

Functional Signcryption: Notion, Construction, and Applications

by

Pratish Datta

joint work with

Ratna Dutta and **Sourav Mukhopadhyay**

Department of Mathematics
Indian Institute of Technology Kharagpur
Kharagpur-721302
India

ProvSec 2015
24–26th November, 2015

- 1 Introduction
- 2 Our FSC Scheme
- 3 Cryptographic Primitives from FSC
- 4 Conclusion

Motivation

- Functional encryption (FE) enables sophisticated control over decryption rights in multi-user environments.
- Functional signature (FS) allows to enforce complex constraints on signing capabilities.
- *Functional signcryption* (FSC) is a new cryptographic paradigm that aims to provide the functionalities of both FE and FS in an *unified cost-effective primitive*.

The Notion of Functional Signcryption (FSC)

- A trusted authority holds a master secret key and publishes system public parameters.
- Using its master secret key, the authority can provide a signing key $\text{SK}(f)$ for some signing function f to a signcrypter while a decryption key $\text{DK}(g)$ for some decryption function g to a decrypter.
- $\text{SK}(f)$ enables one to signcrypt only messages in the range of f .
- $\text{DK}(g)$ can be utilized to unsigncrypt a ciphertext signcrypting some message m to retrieve $g(m)$ only and to verify the authenticity of the ciphertext at the same time.

A Practical Application of FSC

- Suppose the government is collecting complete photographs of individuals and storing the collected data in a large server for future use by other organization.
- The government is using some photo-processing software that edits the photos and encrypts them before storing to the server.
- It is desirable that the software is allowed to perform only some minor touch-ups of the photos.
- Also, any organization accessing the encrypted database should retrieve only legitimate informations.

A Practical Application of FSC

- The government would provide the photo-processing software the signing keys which allows it to signcrypt original photographs with only the allowable modifications.
- The government would give any organization, wishing to access only informations from the database meeting certain criteria, the corresponding decryption key.
- The decryption key would enable the organization to retrieve only authorized photos and to be convinced that the photos obtained were undergone through only minor photo-editing modifications.

Cryptographic Building Blocks

- \mathcal{O} : An indistinguishability obfuscator for P/poly .
- PKE: A CPA-secure public key encryption scheme with message space $\mathbb{M} \subseteq \{0, 1\}^{n(\lambda)}$, for some polynomial n .
- SIG: An existentially unforgeable signature scheme with message space $\{0, 1\}^\lambda$.
- SSS-NIZKPoK: A statistically simulation-sound non-interactive zero-knowledge proof of knowledge system for some NP relation.

Background

Indistinguishability Obfuscation (IO)

An indistinguishability obfuscator (IO) \mathcal{O} for a circuit class $\{\mathbb{C}_\lambda\}$ is a PPT uniform algorithm satisfying the following conditions:

- For any λ , $\mathcal{O}(1^\lambda, C)$ preserves the functionality of the input circuit C , for all $C \in \mathbb{C}_\lambda$.
- For any λ and any two circuits $C_0, C_1 \in \mathbb{C}_\lambda$ with the same functionality, the circuits $\mathcal{O}(1^\lambda, C_0)$ and $\mathcal{O}(1^\lambda, C_1)$ are computationally indistinguishable.

Background

Statistically Simulation-Sound Non-Interactive Zero-Knowledge Proof of Knowledge (SSS-NIZKPoK)

An SSS-NIZKPoK system for $\mathbb{L} \subset \{0, 1\}^*$, which is the language containing statements in some binary relation $R \subset \{0, 1\}^* \times \{0, 1\}^*$, is defined as follows:

- **System Syntax:** SSS-NIZKPoK.Setup, SSS-NIZKPoK.Prove, SSS-NIZKPoK.Verify, SSS-NIZKPoK.SimSetup, SSS-NIZKPoK.SimProve, SSS-NIZKPoK.ExtSetup, SSS-NIZKPoK.Extr.
- **Properties:** perfect completeness, statistical soundness, computational zero-knowledge, knowledge extraction, statistical simulation-soundness.

SSS-NIZKPoK System Used in Our FSC Construction

- We use an SSS-NIZKPoK system for the NP relation R , with statements of the form $X = (\text{PK}_{\text{PKE}}^{(1)}, \text{PK}_{\text{PKE}}^{(2)}, \text{VK}_{\text{SIG}}, e_1, e_2) \in \{0, 1\}^*$, witnesses of the form $W = (m, r_1, r_2, f, \sigma, z) \in \{0, 1\}^*$, and

$$(X, W) \in R \iff \left(e_1 = \text{PKE}.\text{Encrypt}(\text{PK}_{\text{PKE}}^{(1)}, m; r_1) \wedge \right. \\ \left. e_2 = \text{PKE}.\text{Encrypt}(\text{PK}_{\text{PKE}}^{(2)}, m; r_2) \wedge \right. \\ \left. \text{SIG}.\text{Verify}(\text{VK}_{\text{SIG}}, f, \sigma) = 1 \wedge m = f(z) \right),$$

for a function family $\mathbb{F} = \{f : \mathbb{D}_f \rightarrow \mathbb{M}\} \subseteq \text{P/poly}$ (with representation in $\{0, 1\}^\lambda$).

Construction

$\text{FSC}.\text{Setup}(1^\lambda)$

- ➊ $(\text{PK}_{\text{PKE}}^{(1)}, \text{SK}_{\text{PKE}}^{(1)}), (\text{PK}_{\text{PKE}}^{(2)}, \text{SK}_{\text{PKE}}^{(2)}) \leftarrow \text{PKE}.\text{KeyGen}(1^\lambda).$
- ➋ $(\text{VK}_{\text{SIG}}, \text{SK}_{\text{SIG}}) \leftarrow \text{SIG}.\text{KeyGen}(1^\lambda).$
- ➌ $\text{CRS} \leftarrow \text{SSS-NIZKPoK}.\text{Setup}(1^\lambda).$
- ➍ Publish $\text{MPK} = (\text{PK}_{\text{PKE}}^{(1)}, \text{PK}_{\text{PKE}}^{(2)}, \text{VK}_{\text{SIG}}, \text{CRS}).$
Keep $\text{MSK} = (\text{SK}_{\text{PKE}}^{(1)}, \text{SK}_{\text{SIG}}).$

Construction

$\text{FSC.SKeyGen}(\text{MPK}, \text{MSK}, f \in \mathbb{F})$

- ① $\sigma \leftarrow \text{SIG.Sign}(\text{SK}_{\text{SIG}}, f).$
- ② Return $\text{SK}(f) = (f, \sigma)$ to the legitimate signcrypter.

Construction

$\text{FSC.Signcrypt}(\text{MPK}, \text{SK}(f) = (f, \sigma), z \in \mathbb{D}_f)$

- ➊ $e_\ell = \text{PKE.Encrypt}(\text{PK}_{\text{PKE}}^{(\ell)}, f(z); r_\ell)$ for $\ell = 1, 2$, where r_ℓ is the randomness selected for encryption.
- ➋ $\pi \leftarrow \text{SSS-NIZKPoK.Prove}(\text{CRS}, (X, W))$ where $(X = (\text{PK}_{\text{PKE}}^{(1)}, \text{PK}_{\text{PKE}}^{(2)}, \text{VK}_{\text{SIG}}, e_1, e_2), W = (f(z), r_1, r_2, f, \sigma, z)) \in R$.
- ➌ Output $\text{CT} = (e_1, e_2, \pi)$.

Construction

$\text{FSC.DKeyGen}(\text{MPK}, \text{MSK}, g : \mathbb{M} \rightarrow \mathbb{R}_g \in \mathsf{P/poly})$

Programs $P^{(g, \text{SK}_{\text{PKE}}^{(1)}, \text{MPK})}$ and $\widetilde{P}^{(g, \text{SK}_{\text{PKE}}^{(2)}, \text{MPK})}$

$P^{(g, \text{SK}_{\text{PKE}}^{(1)}, \text{MPK})}(e_1, e_2, \pi)$

- 1 $\text{PK}_{\text{PKE}}^{(1)}, \text{PK}_{\text{PKE}}^{(2)}, \text{VK}_{\text{SIG}}, \text{CRS} \leftarrow \text{MPK}.$
- 2 Set $X = (\text{PK}_{\text{PKE}}^{(1)}, \text{PK}_{\text{PKE}}^{(2)}, \text{VK}_{\text{SIG}}, e_1, e_2)$.
- 3 If $\text{SSS-NIZKPoK.Verify}(\text{CRS}, X, \pi) = 0$, then output \perp .
- 4 Else, output $g(\text{PKE.Decrypt}(\text{SK}_{\text{PKE}}^{(1)}, e_1))$.

$\widetilde{P}^{(g, \text{SK}_{\text{PKE}}^{(2)}, \text{MPK})}((e_1, e_2, \pi))$

- 1 $\text{PK}_{\text{PKE}}^{(1)}, \text{PK}_{\text{PKE}}^{(2)}, \text{VK}_{\text{SIG}}, \text{CRS} \leftarrow \text{MPK}.$
- 2 Set $X = (\text{PK}_{\text{PKE}}^{(1)}, \text{PK}_{\text{PKE}}^{(2)}, \text{VK}_{\text{SIG}}, e_1, e_2)$.
- 3 If $\text{SSS-NIZKPoK.Verify}(\text{CRS}, X, \pi) = 0$, then output \perp .
- 4 Else, output $g(\text{PKE.Decrypt}(\text{SK}_{\text{PKE}}^{(2)}, e_2))$.

- Provide $\text{DK}(g) = (g, \mathcal{O}(P^{(g, \text{SK}_{\text{PKE}}^{(1)}, \text{MPK})}))$ (circuit size $\max\{|P^{(g, \text{SK}_{\text{PKE}}^{(1)}, \text{MPK})}|, |\widetilde{P}^{(g, \text{SK}_{\text{PKE}}^{(2)}, \text{MPK})}|\|$) to the legitimate decrypter.

Construction

$\text{FSC.Unsigncrypt}_{\text{MPK}, \text{DK}}(g) = (g, \mathcal{O}(P^{(g, \text{SK}_{\text{PKE}}^{(1)}, \text{MPK})})), \text{CT} = (e_1, e_2, \pi)$

- ① Run $\mathcal{O}(P^{(g, \text{SK}_{\text{PKE}}^{(1)}, \text{MPK})})$ with input (e_1, e_2, π) .
- ② Output the result.

Security

Theorem (*Message Confidentiality of FSC*)

Assuming IO \mathcal{O} for P/poly, CPA-secure public key encryption PKE, along with the statistical simulation-soundness and zero-knowledge properties of SSS-NIZKPoK system, our FSC scheme is selectively message confidential against CPA.

Theorem (*Ciphertext Unforgeability of FSC*)

Under the assumption that SIG is existentially unforgeable against CMA and SSS-NIZKPoK is a proof of knowledge, our FSC construction is selectively ciphertext unforgeable against CMA.

Some Cryptographic Primitives Derived from FSC

- Attribute-based signcryption (ABSC) supporting arbitrary polynomial-size circuits
- SSS-NIZKPoK system for NP relations
- IO for all polynomial-size circuits

ABSC for General Circuits from FSC

ABSC. $\text{Setup}(1^\lambda)$

- ➊ $(\text{MPK}, \text{MSK}) \leftarrow \text{FSC}.\text{Setup}(1^\lambda).$
- ➋ Publish $\text{MPK}_{\text{ABSC}} = \text{MPK}$. Keep $\text{MSK}_{\text{ABSC}} = \text{MSK}$.

ABSC for General Circuits from FSC

ABSC.SKeyGen($\text{MPK}_{\text{ABSC}} = \text{MPK}$, $\text{MSK}_{\text{ABSC}} = \text{MSK}$, $C^{(\text{SIG})} \in \text{P/poly}$)

① $\text{SK}(f_{C^{(\text{SIG})}}) \leftarrow \text{FSC.SKeyGen}(\text{MPK}, \text{MSK}, f_{C^{(\text{SIG})}})$, where $f_{C^{(\text{SIG})}} : \mathbb{D}_f = \{0, 1\}^{n=\nu+\mu+\gamma} \rightarrow \mathbb{M} = \{0, 1\}^n \cup \{\perp\}$ is defined as

$$f_{C^{(\text{SIG})}}(y \parallel \bar{y} \parallel M) = \begin{cases} y \parallel \bar{y} \parallel M, & \text{if } C^{(\text{SIG})}(\bar{y}) = 1 \\ \perp, & \text{otherwise} \end{cases}$$

Here, $y \in \{0, 1\}^\nu$: decryption attribute string

$\bar{y} \in \{0, 1\}^\mu$: signature attribute string

$M \in \{0, 1\}^\gamma$: message

② Provide $\text{SK}_{\text{ABSC}}(C^{(\text{SIG})}) = \text{SK}(f_{C^{(\text{SIG})}})$ to the legitimate signcrypter.

ABSC for General Circuits from FSC

$\text{FSC.DKeyGen}(\text{MPK}_{\text{ABSC}} = \text{MPK}, \text{MSK}_{\text{ABSC}} = \text{MSK}, C^{(\text{DEC})} \in \mathsf{P/poly})$

- ① $\text{DK}(g_{C^{(\text{DEC})}}) \leftarrow \text{FSC.DKeyGen}(\text{MPK}, \text{MSK}, g_{C^{(\text{DEC})}})$, where $g_{C^{(\text{DEC})}} : \mathbb{M} \rightarrow \mathbb{M}$ is defined as

$$g_{C^{(\text{DEC})}}(y \parallel \bar{y} \parallel M) = \begin{cases} y \parallel \bar{y} \parallel M, & \text{if } C^{(\text{DEC})}(y) = 1 \\ \perp, & \text{otherwise} \end{cases}$$

- ② Give $\text{DK}_{\text{ABSC}}(C^{(\text{DEC})}) = \text{DK}(g_{C^{(\text{DEC})}})$ to the legitimate decrypter.

ABSC for General Circuits from FSC

ABSC.Signcrypt($\text{MPK}_{\text{ABSC}} = \text{MPK}$, $\text{SK}_{\text{ABSC}}(C^{(\text{SIG})}) = \text{SK}(f_{C^{(\text{SIG})}})$, $y \in \{0, 1\}^\nu$, $\bar{y} \in \{0, 1\}^\mu$, $M \in \{0, 1\}^\gamma$)

- ① $\text{CT} \leftarrow \text{FSC.Signcrypt}(\text{MPK}, \text{SK}(f_{C^{(\text{SIG})}}), z = y \parallel \bar{y} \parallel M)$, if $C^{(\text{SIG})}(\bar{y}) = 1$.
- ② Output $\text{CT}_{\text{ABSC}}^{(y, \bar{y})} = (y, \bar{y}, \text{CT})$.

ABSC for General Circuits from FSC

$\text{ABSC.Unsigncrypt}(\text{MPK}_{\text{ABSC}} = \text{MPK}, \text{DK}_{\text{ABSC}}(C^{(\text{DEC})}) = \text{DK}(g_{C^{(\text{DEC})}}), \text{CT}_{\text{ABSC}}^{(y, \bar{y})} = (y, \bar{y}, \text{CT}))$

- ① Run $\text{FSC.Unsigncrypt}(\text{MPK}, \text{DK}(g_{C^{(\text{DEC})}}), \text{CT})$ to obtain $y' \parallel \bar{y}' \parallel M'$ or \perp .
- ② If $y' \parallel \bar{y}' \parallel M'$ is obtained and it holds that $y' = y \wedge \bar{y}' = \bar{y}$, then output M' . Otherwise, output \perp .

ABSC for General Circuits from FSC Security

Theorem (*Message Confidentiality of ABSC*)

If the underlying FSC scheme is selectively message confidential against CPA, then the proposed ABSC scheme is also selectively message confidential against CPA.

Theorem (*Ciphertext Unforgeability of ABSC*)

If the underlying FSC scheme is selectively ciphertext unforgeable against CMA, then the proposed ABSC scheme is also selectively ciphertext unforgeable against CMA.

Overview of IO Construction Using FSC

- From any selectively secure FSC scheme we can obtain a selectively secure FE scheme by including a signing key in the public parameters of FE for the *identity function* on the message space.
- Recently, Ananth et al. [AJS15] has shown how to construct IO for P/poly from selectively secure FE.
- Following these, we can design an IO for P/poly from FSC.

[AJS15]: Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. IACR Cryptology ePrint Archive, 2015.

Future Directions

- Constructing FSC, possibly for restricted classes of functions, from weak and efficient primitives.
- Developing adaptively secure FSC scheme.
- Formulating a simulation-based security notion for FSC.
- Discovering the applications of FSC in building numerous fundamental cryptographic primitives.

Thanking Note

Selective CPA Message Confidentiality Model for FSC

Selective CMA Ciphertext Unforgeability Model for FSC

SSS-NIZKPoK from FSC

SSS-NIZKPoK.Setup(1^λ)

- ① $(\text{MPK}, \text{MSK}) \leftarrow \text{FSC}.\text{Setup}(1^\lambda)$.
- ② Identify some fixed statement $X^* \in \mathbb{L}$.
- ③ $\text{SK}(f) \leftarrow \text{FSC}.\text{SKeyGen}(\text{MPK}, \text{MSK}, f)$ and $\text{DK}(g) \leftarrow \text{FSC}.\text{DKeyGen}(\text{MPK}, \text{MSK}, g)$ respectively for $f : \{0, 1\}^{n=\kappa+\rho+1} \rightarrow \mathbb{M} = \{0, 1\}^n \cup \{\perp\}$ and $g : \mathbb{M} \rightarrow \{0, 1\}^\kappa \cup \{\perp\}$ defined as

$$f(X\|W\|\beta) = \begin{cases} X\|W\|\beta, & \text{if } (X, W) \in R \wedge \beta = 1 \\ \perp, & \text{otherwise} \end{cases}$$

$$g(X\|W\|\beta) = \begin{cases} X, & \text{if } [(X, W) \in R \wedge \beta = 1] \vee \\ & [X = X^* \wedge W = 0^\rho \wedge \beta = 0] \\ \perp, & \text{otherwise} \end{cases}$$

Here $\mathbb{L} \subseteq \{0, 1\}^\kappa$ and $\mathbb{R} \subseteq \{0, 1\}^\kappa \times \{0, 1\}^\rho$.

- ④ Publish $\text{CRS} = (\text{MPK}, \text{SK}(f), \text{DK}(g))$.

SSS-NIZKPoK from FSC

SSS-NIZKPoK.Prove $(\text{CRS}, (X, W))$

- ① $\text{CT} \leftarrow \text{FSC.Signcrypt}(\text{MPK}, \text{SK}(f), X \| W \| 1)$.
- ② Output $\pi = \text{CT}$.

SSS-NIZKPoK from FSC

SSS-NIZKPoK.Verify(CRS, X , $\pi = \text{CT}$)

- ➊ $X' \leftarrow \text{FSC.Unsigncrypt}(\text{MPK}, \text{DK}(g), \text{CT}).$
- ➋ Output 1 if $X' = X$. Otherwise, output 0.

SSS-NIZKPoK from FSC

SSS-NIZKPoK.SimSetup($1^\lambda, \tilde{X}^*$)

- ➊ $(\text{MPK}, \text{MSK}) \leftarrow \text{FSC}.\text{Setup}(1^\lambda)$.
- ➋ $\text{SK}(f) \leftarrow \text{FSC}.\text{SKeyGen}(\text{MPK}, \text{MSK}, f)$ and $\text{DK}(g) \leftarrow \text{FSC}.\text{DKeyGen}(\text{MPK}, \text{MSK}, g)$ for functions f and g as in the real setup, where \tilde{X}^* will play the role of X^* .
- ➌ $\text{SK}(\tilde{f}) \leftarrow \text{FSC}.\text{SKeyGen}(\text{MPK}, \text{MSK}, \tilde{f})$ for $\tilde{f} : \{0, 1\}^n \rightarrow \mathbb{M}$ defined as

$$\tilde{f}(X\|W\|\beta) = \begin{cases} X\|W\|\beta, & \text{if } [(X, W) \in R \wedge \beta = 1] \vee \\ & [X = \tilde{X}^* \wedge W = 0^\rho \wedge \beta = 0] \\ \perp, & \text{otherwise} \end{cases}$$

- ➍ Output $\text{CRS} = (\text{MPK}, \text{SK}(f), \text{DK}(g))$ and $\text{TR} = \text{SK}(\tilde{f})$.

SSS-NIZKPoK from FSC

SSS-NIZKPoK.SimProve(CRS, TR, \tilde{X}^*)

- ① $\widetilde{\text{CT}} \leftarrow \text{FSC.Signcrypt}(\text{MPK}, \text{SK}(\tilde{f}), \tilde{X}^* \| 0^\rho \| 0)$.
- ② Output $\tilde{\pi} = \widetilde{\text{CT}}$.

SSS-NIZKPoK from FSC

SSS-NIZKPoK.ExtSetup(1^λ)

- ① $(\text{MPK}, \text{MSK}) \leftarrow \text{FSC}.\text{Setup}(1^\lambda)$.
- ② Identify some fixed statement $X^* \in \mathbb{L}$ and compute $\text{SK}(f)$ and $\text{DK}(g)$ respectively for functions f and g as in the real setup.
- ③ $\text{DK}(g') \leftarrow \text{FSC}.\text{DKeyGen}(\text{MPK}, \text{MSK}, g')$, where $g' : \{0, 1\}^n \rightarrow \{0, 1\}^{\rho+1}$ is defined by

$$g'(X \| W \| \beta) = W \| \beta, \text{ for } X \| W \| \beta \in \{0, 1\}^n.$$

- ④ Output $\text{CRS} = (\text{MPK}, \text{SK}(f), \text{DK}(g))$ and $\widehat{\text{TR}} = \text{DK}(g')$.

SSS-NIZKPoK from FSC

SSS-NIZKPoK.Extr(CRS, $\widehat{\text{TR}}$, $X, \pi = \text{CT}$)

- ① Run $\text{FSC.Unsigncrypt}(\text{MPK}, \text{DK}(g'), \text{CT})$.
- ② If $W\|1 \in \{0,1\}^{\rho+1}$ is obtained, then output W . Otherwise, output \perp indicating failure.

SSS-NIZKPoK from FSC

Security

Theorem

Assuming that the underlying FSC scheme is selective message confidential against CPA and selective ciphertext unforgeable against CMA, the described SSS-NIZKPoK system satisfies all the criteria of SSS-NIZKPoK.