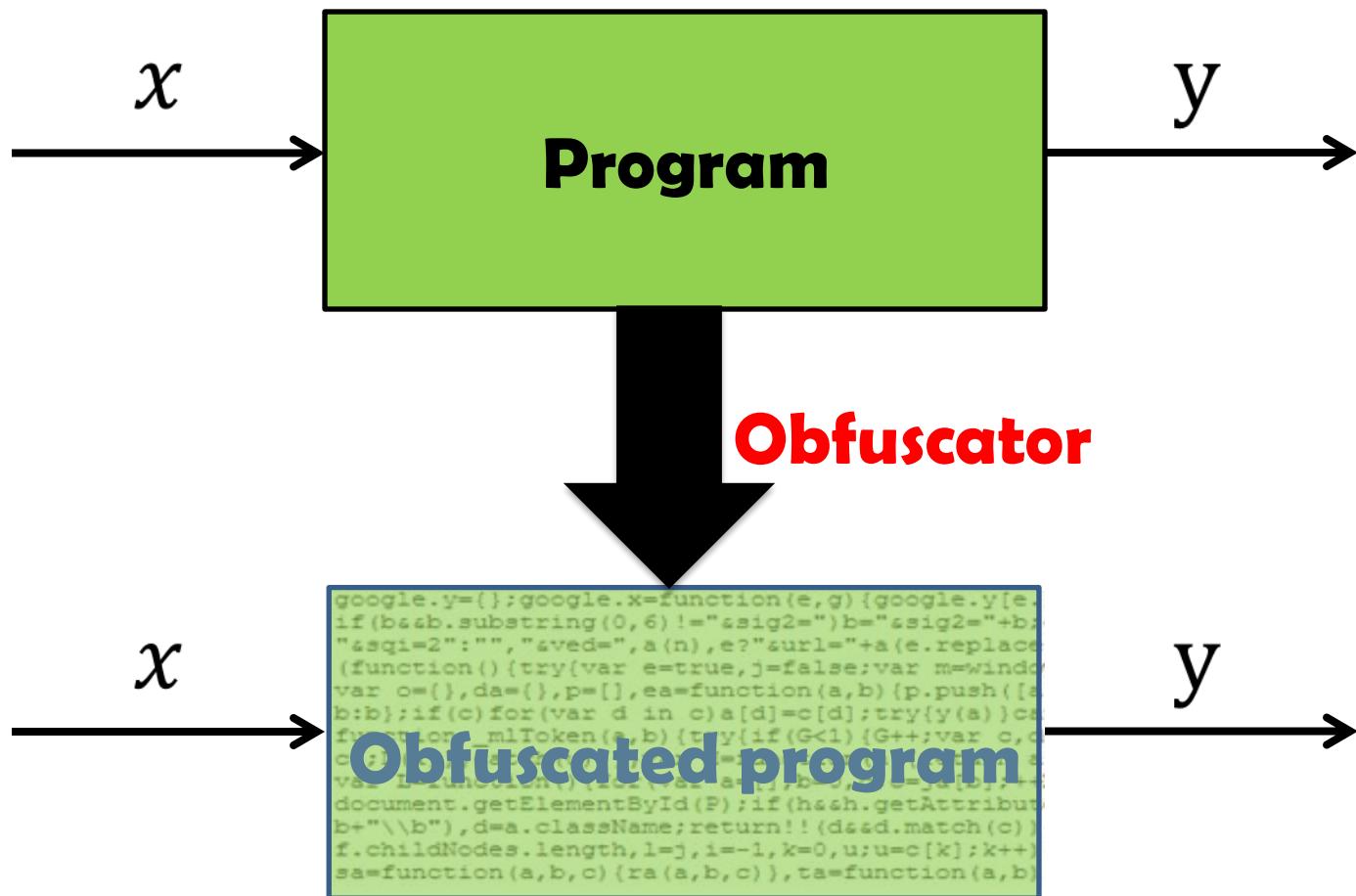
cannot be constructed in black-box way:

- *Based on one-way permutations* [BG09]

- *Based on trapdoor permutations* [FS12]

Is it possible to construct VRFs from one way functions, combining with other assumption (indistinguishability obfuscation)?

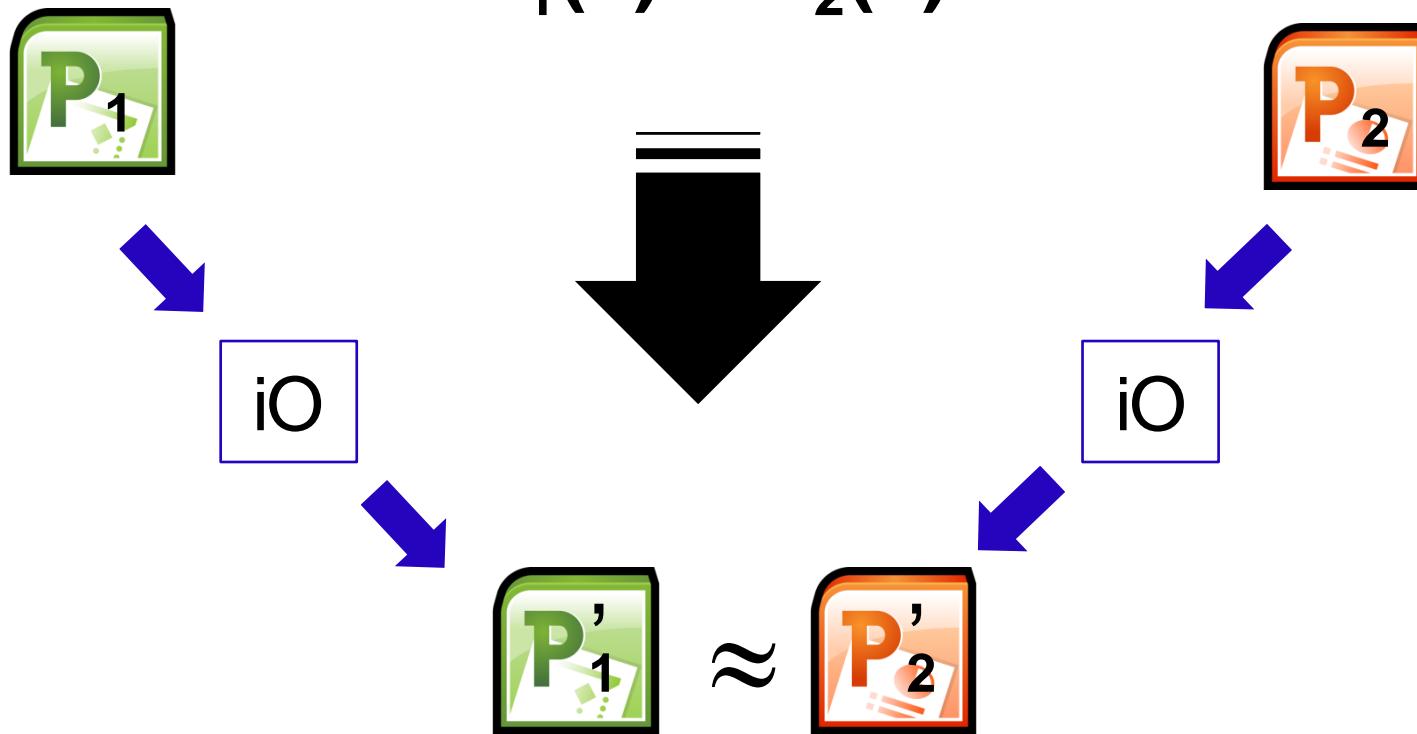
Program Obfuscation_[BGI+01]



Indistinguishability Obfuscation_[BGI+01]

If two programs have same functionality,
obfuscations are indistinguishable.

$$P_1(x) = P_2(x) \quad \forall x$$



Punctured PRFs [BW13]

- Punctured PRF key $K\{x^*\}$:
 - $K\{x^*\}$ evaluate $\text{PRF}(K, x)$ on all points, but x^* ;
- $\text{PRF}(K, x)$ define for all x ;
- $K\{x^*\}$ can evaluate $\text{PRF}(K, x)$ for $\forall x \neq x^*$;
- **Security:** given $K\{x^*\}$,
cannot distinguish $\text{PRF}(K, x^*)$ and random;

Special case of constrained PRFs [BW13]

Build from [GGM84]

Our Construction of CVRFs

[this work]

- **Setup:** samples a PRF key K

- the secret key $SK = K$
- Define $F(K, x) = y = b$, $P(K, x) = \pi = r$
- the public key PK = obfuscation of the program

$$\begin{aligned} \text{PRF}(K, x) &= b \| r \\ &\in \{0, 1\} \times \{0, 1\}^\ell \end{aligned}$$

Constants: punctured PRF key K

Inputs: $x \in \{0, 1\}^n$

Algorithm:

- (1) compute $t = \text{PRF}(K, x)$
and set $t = b \| r \in \{0, 1\} \times \{0, 1\}^{\ell(\lambda)}$
- (2) output $c = \text{Com}(b; r)$

Prog₁: Verify_K

Our Construction of CVRFs

[this work]

- **Constrain($\mathbf{SK}=\mathbf{K}$, \mathbf{S}):** \mathbf{SK}_S =obfuscated program

Constants: punctured PRF key K , set S

Inputs: $x \in \{0, 1\}^n$

Algorithm:

(1) If $x \in S$,

➤ compute $\text{PRF}(K, x) = b \| r \in \{0, 1\} \times \{0, 1\}^\ell$

➤ outputs $F(K, x) = y = b$ and $P(K, x) = \pi = r$

(2) Otherwise, output (\perp, \perp)

Prog₂: **ConstrainedKey** _{SK, S}

Our Construction of CVRFs

[this work]

- **Prove(SK_S, x):** run $\text{SK}_S(x)$
 - *the functionality of SK_S is equal to $\text{Prog}_2(x)$*
 - **Provability:**
 - for all x , $\text{SK}_S(x) = \text{Prog}_2(x)$**
 - **if** $x \in S$, $\text{SK}_S(x) = (b, r)$
 - **If** $x \notin S$, $\text{SK}_S(x) = (\perp, \perp)$- **Verify(PK, x, y, π):**
 - Run $\text{PK}(x)$ and obtain c ;
 - Check if $c = \text{Com}(y; \pi)$;
 - Output 1 if true; else output 0.

The functionality of $\text{PK}(x)$ is equal to $\text{Prog}_1(x)$

Proof of Security

[this work]

- **Uniqueness:** perfectly binding property of Com;
 - if $y_0 \neq y_1 \wedge \text{VRF.Verify}(PK, x, y_0, \pi_0) = 1 \wedge \text{VRF.Verify}(PK, x, y_1, \pi_1) = 1$
 - That is $y_0 \neq y_1 \wedge \text{Com}(y_0; \pi_0) = \text{Com}(y_1; \pi_1)$
 - It contradicts with the perfectly binding property of Com.

Proof of Security

[this work]

- **Selective pseudorandomness:**

Game 0

$$x^* \leftarrow \mathcal{A}_1(1^\lambda)$$

$$K \leftarrow \text{Key}_{\text{PRF}}(1^\lambda)$$

$$b^* \| r^* = \text{PRF}(K, x^*)$$

$$PK = i\mathcal{O}([\text{Verify}_K])$$

$$y^* = b^*$$

$$b' \leftarrow \mathcal{A}_2^{\text{Po}(K, \cdot), \text{C}(K, \cdot)}(y^*)$$

output 1 iff $b' = 0$

Po(K, \cdot) Stands for $\text{Prove}(K, \cdot)$

C(K, \cdot) Stands for $\text{Constrain}(K, \cdot)$

Proof of Security

[this work]

- Selective pseudorandomness: iO

Game 1

$$x^* \leftarrow \mathcal{A}_1(1^\lambda)$$
$$K \leftarrow \text{Key}_{\text{PRF}}(1^\lambda)$$
$$K(x^*) \leftarrow \text{Punctured}(K, x^*)$$
$$b^* \| r^* = \text{PRF}(K, x^*)$$
$$c^* = \text{Com}(b^*; r^*)$$
$$PK = iO([\text{Verify}_{K(x^*), c^*}])$$
$$y^* = b^*$$
$$b' \leftarrow \mathcal{A}_2^{\text{Po}(K, \cdot), \text{C}(K, \cdot)}(y^*)$$

output 1 iff $b' = 0$

Constants: punctured key $K(x^*)$ and c^*

Inputs: $x \in \{0, 1\}^n$

Algorithm:

- (1) If $x = x^*$, outputs c^* .
- (2) Else, do as follows:
 - compute $t = \text{PRF}(K, x)$
and set $t = b \| r \in \{0, 1\} \times \{0, 1\}^{\ell(\lambda)}$
 - output $c = \text{Com}(b; r)$

Prog'1: $\text{Verify}_{K(x^*), c^*}$

Proof of Security

[this work]

- **Selective pseudorandomness:** *functionality preserved under puncturing*

Game 2

$$x^* \leftarrow \mathcal{A}_1(1^\lambda)$$

$$K \leftarrow \text{Key}_{\text{PRF}}(1^\lambda)$$

$$K(x^*) \leftarrow \text{Punctured}(K, x^*)$$

$$b^* \| r^* = \text{PRF}(K, x^*)$$

$$c^* = \text{Com}(b^*; r^*)$$

$$PK = i\mathcal{O}([\text{Verify}_{K(x^*), c^*}])$$

$$y^* = b^*$$

$$b' \leftarrow \mathcal{A}_2^{\text{Po}(K(x^*), \cdot), \mathcal{C}(K, \cdot)}(y^*)$$

output 1 iff $b' = 0$

For $x \neq x^*$, it always holds that

$$\text{PRF}(K, x) = \text{PRF}(K\{x^*\}, x)$$

Proof of Security

[this work]

- Selective pseudorandomness: iO

Game 3

$$x^* \leftarrow \mathcal{A}_1(1^\lambda)$$

$$K \leftarrow \text{Key}_{\text{PRF}}(1^\lambda)$$

$$K(x^*) \leftarrow \text{Punctured}(K, x^*)$$

$$b^* \| r^* = \text{PRF}(K, x^*)$$

$$c^* = \text{Com}(b^*; r^*)$$

$$PK = iO([\text{Verify}_{K(x^*), c^*}])$$

$$y^* = b^*$$

$$b' \leftarrow \mathcal{A}_2^{\text{Po}(K(x^*), \cdot), \text{C}(K(x^*), \cdot)}(y^*)$$

output 1 iff $b' = 0$

For S s.t. $x^* \notin S$, it always holds that for $x \in S$

$$\text{PRF}(K, x) = \text{PRF}(K\{x^*\}, x)$$

Proof of Security

[this work]

- **Selective pseudorandomness:**

*Pseudorandomness
of punctured PRFs*

Game 4

$$x^* \leftarrow \mathcal{A}_1(1^\lambda)$$

$$K \leftarrow \text{Key}_{\text{PRF}}(1^\lambda)$$

$$K(x^*) \leftarrow \text{Punctured}(K, x^*)$$

$$t^* \leftarrow \{0, 1\}^{\ell+1}, t^* = b^* \| r^*$$

$$c^* = \text{Com}(b^*; r^*)$$

$$PK = i\mathcal{O}([\text{Verify}_{K(x^*), c^*}])$$

$$y^* = b^*$$

$$b' \leftarrow \mathcal{A}_2^{\text{Po}(K(x^*), \cdot), \mathcal{C}(K(x^*), \cdot)}(y^*)$$

output 1 iff $b' = 0$

Proof of Security

[this work]

- **Selective pseudorandomness:**

*Computational hiding
property of Com*

Game 5

$$x^* \leftarrow \mathcal{A}_1(1^\lambda)$$

$$K \leftarrow \text{Key}_{\text{PRF}}(1^\lambda)$$

$$K(x^*) \leftarrow \text{Punctured}(K, x^*)$$

$$t^* \leftarrow \{0, 1\}^{\ell+1}, t^* = b^* \| r^*$$

$$c^* = \text{Com}(b^*; r^*)$$

$$PK = i\mathcal{O}([\text{Verify}_{K(x^*), c^*}])$$

$$\tilde{b} \leftarrow \{0, 1\}, y^* = \tilde{b}$$

$$b' \leftarrow \mathcal{A}_2^{\text{Po}(K(x^*), \cdot)}, \mathcal{C}(K(x^*), \cdot)(y^*)$$

output 1 iff $b' = 0$

Proof of Security

[this work]

- **Selective pseudorandomness:**

*Pseudorandomness
of punctured PRFs*

Game 6

$$x^* \leftarrow \mathcal{A}_1(1^\lambda)$$

$$K \leftarrow \text{Key}_{\text{PRF}}(1^\lambda)$$

$$K(x^*) \leftarrow \text{Punctured}(K, x^*)$$

$$b^* \| r^* = \text{PRF}(K, x^*)$$

$$c^* = \text{Com}(b^*; r^*)$$

$$PK = i\mathcal{O}([\text{Verify}_{K(x^*), c^*}])$$

$$\tilde{b} \leftarrow \{0, 1\}, y^* = \tilde{b}$$

$$b' \leftarrow \mathcal{A}_2^{\text{Po}(K(x^*), \cdot), \mathcal{C}(K(x^*), \cdot)}(y^*)$$

output 1 iff $b' = 0$

Proof of Security

[this work]

- **Selective pseudorandomness:** *functionality preserved under puncturing*

Game 7

$$x^* \leftarrow \mathcal{A}_1(1^\lambda)$$

$$K \leftarrow \text{Key}_{\text{PRF}}(1^\lambda)$$

$$K(x^*) \leftarrow \text{Punctured}(K, x^*)$$

$$b^* \| r^* = \text{PRF}(K, x^*)$$

$$c^* = \text{Com}(b^*; r^*)$$

$$PK = i\mathcal{O}([\text{Verify}_{K(x^*), c^*}])$$

$$\tilde{b} \leftarrow \{0, 1\}, y^* = \tilde{b}$$

$$b' \leftarrow \mathcal{A}_2^{\text{Po}(K, \cdot), \mathcal{C}(K(x^*), \cdot)}(y^*)$$

output 1 iff $b' = 0$

Proof of Security

[this work]

- Selective pseudorandomness: iO

Game 8

$$x^* \leftarrow \mathcal{A}_1(1^\lambda)$$

$$K \leftarrow \text{Key}_{\text{PRF}}(1^\lambda)$$

$$K(x^*) \leftarrow \text{Punctured}(K, x^*)$$

$$b^* \| r^* = \text{PRF}(K, x^*)$$

$$c^* = \text{Com}(b^*; r^*)$$

$$PK = iO([\text{Verify}_{K(x^*), c^*}])$$

$$\tilde{b} \leftarrow \{0, 1\}, y^* = \tilde{b}$$

$$b' \leftarrow \mathcal{A}_2^{\text{Po}(K, \cdot), \text{C}(K, \cdot)}(y^*)$$

output 1 iff $b' = 0$

Proof of Security

[this work]

- Selective pseudorandomness: iO

Game 9

$$x^* \leftarrow \mathcal{A}_1(1^\lambda)$$

$$K \leftarrow \text{Key}_{\text{PRF}}(1^\lambda)$$

$$PK = iO([\text{Verify}_K])$$

$$\tilde{b} \leftarrow \{0, 1\}, y^* = \tilde{b}$$

$$b' \leftarrow \mathcal{A}_2^{\text{Po}(K, \cdot), \mathcal{C}(K, \cdot)}(y^*)$$

output 1 iff $b' = 0$

THANK YOU!