Functional Signcryption: Notion, Construction,

and Applications

by

Pratish Datta

Jjoint work with

Ratna Dutta ..« Sourav Mukhopadhyay

Department of Mathematics
Indian Institute of Technology Kharagpur
Kharagpur-721302
India

ProvSec 2015
24-26th November, 2015

@ Introduction
© Our FSC Scheme
© Cryptographic Primitives from FSC

@ Conclusion

Pratish Datta Functional Signcryption ProvSec 2015

Introduction

Motivation

e Functional encryption (FE) enables sophisticated control over decryption
rights in multi-user environments.

e Functional signature (FS) allows to enforce complex constraints on sign-
ing capabilities.

e Functional signcryption (FSC) is a new cryptographic paradigm that aims
to provide the functionalities of both FE and FS in an unified cost-
effective primitive.

Pratish Datta Functional Signcryption ProvSec 2015 1

Introduction

The Notion of Functional Signcryption (FSC)

@ A trusted authority holds a master secret key and publishes system public
parameters.

@ Using its master secret key, the authority can provide a signing key SK(f)
for some signing function f to a signcrypter while a decryption key DK(g)
for some decryption function g to a decrypter.

@ SK(f) enables one to signcrypt only messages in the range of f.

@ DK(g) can be utilized to unsigncrypt a ciphertext signcrypting some mes-
sage m to retrieve g(m) only and to verify the authenticity of the ci-
phertext at the same time.

Pratish Datta Functional Signcryption ProvSec 2015 2

Introduction

A Practical Application of FSC

@ Suppose the government is collecting complete photographs of individu-
als and storing the collected data in a large server for future use by other
organization.

@ The government is using some photo-processing software that edits the
photos and encrypts them before storing to the server.

@ It is desirable that the software is allowed to perform only some minor
touch-ups of the photos.

@ Also, any organization accessing the encrypted database should retrieve
only legitimate informations.

Pratish Datta Functional Signcryption ProvSec 2015 3

Introduction

A Practical Application of FSC

@ The government would provide the photo-processing software the sign-
ing keys which allows it to signcrypt original photographs with only the
allowable modifications.

@ The government would give any organization, wishing to access only in-
formations from the database meeting certain criteria, the corresponding
decryption key.

@ The decryption key would enable the organization to retrieve only au-
thorized photos and to be convinced that the photos obtained were un-
dergone through only minor photo-editing modifications.

Pratish Datta Functional Signcryption ProvSec 2015 4

Our FSC Scheme

Cryptographic Building Blocks

e O: An indistinguishability obfuscator for P/poly.

@ PKE: A CPA-secure public key encryption scheme with message space
M C {0,1}™), for some polynomial n.

@ SIG: An existentially unforgeable signature scheme with message space
{0, 1}

@ SSS-NIZKPoK: A statistically simulation-sound non-interactive zero-
knowledge proof of knowledge system for some NP relation.

Pratish Datta Functional Signcryption ProvSec 2015 5

Our FSC Scheme

Background

Indistinguishability Obfuscation (10)

An indistinguishability obfuscator (I0) O for a circuit class {Cy} is a PPT
uniform algorithm satisfying the following conditions:

@ For any \, O(1*,C) preserves the functionality of the input circuit C,
for all C' € C,.

@ For any X and any two circuits Cy, C; € C), with the same functionality,
the circuits O(1*, Cy) and O(1*, Cy) are computationally indistinguish-
able.

Pratish Datta Functional Signcryption ProvSec 2015 6

Our FSC Scheme

Background

Statistically Simulation-Sound Non-Interactive Zero-Knowledge Proof of Knowledge
(SSS-NIZKPoK)

An SSS-NIZKPoK system for I. C {0, 1}*, which is the language containing

statements in some binary relation R C {0,1}* x {0,1}*, is defined as
follows:

o System Syntax: SSS-NIZKPoK.Setup, SSS-NIZKPoK.Prove, SSS-
NIZKPoK .Verify, SSS-NIZKPoK.SimSetup, SSS-NIZKPoK.SimProve,
SSS-NIZKPoK.ExtSetup, SSS-NIZKPoK.Extr.

o Properties: perfect completeness, statistical soundness, computational
zero-knowledge, knowledge extraction, statistical simulation-soundness.

Pratish Datta Functional Signcryption ProvSec 2015 7

Our FSC Scheme

SSS-NIZKPoK System Used in Our FSC Construction

@ We use an SSS-NIZKPoK system for the NP relation R, with statements
of the form X = (PK,(DlliE,PKl(f&E,VKsm,el, e2) € {0,1}*, witnesses of
the form W = (m,ri,72, f,0,2) € {0,1}*, and

(X,W)€R <= (e = PKE.Encrypt(PKpee, mimi) [\
e = PKE.Encrypt(PK,(gz,zE,m; 2) /\

SIG.Verify(VKsg, f,0) =1 /\ m= f(z)),

for a function family F = {f : Dy — M} C P/poly (with representation
in {0, 1}1).

Pratish Datta Functional Signcryption ProvSec 2015 8

Our FSC Scheme

Construction
FSC.Setup(1?*)

0 (px5)e,skb o), (PrE) L skZ)) « PKE.KeyGen(1*).
(2] (VK5|G, SK5|G) — SIG.KeyGen(l)‘).
© CRS + SSS-NIZKPoK.Setup(1*).

@ Publish MPK = (PKS&E, PKI(;,2|2E,VK5|G, CRS).
Keep MSK = (SKS&E, SK5|G).

Pratish Datta Functional Signcryption ProvSec 2015 9

Our FSC Scheme

Construction
FSC.SKeyGen(MPK, MSK, f € F)

Q o+ SlG.Sign(SK5|G,f).

@ Return sk(f) = (f, o) to the legitimate signcrypter.

Pratish Datta Functional Signcryption ProvSec 2015 10

Our FSC Scheme

Construction
FSC. Slgncrypt(l\IPI\ sk(f) = (f,0), 2

Q e = PKE.Encrypt(PKg&E,f(z); re) for £ = 1,2, where 7, is the ran-
domness selected for encryption.

@ 7 < SSS-NIZKPoK.Prove(crs, (X, W)) where (X = (PKS&E,PK&%E,
VKsig, €1, e2), W = (f(z),11,72, f,0,2)) € R.

@ Output CT = (e1, €2,).

Pratish Datta Functional Signcryption ProvSec 2015 11

Our FSC Scheme

Construction
FSC.DKeyGen(MPK, MSK, g : Ml — R, € P/poly)

(1)
P(g SKPKE,1\/{PK)(617 es, ﬂ_)

1 2
(1) PKéK)E, |(:,K)E,VKS|G, CRS < MPK.
1
Q Set X = (PKéK)E,PKE)K)E,VKgG,61,62).

© If SSS-NIZKPoK.Verify(CRrs, X,)
then output L.

0,

@ Else, output g(PKE.Decrypt(SKélK)E,el)).

P(g SK;K)E,MPK) ((61, e, 7T)

1 2
(1] PKéK)E, |(,K>E,VKS|(;, CRS ¢ MPK.
© Set X = (PKPKE7PKéK)Ea\/KSIGaelaeQ)

© If SSS-NIZKPoK.Verify(cRrs, X,)
then output L.

@ Else, output g(PKE.Decrypt(SKl(,QK)E,eg)).

0,

4

(1)

e Provide DK(g) = (g,o(p(%SKPKE,

MPK))) (circuit size

(1) (2)
max{|PSKpkeMPK)| || P9:SKpke MPK) 1) to the legitimate decrypter.

Pratish Datta

Functional Signcryption

ProvSec 2015 12

Our FSC Scheme

Construction "
FSC.Unsigncrypt (MPK, DK(g) = (g, O(PISpe M) o = (e, e, ™))

Q Run O(P(gvsKIgIgE’MPK)) with input (e1, e2,7).

@ Output the result.

Pratish Datta Functional Signcryption ProvSec 2015 13

Our FSC Scheme

Security

Theorem (Message Confidentiality of FSC)

Assuming 10 O for P/poly, CPA-secure public key encryption PKE, along
with the statistical simulation-soundness and zero-knowledge properties of

SSS-NIZKPoK system, our FSC scheme is selectively message confidential
against CPA.

Theorem (Ciphertext Unforgeability of FSC)

Under the assumption that SIG is existentially unforgeable against CMA
and SSS-NIZKPoK is a proof of knowledge, our FSC construction is
selectively ciphertext unforgeable against CMA.

Pratish Datta Functional Signcryption ProvSec 2015 14

Cryptographic Primitives from FSC

Some Cryptographic Primitives Derived from FSC

@ Attribute-based signcryption (ABSC) supporting arbitrary polynomial-
size circuits

@ SSS-NIZKPoK system for NP relations

@ |0 for all polynomial-size circuits

Pratish Datta Functional Signcryption ProvSec 2015 15

Cryptographic Primitives from FSC

ABSC for General Circuits from FSC

ABSC.Setup(1*)

@ (MPK, MSK) + FSC.Setup(1%).

@ Publish MPKagsc = MPK. Keep MSKagsc = MSK.

Pratish Datta Functional Signcryption ProvSec 2015 16

Cryptographic Primitives from FSC

ABSC for General Circuits from FSC

ABSC.SKeyGen(MPKagsc = MPK, MSKagsc = MSK, C®'® ¢ P/poly)

Q SK(foesie)) < FSC.SKeyGen(MPK, MSK, fosic)), Where fosi) @ Dy =
{0,1}"=v Tt — M = {0,1}" U { L} is defined as

iy JoulglM,if eSO () =1
fc(sm)(yHyHM)—{ 1, otherwise

Here,y € {0,1}" : decryption attribute string
y € {0,1}* : signature attribute string
M € {0,1}7 : message

@ Provide skagsc(CG'9)) = SK(fosie)) to the legitimate signcrypter.

Pratish Datta Functional Signcryption ProvSec 2015 17

Cryptographic Primitives from FSC

ABSC for General Circuits from FSC

FSC.DKeyGen(MPKapsc = MPK, MSKagsc = MSK, CPE9) e P/poly)

@ DK(gooeq)) < FSC.DKeyGen(MPK, MSK, g (oec)), Where g oec) : M —
M is defined as

) JIM. i COED(y) _ 1
gooeo (GTIA) = { ot e W

@ Give DKagsc(C(PEQ)) = DK (go(oec)) to the legitimate decrypter.

Pratish Datta Functional Signcryption ProvSec 2015 18

Cryptographic Primitives from FSC

ABSC for General Circuits from FSC

ABSC Signcrypt (MPKABSC = MPK, SKagsc (C®'®) = sk(foesi0)),y € {0,1},7 €
{0,1}*, M € {0,1}")

@ c1 + FSC.Signcrypt(MPK, SK(foesie)), 2 = y||7|| M), if CS'C)(g) = 1.

@ Output CTgyé?S)c = (y,9,CT).

Pratish Datta Functional Signcryption ProvSec 2015 19

Cryptographic Primitives from FSC

ABSC for General Circuits from FSC

ABSC.Unsigncrypt(MPKABSC = MPK, DKagsc(CPE9) = DK (g 0e0)), CT/(;E’EC) =
(y,9,CT))

@ Run FSC.Unsigncrypt(MPK, DK(g(okc)), CT) to obtain /||| M’ or L.

@ If /||7’|| M’ is obtained and it holds that ¢/ =y A ¥ =7, then output
M'. Otherwise, output L.

Pratish Datta Functional Signcryption ProvSec 2015 20

Cryptographic Primitives from FSC

ABSC for General Circuits from FSC

Security

Theorem (Message Confidentiality of ABSC)

If the underlying FSC scheme is selectively message confidential against
CPA, then the proposed ABSC scheme is also selectively message confiden-
tial against CPA.

Theorem (Ciphertext Unforgeability of ABSC)

If the underlying FSC scheme is selectively ciphertext unforgeable against
CMA, then the proposed ABSC scheme is also selectively ciphertext un-
forgeable against CMA.

Pratish Datta Functional Signcryption ProvSec 2015 21

Cryptographic Primitives from FSC

Overview of |0 Construction Using FSC

@ From any selectively secure FSC scheme we can obtain a selectively
secure FE scheme by including a signing key in the public parameters of
FE for the identity function on the message space.

@ Recently, Ananth et al. [AJS15] has shown how to construct 10 for
P /poly from selectively secure FE.

@ Following these, we can design an 10 for P/poly from FSC.

[AJS15]: Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. IACR Cryptology ePrint Archive,
2015.

Pratish Datta Functional Signcryption ProvSec 2015 22

Conclusion

Future Directions

Constructing FSC, possibly for restricted classes of functions, from weak
and efficient primitives.

Developing adaptively secure FSC scheme.

Formulating a simulation-based security notion for FSC.

Discovering the applications of FSC in building numerous fundamental
cryptographic primitives.

Pratish Datta Functional Signcryption ProvSec 2015 23

Thanking Note

Pratish Datta Functional Signcryption ProvSec 2015 24

Selective CPA Message Confidentiality Model for FSC

Challenger (C)

Runs FSC.Setup

Runs FSC.SKeyGen

Runs FSC.DKeyGen

Runs FSC.Signcrypt

Chooses b €g {0,1}
Runs FSC.Signcrypt

(f5,25), (f1:20)

Adversary (A)

MPK

Sig. key query: f

SK(f)

Dec. key query: g| 9(f3(25)) = 9(fi (z1))]

DK(g)

Sigerypt. query: (f,z)

CT

Challenge

cT* signerypting fi(z;)

More queries/responses

v € {0,1}

AdvFSCsIND-CPA () by —

b —1/2|

Pratish Datta

Functional Si

ProvSec

Selective CMA Ciphertext Unforgeability Model for FSC

Challenger (C) Adversary (A)

MPK

Runs FSC.Setup Query Phase

Sig. query: f | 3 no z: f(z) =m*

SK(f)

Dec. query: g

Runs FSC.SKeyGen

Runs FSC.DKeyGen DK(g)

Sigerypt. query: (f,2) | f(2) # m*

Runs FSC.Signcrypt
cT

Unsigerypt. query: (CT, g)

FSC.Unsigncrypt(MPK, DK(g), CT)

Forger:

cT* | FSC.Unsigncrypt(MPK, DK(g), CT*) = g(m*)Vg

Runs FSC.Unsigncrypt

| Advisc'}UF’CMA(A) = Pr[A wins] |

Pratish Datta Functional Signcrypti

SSS-NIZKPoK from FSC

SSS-NIZKPoK Setup(1*)

@ (MPK, MSK) ¢+ FSC.Setup(1%).

@ Identify some fixed statement X* € LL.

@ sk(f) < FSC.SKeyGen(MPK, MSK, f) and DK(g) < FSC.DKeyGen(MPK,
MSK, g) respectively for f : {0,1}"=r+r+l M = {0,1}* U {L} and
g: M — {0,1}*U{L} defined as

))

f(XIIWIIﬁ)z{ XIS, CCW) e R A B =1
X, F(XW)ER A G-1)

o(X[W|B) = rmEnnsst
L, otherwise

V
B

0]

Here L C {0,1}" and R C {0,1}" x {0, 1}~.
@ Publish ¢crs = (MPK, SK(f), DK(g)).

Pratish Datta Functional Signcryption ProvSec 2015 27

SSS-NIZKPoK from FSC

SSS-NIZKPoK.Prove(cRs, (X, W))

@ ct + FSC.Signerypt(MPK, sk (f), X ||W||1).

@ Output m = CT.

Pratish Datta Functional Signcryption ProvSec 2015 28

SSS-NIZKPoK from FSC

SSS-NIZKPoK . Verify(CRrs, X, ™ = CT)

@ X' + FSC.Unsigncrypt(MPK, DK(g), CT).

@ Output 1 if X’ = X. Otherwise, output 0.

Pratish Datta Functional Signcryption ProvSec 2015 29

SSS-NIZKPoK from FSC

SSS-NIZKPoK.SimSetup(1*, X*)

@ (MPK,MSK) + FSC.Setup(1%).

@ sK(f) < FSC.SKeyGen(MPK, MSK, f) and DK(g) <+ FSC.DKeyGen(MPK,
MSK, g) for functions f and g as in the real setup, where X™ will play
the role of X*.

O sK(f) « FSC.SKeyGen(MPK, MSK, f) for f : {0,1}" — M defined as

. X|W(g, f(X,W)eRA B=1]V
FXWIIB) = X=X* AW=0" N\ =0
1, otheriwse

© Output CRS = (MPK, SK(f),DK(g)) and TR = SK(f).

Pratish Datta Functional Signcryption ProvSec 2015 30

SSS-NIZKPoK from FSC

SSS-NIZKPoK.SimProve(CRs, TR, X *)

Q CT + FSC.Signcrypt(MPK, SK(f), X*]|07]|0).

@ Output 7 = CT.

Pratish Datta Functional Signcryption ProvSec 2015 31

SSS-NIZKPoK from FSC

SSS-NIZKPoK.ExtSetup(1*)

@ (MPK, MSK) + FSC.Setup(1%).

@ Identify some fixed statement X* € L and compute SK(f) and DK(g)
respectively for functions f and g as in the real setup.

© DK(g') + FSC.DKeyGen(MPK, MSK, ¢'), where ¢’ : {0,1}" — {0,1},*!
is defined by

g (X|WI|B) = WI|B, for X[|W||5 € {0,1}".

@ Output CRS = (MPK, SK(f),DK(g)) and TR = DK(¢').

Pratish Datta Functional Signcryption ProvSec 2015 32

SSS-NIZKPoK from FSC

SSS-NIZKPoK.Extr(CRs, TR, X, ™ = CT)

@ Run FSC.Unsigncrypt(MPK, DK(¢'), CT).

@ If W||1 € {0,1}#*! is obtained, then output W. Otherwise, output L
indicating failure.

Pratish Datta Functional Signcryption ProvSec 2015 33

SSS-NIZKPoK from FSC

Security

Assuming that the underlying FSC scheme is selective message confiden-
tial against CPA and selective ciphertext unforgeable against CMA, the
described SSS-NIZKPoK system satisfies all the criteria of SSS-NIZKPoK.

Pratish Datta Functional Signcryption ProvSec 2015 34

	Introduction
	Our FSC Scheme
	Cryptographic Primitives from FSC
	Conclusion

