
Constrained Verifiable Random Functions
from Indistinguishability Obfuscation

Bei Liang, Hongda Li, Jinyong Chang
State Key Laboratory of Information Security,
Institute of Information Engineering,

Chinese Academy of Sciences.
liangbei@iie.ac.cn

Constrained PRFs

• Constrained PRFs [BW13]

 Functions

 with respect to a set system

 Algorithms:

Security of Constrained PRFs

• Pseudorandomness of constrained PRFs:

– Function should look random where:

• we have not seen its value

• we cannot evaluate it using a constrained key

 Challenge

 Adversary

Output b’

Verifiable Random Functions

• VRFs [MRV99]

– Functions:

– Algorithms:

• 1

•

•

algorithm

contains:

and

 is to prove the function

value is computed correctly.

Security of VRFs

• Provability (Correctness):

 and

• Uniqueness:

 For , :

• Pseudorandomness:

– Adversary gets Prove oracle.

– submits that has not been queried

– receives either or ..

Constrained VRFs

• Constrained VRFs [Fuc14]:

 Functions

 with respect to a set system

 Algorithms:

• Provability (correctness):

 and

Security of Constrained VRFs

• Uniqueness:

• Pseudorandomness:

Challenge

 Adversary

Output b’

• Constraint-hiding:

Security of Constrained VRFs

• Uniqueness:

• Pseudorandomness (selective):

Challenge

 Adversary

Output b’

• Constraint-hiding:

• Constrained PRFs [[BW13]

– bit-fixing, circuit-constr:

• from multilinear Maps

Constrained PRFs

• Constrained VRFs [Fuc14]

– bit-fixing, circuit-constr:

• from multilinear Maps

Constrained VRFs

Construction of VRFs

Construction of VRFs

• Constrained PRFs [[BW13]

– bit-fixing, circuit-constr:

• from multilin. Maps

Constrained PRFs

• Constrained VRFs [Fuc14]

– bit-fixing, circuit-constr:

• from multilin. Maps

Constrained VRFs

• VRFs [HW10]

• under q-type assumptions

VRFs

Negative results of VRFs

cannot be constructed in

black-box way:

• Based on one-way permutations [BG09]

• Based on trapdoor permutations [FS12]

Is it possible to construct VRFs from one way

functions, combing with other assumption

 (indistinguishability obfuscation)?

Obfuscated program

Obfuscator

Program

Program Obfuscation[BGI+01]

Indistinguishability Obfuscation[BGI+01]

If two programs have same functionality,

obfuscations are indistinguishable.

1 2

P1(x) = P2(x) X 

iO

1 2

iO

’ ’

Punctured PRFs [BW13]

• Punctured PRF key :

– evaluate on all points, but ;

• define for all ;

• can evaluate for ;

• Security: given ,

 cannot distinguish and random;

 Special case of constrained PRFs [BW13]

Build from [GGM84]

Our Construction of CVRFs [this work]

• Setup: samples a PRF key

– the secret key

– Define ,

– the public key PK= obfuscation of the program

Constants: punctured PRF key

Inputs:

Algorithm:

(1)

and set

compute

(2) output

Prog1:

Our Construction of CVRFs [this work]

• Constrain(SK=K, S): SKS=obfuscated program

Constants: punctured PRF key , set

Inputs:

Algorithm:

(1) If ,

(2) Otherwise, output

 compute

 outputs and

Prog2:

Our Construction of CVRFs [this work]

• Prove(SKS, x): run SKS(x)

– the functionality of SKS is equal to Prog2(x)

– Provability:

for all x, SKS(x)= Prog2(x)

• if , SKS(x) = (b, r)

• If , SKS(x) =

• Verify(PK, x, y, π):
– Run PK(x) and obtain c;

– Check if c= Com(y; π);

– Output 1 if true; else output 0.

The functionality of

PK(x) is equal to

Prog1(x)

Proof of Security[this work]

• Uniqueness: perfectly binding property of Com;

– if

– That is

– It contradicts with the perfectly binding property of Com.

Proof of Security[this work]

Po(K, ·) Stands for Prove(K, ·)

C(K, ·) Stands for Constrain(K, ·)

• Selective pseudorandomness:

Proof of Security[this work]

Constants: punctured key and

Inputs:

Algorithm:

(1)

and set

• compute

(2)

• output

Else, do as follows:

Prog’1:

• Selective pseudorandomness: iO

Proof of Security[this work]

• Selective pseudorandomness: functionality preserved

under puncturing

For , it always

holds that

Proof of Security[this work]

• Selective pseudorandomness: iO

For , it always

holds that for

Proof of Security[this work]

• Selective pseudorandomness: Pseudorandomness

of punctured PRFs

Proof of Security[this work]

• Selective pseudorandomness: Computational hiding

property of Com

Proof of Security[this work]

• Selective pseudorandomness: Pseudorandomness

of punctured PRFs

Proof of Security[this work]

• Selective pseudorandomness: functionality preserved

under puncturing

Proof of Security[this work]

• Selective pseudorandomness: iO

Proof of Security[this work]

• Selective pseudorandomness: iO

