Constrained Verifiable Random Functions
from Indistinguishability Obfuscation

Bei Liang, Hongda Li, Jinyong Chang
State Key Laboratory of Information Security,
Institute of Information Engineering,

Chinese Academy of Sciences.

liangbei@iie.ac.cn

Constrained PRFs

* Constrained PRFs [BW13]
> Functions F: KxX —)Y
with respect to a set systenS C 2

» Algorithms:
¢ Constrain(K,S € S) — Ks
e Eval(Kg,x € 5) =y

4 K s < Constrain(K, S) A

F(K,x), ifzels;

— Eval(Ks,z) =
1, otherwise.
_ /

Security of Constrained PRFs

o Pseudorandomness of constrained PRFs:

— Function should look random where:
* we have not seen its value
« we cannot evaluate it using a constrained key

-~

Challenge Constr(k,-), F(k,-) Adversary
L oes IC — S1,..,5
———— €Z1, ,:I:p
b<s{0,1}
* * q i Llyewns
*—{wam b=1] . rre
y<sY [b=0] Y > Qutput b’

Verifiable Random Functions

* VRFs [I\/IRV99]
— Functions: F: Kx X —)Y

— Algorithms: Prove(sk, x) algorithm
e 'Setup(1?) — (pk, sk) contains: v = F(sk.z)

d 7= T
« Prove(sk,z) — (y,) an P(sk, z)

« Verify(pk,z,y,7m) — 0/1

7 isto prove the function
value is computed correctly.

Security of VRFs

* Provability (Correctness):
y = F(sk,x) and Verify(pk,z,y,7) =1

* Uniqueness:

For (. y0,m0) , (2, y1,71):

)) Verlfy(pk L, Yo, ﬂ.(]) =0
Yo 7 Y1 = { V Verify(pk, z,y,,m) =0

* Pseudorandomness:
— Adversary gets Prove oracle.
— submits x* that has not been queried

— receilves either F(sk,z*) or y«s) .

Constrained VRFs

« Constrained VRFs [Fucl4]:
» Functions F: KxX —=)

with respect to a set system S C 2%

» Algorithms:
» Setup(1*) — (pk,sk) ~ * Prove(skg,z) — (y,)
* Constr(sk, S) — skg e Verify(pk,z,y,7) — 0/1

* Provability (correctness):

skg < Constr(sk, S) { r €S = y=F(skz) and Verify(pk, z,y,) = 1

—
T gé S = (y,m)=(L,1)

(y, ™) < Prove(skg, z)

Security of Constrained VRFs

« Unigueness:

» Constraint-hiding:
Prove(sk,) = Prove(Constr(sk, S), x)

* Pseudorandomness:

/ Challenge Adversary\
Constr(sk, -), Prove(sk, -)

(pkj Sk) <_$ Setup _ Sl)"')Sq
ﬁ :Ijlp'~'p:ljp

b+<+s{0,1}
o= {F(sk,m*) b=1] © T 2* UL, SiUfar.)
k Yy s)Y b= 0] y* N lellpl/lf b’/

Security of Constrained VRFs

« Unigueness:

» Constraint-hiding:
Prove(sk,) = Prove(Constr(sk, S), x)

« Pseudorandomness (selective):

/ Challenge Adversary\

€«<— X

(pk, sk) <s Setup Constr(sk, -), Prove(sk, -) S, .
ﬁ 7?0t q

b¢s{0,1} = — .z,
* . F(Skv$*) [b - 1} * ?
Yy = y s) [b _ 0} Y > lellpl/lt b

o /

Construction of VRFs

3 Constrained PRFs JiEGE

— bit-fixing, circuit-constr:
« from multilinear Maps

M Constrained VRFs =S

— bit-fixing, circuit-constr:
« from multilinear Maps

Construction of VRFs

[BW13] ° [HW10]

— bit-fixing, circuit-constr: * under g-type assumptions

Negative results of VRFs

« from multilin. Maps

° [Fuc14] _
g . _ cannot be constructed in
— bit-fixing, circuit-constr: black-box way:

« from multilin. Maps :
* Based on one-way permutations[BG09]

* Based on trapdoor permutations [FS12]
. N

Is it possible to construct VRFs from one way
functions, combing with other assumption
\(indistinguishability obfuscation)?

J

Program Obfuscationge:o

> Program

' Obfuscator

Obfuscated program

Indistinguishability Obfuscationgso

If two programs have same functionality,
obfuscations are indistinguishable.

P,1(X) = P,(x) ¥X

\

I 10

iO

Punctured PRFS s

Punctured PRF key K{z"}:

— K{z"} evaluate PRF(K,z) on all points, but =*;
PRF(K, z) define for all *;

K{z*} can evaluate PRF(K, z)for Vo # «*;
Security: given K{z"},

cannot distinguish PRF(K, z*)and random;

Special case of constrained PRTs [BW13]
Build from [GGME4]

Our Construction of CVRFs ;s wox

« Setup: samples a PRF key K PRF (K, x) = b||r
— the secretkey SK = K € {01} x{0,1}'
— Define F(K,x)=y=2b ,_P(_I{, r)=mT=r
— the public key PK= obfuscation of the program

ﬁ?onstants: punctured PRF key K \
Inputs: = € {0,1}"
Algorithm:
(1) compute ¢ = PRF(K, x)
and set ¢ = b[|r € {0,1} x {0, 1}

\ (2) output ¢ = Com(b;r) /
Prog,: Verify,

Our Construction of CVRFs ;s wox

« Constrain(SK=K, S): SKs=obfuscated program

@nstants: punctured PRF key K, set S \
Inputs: = € {0,1}"

Algorithm:
1) If z€ 5,

> compute PRF(K,) = b|lr € {0,1} x {0,1}*
»outputs F(K,z)=y=>band P(K,z) =7 =r

\ (2) Otherwise, output (L, L) /

Prog,: ConstrainedKey g g

Our Construction of CVRFs ;s wox

* Prove(SKg, X): run SKg(x)
— the functionality of SKg is equal to Prog,(X)
— Provability:
for all x, SK¢(x)=Prog,(x)
*if ¢ c S, SKs()=(b,r)
c If 2 ¢ 5, SKs()=(L, L)

* Verify(PK, X, y, TT):
— Run PK(x) and obtain c; %mtwm}[ity@[
e N is equal to
— Check if _c— Com(y; m); Prog, (x)
— Qutput 1 if true; else output O.

PI‘OOf Of Secu I"i'l'Y[this work]

* Uniqueness: perfectly binding property of Com;
— |f Yo # (751 A\ VRFVEFI'F}’(PI&F LYo Ti'o) = 1A VRFVEI’I'F}/(PI{ LY. ’:‘Tl) =1

— That Is yo # y1 A Com(yo: m) = Com(y; 1)
— It contradicts with the perfectly binding property of Com.

PI‘OOf Of Secu I‘i'l'Y[this work]

« Selective pseudorandomness:

/Gamelo \

x* — Ap (1)
K < Keypgp(17)

b*||r* = PRF(K, z™)

PK = 1O([Verify])

y*:b*

b AEO(K")’C(K”)(y*) C(K, J Stands for Constrain(K, 3
\output 1iff o’ =0

Po(K, 3 Stands for Prove(K, 3

PI‘OOf Of Secu I‘i'l'Y[this work]

« Selective pseudorandomness: 10

/ Game 1 \ ﬂonstants: punctured key K(+*) and ¢* \

¥ Aq(17) Inputs: = € {0,1}"

K <+ Keypgg (1) Algorithm:

K(z™) < Punctured(K, z™) (1) If 2 = 2*, outputs c*.
b*[|r* = PRF(K, z™) (2) Else, do as follows:

« compute ¢t = PRF (K, x)
andset ¢ = bl[r € {0,1} x {0, 1}¢

y* — b*
b AP, CUE)

\ o v') Prog’: Verify ., .-
output 1 1 =0 1/

c* = Com(b*;r™)

PI‘OOf Of Secu I"i'l'Y[this work]

 Selective pseudorandomness: functionality preserved

under puncturing
/ Game 2 \

¥ — A1 (1)

K <+ Keypgp(17)

K(x*) + Punctured(K, ™)
b*||r* = PRF(K, z*)

c® = Com(b™;r™) For x #+ x*, it a[ways
PK = iO([Verify e (%) o*]) holds that

y* = b" PRF(K,z) = PRF(K{z*}, x)
b o A;O(R(a}),-),C(K,~)(y*)

kutput 1iff b/ =0 /

PI‘OOf Of Secu I‘i'l'Y[this work]

« Selective pseudorandomness: 10

K « Keypre(17)

K(x*) < Punctured(K, z™)
b*||r* = PRF(K, z™)

c® = Com(b™;r™)

PK = 1O([Verify g (%) o*])
y* = b*

Qtput 1iff b/ =0

b AP (@™),) O (%)) ey

/

For S s.t.x™ ¢ S, it always
holds that for x € S
PRF(K,z) = PRF(K {2z},)

PI‘OOf Of Secu I"i"'Y[this work]

 Selective pseudorandomness: ®Pseudorandomness

of punctured PRFs
/ Game 4 \

r* Al(lk)
K < Keypgg(17)
K(x™) < Punctured(K, ™)

t* {0,137 % = b* |

c* = Com(b™;r™)
PK = iO([Veriny(x*)’c*})
y* — b*

&Utputliﬂ?b’:() /

PI‘OOf Of Secu I"i"'Y[this work]

 Selective pseudorandomness: Computational hiding

property of Com
/ Game 5 \

K + KeyPRF(lk)

K(x™) < Punctured(K, ™)

t* {0, 1} e = b ||r¥

c® = Com(b*;r™)

PK = 1O([Verify gr (5 o+])

b+« {0,1},y* = b

b AR (i (2%),) (y*)

Qtput 1iff o/ =0

PI‘OOf Of Secu I"i"'Y[this work]

 Selective pseudorandomness: ®Pseudorandomness

of punctured PRFs
/ Game 6 \

¥ — A1 (1)

K <« Keyprp(17)

K(z™) < Punctured(K, ™)
b*||[r* = PRF(K,z™)

c® = Com(b™;r™)

PK = 1O([Verify g () o*])
b+ {0,1},y* =0

Qtput 1iff b’ =0 /

PI‘OOf Of Secu I"i"'Y[this work]

 Selective pseudorandomness: functionality preserved

under puncturing
/ Game 7 \

¥ — A1 (1)

K <« Keypge (17)

K (xz™) < Punctured(K, z™)
b*||r* = PRF(K,z™)

c® = Com(b*;r™)

PK = iO([Verify gr (%) o*])
b+ {0,1},y* =b

b/ «— ASO(I{)*C(K(Q‘*):)

(v™)
\output Liff b’ =0 /

PI‘OOf Of Secu I"i'l'Y[this work]

« Selective pseudorandomness: 10

K <+ KeprF(l)‘)

K(z™) < Punctured(K, ™)
b*||r* = PRF(K, 2™*)

c* = Com(b™;r™)

PK = 1O([Verify ¢ (%) cx])
b+ {0,1},y* =1

b, < ASO(K:)C(I{)(y*)
\output 1iff " =0 /

PI‘OOf Of Secu I"i'l'Y[this work]

« Selective pseudorandomness: 10

Game 9 \

PK = 1O ([Verify z])

b+« {0,1},y* =b

b/ %ASO(K‘)’C(KQ)(’y*)

&utput 1iff ¥ =0 /

