Optimized x?-attack against RC6

Norihisa Isogai*, Takashi Matsunaka, and Atsuko Miyaji

Japan Advanced Institute of Science and Technology.
{isogai, t-matsuna, miyaji }@jaist.ac.jp

Abstract. In this paper, we make progress on y>-attack by introducing
the optimization. We propose three key recovery attacks against RC6
without post-whitening, and apply these three key recovery algorithms
to RC6. We discuss their differences and optimization and thus our best
attack can break 16-round RC6 without pre-whitening with 128-bit key
(resp. 16-round RC6 with 192-bit key) by using 2''7-%* (resp. 2'22:8%)
chosen plaintexts with a success probability of 95% (resp. 90%). As far
as the authors know, this is the best result of attacks to RC6.

Keywords : Block Cipher, Cryptanalysis, RC6, x2-attack

1 Introduction

RC6 [11] is a block cipher designed by Rivest et al. in 1998. RC6-w/r/b means
that four w-bit-word plaintexts are encrypted with r rounds by b-byte keys.
Currently, RC6-32/20 is recommended to give sufficient resistance against the
known attacks [1-3,5,7,9,12,13]. In this paper, RC6-32 is simply denoted by
RC6. RC6 operates as an unit of w-bit word using five basic operations such as
an addition, a subtraction, a bitwise exclusive-or, a multiplication, and a data
dependent rotation. Therefore, this block cipher has a wonderful capability for
performing high-speed software implementation especially on Intel processors.

Up to the present, linear attacks, differential attacks, and y2-attacks against
RC6 and some simplified variants of RC6 have been analyzed intensively. Table 1
summarizes the previous results on RC6. In [2], the security of RC6 against the
differential and linear cryptanalysis was given. They estimated that 12-round
RC6 is not secure against the differential cryptanalysis. As for linear cryptanal-
ysis using multiple approximations and linear hulls, it was reported that RC6
with 16 or more rounds is secure. As a result, they concluded that 20-round
RC6 is secure against differential and linear cryptanalysis. In [12], on the other
hand, a correct key of 14-round RC6 with 256-bit key can be recovered by using
multiple linear attack, and a weak key of 18-round RC6 can be recovered with
the probability of about 1/2%.

The y2-attack is one of the most effective attacks on RC6. The x2-attack was
originally proposed by Vaudenay as an attack on the Data Encryption Standard

* The author is currently with Matsushita Information System Research Laboratory
Nagoya Co., LTD.

(DES) [14], and Handschuh et al. applied that to SEAL [6]. In [5,7,9], the x?-
attacks were applied to RC6 or a simplified variant of RC6. The y2-attack can
be used for both distinguishing attacks and key recovery attacks. Distinguishing
attacks handle plaintexts in such a way that the y2-value of a part of ciphertexts
becomes significantly a higher value. Key recovery attacks have to rule out all
wrong keys, single out exactly a correct key by using the x2-value, and thus they
often require more work and memory than distinguishing attacks. In [5, 7], they
just focused on such plaintexts that outputs high x2-value on ciphertext, and in
[9], they made progress by introducing a notion of variance as well as y2-value
itself. But, unfortunately, optimization of x2?-value has never been discussed,
that is, what level of variance is optimal.

In this paper, we propose three key recovery attacks against RC6 without
post-whitening and discuss the differences and optimization. We also apply the
key recovery attacks to RC6 and demonstrate one of them on RC6-8. Our key
recovery attack itself gives a remarkable impact on RC6: our best attack can
break 16-round RC6 without pre-whitening with 128-bit key (resp. 16-round
RC6 with 192-bit key) by using 2'17-84 (resp. 2!22:84) chosen plaintexts with a
success probability of 95% (resp. 90%).

This paper is organized as follows. Section 2 summarizes the notation, RC6
algorithm, and the x2-test. Section 3 investigates the y2-statistic of RC6. Sec-
tion 4 presents three key recovery attacks against RC6 without post-whitening,
Algorithms 2, 3, and 4. We evaluate the security against RC6 in Section 5.
Conclusion is given in Section 6.

Table 1. Attacks on RC6

Attack Target RC6 Rounds|#Texts
Linear Attack [2] RC6 16 2119
x> Attack [7] RC6 with 256-bit key 15 2119
Multiple Linear Attack [12]| RC6 with 192-bit key 147 | 211988
x> Attack [9] RC6W? with 128-bit key| 17 | 2'237
Our result RC6P? with 128-bit key | 16 Q751
RC6 with 192-bit key 16 |277%

1: A weak key of 18-round RC6 with 256-bit key can be recovered by 2'26-9%¢ plaintexts
with the probability of about 1/2%.

2: RC6W means RC6 without pre- or post-whitening.

3: RC6P means RC6 without post-whitening.

2 Preliminary

We summarize the notation, RC6 algorithm, and the y>2-test, used in this paper.

2.1 Notation

Let us use the following notation:
+ : addition;
— : subtraction;
@ : bitwise exclusive-or;
r : number of rounds;
a < b : cyclic rotation of a to the left by b-bit;
a 3> b : cyclic rotation of a to the right by b-bit;
(A;, B;, C;, D;) : input of the i-th round; (Ao, Bo, Co, Do) : plaintext;
(Ay12,Bria, Cry2, Dyyo) : ciphertext after r-round encryption;
S; : i-th subkey;
Isb,, (X) : least significant n-bit of X;
msb,, (X) : most significant n-bit of X;
X'? :i-th bit of X;
fz) :xx 2z + 1);
F(z): f(z) (mod 2%?) « 5;
z||y : concatenated value of z and y.
We denote the least significant bit (Isb) to the 1st bit, and the most significant
bit (msb) as the 32-th bit for any 32-bit element.

2.2 Block cipher RC6

Algorithm 1 (RC6 Encryption Algorithm)
1. Ay =Ag; Bi =Bo+So; Ci =Co; D1 =Do+51;
2. for i=1 to r do: t=F(B;); u=F(D;);
Aiy1 =B;; Biy1 = ((Ci ®u) K t) + S2i+1; Ciy1 = Dy;
Dit1 = ((Ai dt) K u) + Soi;
3. Arjo=A 41+ Sor42; Brj2=Brt1; Cryo=Crq1+ Sor43; Dryo = Dyryr.

Parts 1 and 3 of Algorithm 1 are called pre-whitening and post-whitening, re-
spectively. We call the version of RC6 without post-whitening to, simply, RC6P.

2.3 x2-test

We make use of the y2-tests for distinguishing a non-uniformly random dis-
tribution from uniformly random distribution [7]. Let X = Xo, ..., X,,—1 be a
sequence with VX; € {ao, - ,am1}. Let Ny, (X) be the number of X; which
equals a;. The x2-statistic of X, x?(X), estimates the difference between X and
the uniform distribution as follows:

e =" % (v - 1Y

Table 2 presents each threshold for 63 degrees of freedom. For example, (level,
x?) = (0.95, 82.53) for 63 degrees of freedom in Table 2 means that the value
of y2-statistic exceeds 82.53 in the probability of 5% if the observation X is
uniform.

Table 2. Selected threshold values of x2-distribution with 63 degrees of freedom

Level 0.50 0.60 0.70 0.80 0.90 0.95 0.99
63 degrees of freedom|62.33 65.20 68.37 72.20 77.75 82.53 92.01

3 x2-statistic of RC6

We improve the distinguishing attacks in such a way that the y2-values become
significantly high and that the available number of plaintexts is not reduced.

3.1 Overview of experiments

The previous results [7, 7] of x-statistic are summarized as follows:

1. 10-bit outputs of lsbs(A,41)||lsbs(Cr41) lead to much stronger biases if both
Isbs(Ap) and Isbs(Cyp) are fixed and both By and Dy introduce zero rotation in
the 1st round;

2. 10-bit outputs of Isbs (A, +1)||lsbs (Cr41) lead to much stronger biases if 1sbs (4o)
is fixed, 1sb5(Cp) = 0, and both By and Dy introduce zero rotation in the 1st
round;

3. 2n-bit outputs (n = 3, 4, 5) of lIsb, (A41)||lsb,(Cr+1) lead to much stronger
biases if Isb5(Ag) = 0, 1sb5(Cp) = 0, and both By and Dy introduce zero rotation
in the 1st round.

In other words, the previous key recovery algorithms make use of the distin-
guishing algorithms that fix 1sb,, (Ag), lsb,(Cp), or both and that introduce zero
rotation in the 1st round. However, fixing the 1st-round rotation requires much
memory for the key recovery attack and reduces the available number of plain-
texts [7]. Here, in order to investigate other conditions that have almost the same
effect but that do not reduce the available number of plaintexts, we conduct the
following three experiments.

Test 0: The x>-test on Isbz(A4,.11)]|lsb3(C,41) in the case of which Isbs(Ag)]|[lsbs(Cp)
is set to 0.
Test 1: The x2-test on Isbz(A4,+1)]|lsb3(Crt1) in the case of which Isbs(Bp)|[lsbs (Do)
is set to 0.
Test 2: The x2-test on Isbz(A4,.41)]|lsb3(C,41) in the case of which Ishs(Bg)|[lsb4 (Do)
is set to 0.

Test 0 corresponds to the previous x?-test [7,?]. Since we have known in [9]
that the y?-value of Isb,(A4,41)|[1sbn(Cri1) (n = 2, 3, 4) outputs almost the
same bias, we present only the results of n = 3 to compare the difference be-
tween le5(A0)||1Sb5(C()) = 0 and 1Sb5(B())||1Sb5(D0) = 0. Test 1 or 2 fixes
Isbs (Bo)||lsbs (Do) or 1sbs(By)||lsba(Dy) instead of lsbs(Ao)|[lsbs(Co), respec-
tively. Our experiments generate all plaintexts by using M-sequence [8]. For
example, 118-, 123-, and 128-bit random numbers are generated by M-sequence,
whose primitive polynomials of M-sequence are z''® + 236 + 28 + 2 + 1, 223 +

218 + 212 + 2+ 1, and 2'2® + 27 + 22 + 2 + 1, respectively. Our platforms are
IBM RS/6000 SP (PPC 604e/332MHz x 256) with memory of 32 GB and PC
cluster system (Pentium III/1GHz x 50) with memory of 12.5 GB. All tests use
10® keys and 10? kinds of plaintexts, and thus conduct 10° trials in total.

3.2 Test 0 and Test 1

The results of Tests 0 or 1 are shown in Tables 3 or 4, respectively. These results
indicate that Test 0 outputs more bias than Test 1, but that Test 1 also outputs
enough bias by using the same number of plaintexts. As reported in [9], we do
not necessarily need much bias like level of 0.95 as in [7] to recover a correct
key, which will be also shown in the subsequent sections. In fact, the level of
more than 0.57 is enough for key recovering. Furthermore if we employ Test 0 to
key recovery algorithm, the 1st-round rotation has to be fixed to zero in order
to maintain the effect after post-whitening. However it requires extremely much
memory. Considering these conditions, we employ Tests 1 and 2 to key recovery
algorithm.

3.3 Test 1 and Test 2

Table 5 shows the results of Test 2. Tables 4 and 5 indicate that Test 1 outputs
higher y2-value with fewer number of plaintexts than Test 2; but that Test 2
also outputs enough high bias.

Suppose that Isb, (Bo)||lsb, (Do) is fixed to some value except lsby, (Bo)||lsby (Do) =
0 (n=4,5). Then, Isb, (A2)||Isb,(C2), i.e. (Isb, (Bo)+1sb, (So)) (mod 2™)||(Isb,, (Do) +
Isb,,(S1)) (mod 2™), is fixed in the same way as Isb,,(By)||lsb,(Dg) = 0. Namely,
whatever value Isb,,(Bo)||lsb, (Do) (n = 5, 4) in Test 1 or 2 is fixed to, the same
result as Table 4 or 5 is expected. Thus, we can generalize Test 1 or 2 to use
any plaintext by just classifying it to each lsb,(By) and lsb,(Dy), and thus the
number of available plaintexts in each Test is 2128,

There is each naturally-extended key recovery attack that makes use of Test
1 or 2 as x>-test. In the next section, we apply Test 1 or 2 to the key reovery
algorithm to RC6P, Algorithms 2 and 3, or 4. The number of available plaintexts
of Algorithms 2 and 3, or 4 is 218 and 2'23, or 228, respectively. These further
differ in the number of classifications, which has an influence on the memory size
or variance of key recovery attacks. Classification means the number of groups,
in which plaintexts are classified and the average of y2-value is computed. In the
subsequent sections, we will see how these differences work on each corresponding
key recovery attack.

3.4 Slope

To extend our discussion on lower rounds to that on higher rounds, we estimate
the slope of Tests 1 and 2 as in [7], that is, how many plaintexts are required to
get similar values in a x2-test on r + 2 rounds compared with r rounds. Table 6

shows the number of plaintexts required for the y2-values with each level of 0.55,
0.60, 0.65, and 0.70, and estimates that each average slope of Test 1 (resp. Test
2) is 216:01 (resp. 216-03) Both Tests output almost the same slope, but Test 1
outputs slightly smaller slope than Test 2. This is because Test 1 fixes more bits
of input than that of Test 2. In our estimation, we take each largest value 216-04
or 21696 55 each slope of Test 1 or 2 to make our estimation strict, respectively.
In the following sections, we will show Algorithms 2 and 3 to RC6P, Algorithms 5
and 6 to RC6 (resp. Algorithm 4 to RC6P, Algorithm 7 to RC6), which are based
on Test 1 (resp. Test 2). Each algorithm conducts the same x2-test as that of
each corresponding Test. Therefore, to extend our discussion on lower rounds to
that on higher rounds, we use the slope of each corresponding Test.

Table 7 shows the efficiency of each Test from the point of view of distin-
guishing attack. Considering the number of available plaintexts of Test 1 (resp.
Test 2), 2118 (resp. 2120), Test 1 (resp. Test 2) can distinguish output of 15-round
RC6 from a randomly chosen permutation by using 2!12:0 plaintexts (resp. 2!12-90
plaintexts). Test 1 can work better than Test 2 from the point of view of distin-
guishing attack as we noted the above. In the subsequent sections, we will show
some key recovery algorithms based on Test 1 or 2 that differ each other in the
number of classifications.

Table 3. The y*-value on Isb3(A,41)|[lsb3(Cr41) in Test 0 (the average of 107 trials)

2 rounds 4 rounds
Texts|x?-value|Level|Variance||# Texts|x?-value[Level|[Variance
28 63.402 [0.538] 126.731 221 63.489 [0.541| 127.840
2° 63.875 |0.554| 129.299 225 | 64.028 0.560| 129.847
210 1 64.729 |0.584|133.864 || 2% | 65.006 |0.593| 134.789
ot 66.415 |0.640| 142.293 227 67.052 (0.660| 144.714
212 | 69.939 |0.744| 157.668 228 | 71.000 0.771| 167.825
Table 4. The y2-value on Isb3(A,41)|[lsb3(Cr41) in Test 1 (the average of 107 trials)

3 rounds 5 rounds
Texts|x2-value|Level|Variance||# Texts|x?-value[Level|[Variance
28 63.224 [0.532| 125.883 2% 63.262 [0.533| 126.990
2° 63.416 [0.538| 126.119 225 63.429 |0.539| 127.497
210 63.819 [0.553| 129.069 226 63.790 |0.552| 128.212
it 64.669 |0.582| 132.916 227 | 64.521 |0.578| 131.408
212 66.352 [0.638| 140.551 228 66.373 |0.639| 140.554

4 Cryptanalysis against RC6 without post-whitening

We present, three key recovery algorithms against RC6P, and discuss their dif-
ferences and the optimal condition to attack to RC6P. The main idea of these

Table 5. The y>-value on Isba(A,41)|[lsb3(Cr41) in Test 2 (the average of 107 trials)

3 rounds 5 rounds
Texts|y’-value|Level|Variance||# Texts|x?-value|Level[Variance
2° 63.166 |0.530(125.506 2% | 63.251 0.533] 128.115
210 | 63.449 |0.540| 127.468 226 | 63.450 |0.540| 127.756
it 63.878 [0.555| 128.891 227 | 63.849 |0.554| 130.461
22 | 64.865 |0.589| 132.279 278 | 64.800 |0.586| 132.642
212 | 66.778 |0.651| 141.879 22° | 66.744 0.650| 141.138
Table 6. log, (#texts) and the slope required for the y?-value of each level (the average
of 10° trials)

Test 1 Test 2
Level |3 rounds|5 rounds|slope||3 rounds|5 rounds|slope
0.55 9.92 25.89 [15.97|| 10.80 26.83 [16.03
0.60 11.45 27.49 [16.04|| 12.26 28.32 [16.06
0.65 12.17 28.17 |16.00| 13.00 29.00 [16.00
0.70 12.71 28.72 (16.01|| 13.53 29.57 [16.04
average 16.01 16.03
Table 7. log, (#texts) and linear equations for Tests 1 and 2 (the average of 10° trials)

Test 1 Test 2
Level|3 rounds|5 rounds|linear equation||3 rounds|5 rounds|linear equation
0.99| 15.7 31.8 8.02r — 8.30 16.6 32.6 8.03r — 7.55

algorithms follow [9], but we fix some bits out of Isb,,(By)||lsb,(Dy) instead of
Isby,, (Ao)||lsb, (Co) or the first-round-rotation amount. Intuitively, our algorithms
fix some bits out of Isb,, (By)|[lsb,,(Dy), check the y*-value of lsbz(A4,.)||lsbs(C,.),
and recover both lsbs (Ss,.) and 1sby (Sa,41) of r-round RC6P. Here we set (yp, y4) =
(Isbs(Bri1),1sbs(Drt1)), (2, 2a) = (I8bs(F(Ars1)),18bs (F(Cri1))), (Sa,8c) =
(Isb2(S2r), 18b2(S2r41)), 8 = Sa|se, and (S3,,55,.1) = (0,0), where z, (resp. z.)
is the rotation amounts on A, (resp. C,) in the r-th round.

4.1 Key recovery algorithms based on Test 1

Algorithm 2 and 3 are based on Test 1 in Section 3. Algorithm 2 averages the
x2-value among 2! classifications, while Algorithm 3 averages it among 2'°
classifications.

Algorithm 2

1. Choose a plaintext (Ag, Bo,Co, Do) with (1sbs(By),1sbs(Dp)) = (0,0)
and encrypt it.

2. For each (sq,S:), decrypt y4|lys with a key (S3,||sq,S55,,1]|5c) by 1 round'.
The decryptions of y4 and y, are set to 2, and z., respectively,
which are denoted by a 6-bit integer z = z,||z.

3. For each value s, z,, ., and 2z, update each array by incrementing

count[s][z.][z:][z] .

4. For each s, z,, and z., compute X2[s][w.][z.].

5. Compute the average ave[s] of {x?[s][z.][*c]}s.». for each s and output
s with the highest ave[s] as 1lsby(S2,)||1sba(S2r41).

Algorithm 3

1. Choose a plaintext (Ao, By, Co, Do) with 1sbs(Dg) =0, set t = lsbs(By),
and encrypt it.

2. For each (sq,S:), decrypt y4|lys with a key (S3,|[sa,S3,,1]|sc) by 1
round. The decryptions of y; and Yy, are set to z, and 2.,
respectively, which are also denoted by a 6-bit integer z = z,||z..

3. For each value s, t, z,, ., and 2z, update each array by
incrementing count[s|[t][z.][z.][2].

4. For each s, t, z,, and z., compute X2[s][t][z.][z.].

5. Compute the average ave[s] of {x?[s][t][zs][zc]}en.z.t fOT each s and
output s with the highest awve[s] as 1sby(Say)||1sb2(Sart+1)-.

Table 8 shows the results of Algorithms 2 and 3 on 4-round RC6P: SUC, the
average of y2-values ave[s] on recovered keys, the level, and the variance, where
SUC is the success probability among 1000 keys. Before comparing the results
of Algorithms 2 and 3 (Table 8) with that of Test 1 (Table 4), we may review
the fact of distribution of the mean [4], that is, for the mean p or the variance
o2 of a population, the mean or the variance of the distribution of the mean
of a random sample with the size n drawn from the population are pu or o2 /n,
respectively. Plaintexts in Algorithm 2 or 3 are classified into 2'° or 2'% groups
of {x4,z.} or {Isbs(By), T4, z.} and ave[s] is computed over each group. On the
other hand, all plaintexts are uniformly distributed to each group since they are
randomly generated by M-sequences in our experiments. Therefore, the x2-value
ave[s] in Algorithm 2 or 3 is computed by using 1/2'% or 1/2'5 times the number
of plaintexts in Table 8. Applying this discussion to the experimental results, we
see that the above fact of distribution of the mean exactly holds in Algorithms 2
and 3: the average of y2-value on 28 — 222 or 223 — 225 plaintexts in Algorithm 2
or 3 corresponds to that of 28 — 2'2 or 28 — 210 plaintexts in the case of r = 3 of
Table 4; the variance of x2-values in Algorithm 2 or 3 corresponds to about 1/2'°
or 1/2'% as much as that of Table 4; the averages of x*-values by using 223 — 225
plaintexts in Algorithm 3 are roughly equal to those by using 2'8 — 220 plaintexts
in Algorithm 2; and the variances of y2-values by using 223 — 2%® plaintexts in
Algorithm 3 are about 1/2° as much as those by using 2'® — 220 plaintexts in
Algorithm 2. We also remark that the level of y?-value more than 0.57 or 0.53
is enough for key recovering in Algorithm 2 or 3, respectively.

Let us discuss the security in higher rounds. Since Algorithms 2 and 3 are
based on the yx2-test of Test 1, we may expect that the slope in Test 1 holds in
Algorithms 2 and 3. By using detailed experimental results in Table 9 and the

! Since any (S3,,S3,,,) outputs the same y?-value of z [9], we may decrypt y by
Setting (Sgra Sgr+l) = (07 0)

slope in Test 1, the number of plaintexts required for recovering a key in r-round
RC6P with the success probability of 95%, log, (#texts), is estimated to

_ [8.02r —10.48 (Algorithm 2)
log, (#texts) = { 8.02r — 7.98. (Algorithm 3).

Let us investigate the amount of work by setting one unit of work to one en-
cryption. Algorithms 2 and 3 encrypts each plaintext and decrypts a cipher-
text by 1 round with each key candidate. Therefore, the amount of work is
#texts x (1+1/r x 2%). Thus, by substituting the number of available plaintexts
2118 or 2123 Algorithm 2 or 3 can break 16-round RC6P by using 2117-84 or 2120-34
plaintexts, 2118-8% or 212134 work, and 22° or 2%°> memory with a probability of
95%, respectively.

Table 8. The average of x>-value and the variance in Algorithms 2, 3, and 4 on 4-round
RC6P (in 1000 trials)

Algorithm 2 Algorithm 3
#texts| SUC [x?-value| Level [Variance||#texts| SUC [x?-value| Level |Variance
218 10.097| 63.122 [0.5280] 0.1241 221 1o0.122| 63.102 [0.5273| 0.0020
2% 10.155| 63.261 [0.5329] 0.1260 || 222 |0.247| 63.114 |0.5278| 0.0022
220 10.344| 63.534 [0.5425| 0.1289 || 22* |0.526| 63.157 |0.5293| 0.0026
221 10.744| 64.096 [0.5621| 0.1278 || 2%* |0.938| 63.278 |0.5336| 0.0038
222 10.995| 65.187 [0.5994| 0.1316 || 225 |1.000| 63.561 |0.5435| 0.0044

Algorithm 4
#texts| SUC [x2-value| Level |Variance
22 10.117| 63.011 [0.5241| 0.0003
224 10.177| 63.020 [0.5244| 0.0004
225 10.347| 63.037 [0.5250| 0.0004
226 10.768| 63.067 [0.5261| 0.0005
227 11.000| 63.139 [0.5286| 0.0005

Table 9. log, (#texts) required for key recovering of 4-round RC6P with each success
probability (in 1000 trials)

Success Algorithm 2 Algorithm 3 Algorithm 4
Probability |#texts|x’-value| Level ||#texts|y”-value| Level ||#texts|x”-value| Level
95% 2715 164.539 [0.5778|| 221 | 63.295 [0.5341]| 2%°% | 63.102 [0.5273
50% 2204 | 63,721 |0.5507|| 2230 | 63.157 [0.5293| 225 | 63.045 |0.5253

4.2 Key recovery algorithm based on Test 2

Algorithm 4 is based on the y2-test of Test 2 in Section 3 and averages it among
218 classifications.

Algorithm 4

1. Choose a plaintext (Ag, Bo,Co, Do), set (tp,tq) = (1sba(By),1sbs(Dy)),
and encrypt it.

2. For each (s4,s:), decrypt y4|lys with a key (S3,|[sa,S3,,1]|sc) by 1
round. The decryptions of y; and y, are set to z, and 2., which
are also denoted by a 6-bit integer z = z,||z..

3. For each value s, %, td, o, T., and z, update each array by
incrementing count[s][ts][td][za][z:][2] -

4. For each s, ty, t4, T, and z., compute X2[s][ts][ta][Ta][Tc]-

5. Compute the average ave[s] of {X?[s][ts][ta]llal[e]}ty tu,zn,e. fOT e€ach s,
and output s with the highest ave[s] as 1sby(Sa,)||1sb2(S2r+1).

Table 8 shows the results of Algorithm 4. Algorithm 4 classifies plaintexts into
218 groups of {Isbs(By),1sbs(Dy), za, .} and averages x>-value over each group.
In the same discussion as Algorithms 2 and 3, we see that the average of x-
values by using 227 plaintexts in Table 8 is roughly equal to that by using 2°
plaintexts in the case of r = 3 of Table 5; and the variance of y2-values by using
227 plaintexts in Table 8 is about 1/2'8 as much as that by using 2° plaintexts
in the case of r = 3 of Table 5. We note that the x?-value level of more than
0.527 is enough for key recovering in Algorithm 4.

Let us discuss the security in higher rounds. In the same discussion as Algo-
rithms 2 and 3, we apply the slope of Test 2 in that of Algorithm 4. By using
more detailed experimental results in Table 9 and the slope of Test 2, the num-
ber of plaintexts required for recovering a key in r-round RC6P with the success
probability of 95%, log, (#texts), is estimated to

log, (#texts) = 8.03r — 5.52.

By substituting the number of available plaintexts 228, Algorithm 4 can break
16-round RC6P by using 2!22-%¢ plaintexts, 2123-96 work, and 2%® memory with
a probability of 95%.

4.3 Comparison of Algorithms 2, 3, and 4

Algorithms 2, 3, and 4 differ mainly in the number of classifications. In other
words, they differ in the number of plaintexts that the xy?-values are averaged. We
investigate how such a difference influences on a key recovery algorithm. Table 10
summarizes results of three algorithms: the applicable rounds and the efficiency.
Algorithm 4 can break 16-round RC6P in the success probability of 95% with
the lowest level of y2-value, at most 0.528. Because, the more the number of
classifications is, the smaller the variance of y2-value are, as we reviewed the fact
above. The smaller variance is one of necessary factors to single out a correct
key as in [9]. However, in contrast to [9], Algorithm 4 is not the most efficient
attack of three algorithms. Three algorithms can analyze RC6P with the same
number of rounds. That is, it does not necessarily holds that the more number
of classifications, the larger applicable rounds. Generally, the larger the number
of classifications, the lower level of x2-value are required to recover a correct key

but the more necessary plaintexts and work are required. On the other hand,
there exists an upper limit of the available plaintexts and work amount. This is
why the optimization of the number of classifications is necessary.

There are two factors of the number of both available texts and classifi-
cations to discuss the optimization. Fixing the number of available texts to
2128 et us investigate the optimal number of classifications: the x2-value is av-
eraged over groups {lsbs(By),lsbs(Dy), Zq,xc}, {1sba(By),lsbsa(Dg),xa,x.}, or
{lsbs(By),1sbs (Do), T4, .}, namely the number of classifications is 2!¢, 218 or
220 respectively. This means that we optimize Algorithm 4 by changing the
number of classification. Table 11 shows the results, which indicates that the
key recovery attack with 2'® classifications, i.e. Algorithm 4, is the optimal. The
number of classifications of Algorithms 2 and 3 is also optimized to attack RC6
well.

Table 10. Comparison of Algorithms 2, 3, and 4 on RC6P: applicable rounds and the
efficiency

Algorithm|#classifications #available texts nemory|rounds #texts work |x?-value (level) variance
2 210 211% 270 16 211781 oMEBI 64 539 (0.578) 0.1319
3 215 2128 225 16 212034 2121341 63 995 (0.535) 0.0039
4 218 2128 228 16 22296 2123961 63 102 (0.528) 0.0005
Table 11. #texts necessary for variations of Algorithm 4 on 4-round RC6P
#classifications
21() 218 210

Ftexts (95%)|277 0|27 2700
#texts (50%)|22%8(225-4| 2257

5 Cryptanalysis against RC6

In this section, we apply Algorithm 2, 3, or 4 to RC6 with a 24-byte key, which
is called Algorithm 5, 6, or 7, respectively. They recover a 68-bit subkey of
Isbo (Sar), Isba(S2r41), Sarte, and Sar+3. We demonstrate Algorithm 5 to RC6-8
and discuss how to analyze the security to RC6 with a 24-byte key.

5.1 Attacks on RC6

Let us set (yp, yq) = (Isbz(Br12),1sb3(Dry2)), (Sa, Sc) = (Isba(Sar), Isba(S2,41)),
s = Sal|sc|[Sarr2l|S2rts, (S5,,55,11) = (0,0), and (zc,24) = (Isbs(F(A12 —
Sort2)),lsbs (F(Cri2 — S2r43))), where z, or z. is the r-round rotation amounts
on A, or C,., respectively.

Algorithm 5

1. Choose a plaintext (Ao, By, Co, Do) with (1sbs(By),1lsbs(Dyp)) = (0,0)
and encrypt it.

2. For each subkey Syry» and Si.i3, decrypt yqllys with a key (S3,|[sa,S3,1]]sc)
by 1 round. The decryptions of y,; and y;, are set to 2, and z.,

respectively, which are denoted as a 6-bit integer z = za||zc.

3. For each value s, z,, Z., and z, update each array by incrementing
count[s][z.][z.][7] -

4. For each s, z,, and z., compute X2[s][z.][z.].

5. Compute the average ave[s] of {Xx?[s][z.][%¢]}s. ». for each s, and output

s with the highest (MJ@[S] as].SbQ(SQ,.)HleQ(SQ,.Jrl”|52T+2||Szr+3.

r-th round

o]

w bits

Post-whitening

Dr+2 | yd ‘
3 bits 3 bits

Fig. 1. Outline of Algorithm 5

Figure 1 shows the outline of Algorithm 5. Algorithm 5 differ with Algorithm 2
in a way of handling both Ss,;2 and S,43: Algorithm 2 uses a correct key on
Sort2 and Sa,.y3; but Algorithm 5 has to guess a correct key of S2,.42 and Sa,43.
Therefore, the results of Algorithm 5 against r-round RC6 is coincident with
those of Algorithm 2 against r-round RC6P whenever correct keys on Sa,42 and
Sar+3 are used. As a result, to discuss the security on RC6 against Algorithm 5,
we have only to investigate the behavior of x2-value with using wrong-keys of
52r+2 and S2r+3-

5.2 Differences between Algorithms 2 and 5

To investigate the difference between two algorithms, let us observe how wrong-
keys of S3,.42 have an influence on a key recovery in Algorithm 5 when a correct
key is set to So,43. Table 12 shows the experimental results of Algorithm 2 on
RC6P-8 or Algorithm 5 on RC6-8, in which Algorithm 2 recovers 4-bit subkeys
of Isb2(Sg) and Isba(Sy); and Algorithm 5 recovers 12-bit subkeys of Isbo(Ss),
Isbo(Sg), and S1o. Table 12 indicates that: Algorithm 5 cannot work as effectively
as Algorithm 2 if a few plaintexts like 2!! or 2!? are used; but Algorithm 5 can
work as effectively as Algorithm 2 if enough many plaintexts like 2'* or 2'°
are used. They differ in the number of wrong keys: the number of wrong keys of
Algorithm 5 is 2% times as many as that of Algorithm 2. If a few (i.e. not enough)
plaintexts are used, then the y2-value on even a correct key is rather low and
thus the y2-value on wrong keys disturbs us to single out a correct key. As a
result, the difference in the number of wrong keys influences the probability that
can single out a correct key. On the other hand, if enough number of plaintexts
are used, then the y2-value on a correct key becomes enough high, while that
on wrong keys does not become high, and, thus, the difference in the number
of wrong keys does not have a great influence on singling out a correct key. As
a result, Algorithm 5 can single out a correct key with almost the same high
probability like more than 90% as Algorithm 2 if enough number of plaintexts
are used.

The remaining problem is how to define enough number of plaintexts. We
may note that the key recovery attacks compute the xy2-value on a part for every
key candidate and output a key with the highest y2-value as a correct key. This
means that an algorithm can single out a correct key if and only if a correct key
outputs higher y2-value than that on all wrong keys. In other words, the lowest
x2-value on correct keys has only to be higher than the highest y2-value on
wrong keys. Thus, enough number of plaintexts necessary to single out a correct
key is defined as the number of plaintexts that makes the lowest x2-value on
correct keys higher than the highest x?-value on wrong keys.

As the final step, we investigate a good sample on wrong keys of S,, S¢, Sart2
and S, 3 that may output the the highest y2-value. Let us set the almost-correct
wrong key that differs a correct key in only the most-significant-one bit of Sy, y2:
the other bits, in other words, S,, Sc, Sor+3 and Isb7(Sa2,42), are the same as a
correct key. Apparently, this is the most similar to a correct key and is expected
to output the highest x2-value of wrong keys. Thus, we define enough number
of plaintexts to single out a correct key as the number of plaintexts such that
the lowest y2-value on correct keys becomes higher than the highest x2-value on
almost-correct wrong keys. To find out enough number of plaintexts in the case
of Algorithm 5 on RC6-8, we conduct the following two experiments:

e Test 3?: [Behavior of x? — value of correct keys]
Compute the highest and lowest y2-value on correct keys.
e Test 4: [Behavior of x? — value of almost-correct wrong keys]

% Test 3 is the same as the results of correct keys in Algorithm 2 to RC6P.

Compute the highest y2-value on almost-correct wrong keys.

The results are shown in Table 13, where SUC means the success probability to
recover a correct key of S, and S in Algorithm 2 to RC6P-8. From Table 13, we
see that enough number of plaintexts is defined as 2!*® plaintexts. Comparing
with Table 12, we convince that enough number is well difined and, thus, we
estimate that Algorithm 5 can recover a correct key with the success probability
of about 90% by using 2'*> plaintexts. Table 13 also indicates that the x2-value
recovered by almost-correct wrong keys does not become high even if many
plaintexts are used. This reflects that: the f-function of RC6 is the nonlinear
conversion which depends on all 32-bit inputs; and thus the recovered value does
not output high x2-value if only the input of f-function differs with a correct
input even in 1 bit.

Table 12. Success probability of Algorithm 2 (resp. 5) on 4-round RC6P-8 (resp.
RC6-8) (in 1000 trials)

#texts|Algorithm 2|Algorithm 5
oMt 0.125 0.001
212 0.241 0.014
213 0.486 0.177
oM 0.887 0.886
om® 1.000 1.000

Table 13. Results of Tests 3 and 4 in Algorithm 5 on 4-round RC6-8 (in 1000 trials)

Test 3 Test 4
#texts| SUC |the highest y?[the lowest x*|/the highest x?
2120 10.232 69.711 60.689 68.634
2125 10.332 70.435 61.680 67.794
2130 10,491 72.167 62.226 68.181
2135 10.699 74.458 63.266 67.450
2110 10.868 77.427 65.359 68.393
2115 10.972 81.609 68.971 68.174
2129 10.999 88.978 70.890 68.211

5.3 The security of RC6 against Algorithms 5

The previous section have defined enough number of plaintexts and seen that
Algorithm 5 can recover a correct key with the success probability of 90% by
using enough many plaintexts. We conduct Tests 3 and 4 to Algorithm 5 on
4-round RC6 to find out enough number of plaintexts. The results are shown in
Table 14, where SUC means the success probability to recover a correct key of
S, and Sp in Algorithm 2 to RC6P. Table 14 indicates that enough number of
plaintexts is set to 222 plaintexts; and it is roughly equal to that which outputs

the success probability of more than 95% in Algorithm 2 on RC6P. Then, we
estimate that Algorithm 5 can recover a correct key with the success probability
of more than 90% by using 222 plaintexts.

Let us discuss the security in higher-round RC6. We increase the number of
plaintexts by up to a factor of 22 to analyze the security strictly and use the
same slope in Test 1 since Algorithm 5 is based on the y2-test of Test 1. Then,
the number of plaintexts required for recovering a key in r-round RC6 with the
success probability of 90%, log, (#texts), is estimated to

log, (#texts) = 8.02r — 8.08.

By substituting the number of available plaintexts 2''8, Algorithm 5 can break
15-round RC6 by using 2''2-22 plaintexts with a probability of about 90%.

5.4 Applying Algorithms 3 to RC6

Algorithm 3 can be applied to RC6 in the same way as Algorithm 2, which is
called Algorithms 6. We omit the repetitious detail of the algorithm. To find
out enough number of plaintexts, we conduct the same experiments of Tests 3
and 4 to Algorithm 6 on 4-round RC6, whose results are shown in Table 14.
Table 14 indicates that enough number of plaintexts to Algorithm 6 on RC6 is
2246 plaintexts.

We increase the number of plaintexts by up to a factor of 22 to analyze the
security strictly and use the slope of Test 1 in Section 3. Then, the number
of plaintexts required for a key recovering in r-round RC6 with the success
probability of 90%, log, (#texts), is estimated to

log, (#texts) = 8.02r — 5.48.

By substituting the number of available plaintexts 2'23, Algorithms 6 can break
16-round RC6 with 192-bit key by using 2'22-84 plaintexts with a probability of
90%.

Let us compare Algorithms 5 and 6 from the point of view of the number
of plaintexts and the amount of work, where one unit of work is set to one
encryption. Both algorithms encrypt each plaintext, and decrypt a ciphertext
by 1 round with each key candidate, where the number of key candidates is 258.
Thus, the amount of work is computed by #tewxts x (1 + 28 /r). These results
are shown in Table 15. In the final paper, the optimization of each algorithm
including the results of Algorithm 7 will be discussed.

6 Conclusion

In this paper, we have discussed the optimization of the number of classifica-
tion by presenting three key recovery attacks against RC6P, Algorithms 2, 3,
and 4. As a result of optimization, Algorithm 2 can break 16-round RC6P by
using 2'17-84 plaintexts with the success probability of 95%. We have also inves-
tigated how to estimate the security of RC6 to these key recovery algorithms by

Table 14. Results of Tests 3 and 4 in Algorithms 5 and 6 on 4-round RC6 (in 1000
trials)

Algorithm 5 Algorithm 6

Test 3 Test 3

#texts| SUC |the highest|the lowest| Test 4| #texts| SUC |the highest|the lowest|Test 4

2700 10.344] 63.534 62.644 162.994[2725 [0.385| 63.288 62.916 [63.197

2205 10.539] 63.769 62.743 [62.979]] 2239 {0.519| 63.338 62.905 [63.211

2210 10,744 64.096 62.865 [62.976] 2235 0.752] 63.395 62.963 [63.199

2715 10.946] 64.540 62.904 [62.991] 2%%9 [0.934| 63.501 63.013 [63.218

2729 10.995| 65.187 63.038 [62.978]] 22%° [1.000] 63.648 63.223 63.201

Table 15. #Texts and Work for Algorithms 5 and 6 on r-round RC6 (Estimated)

Algorithm|initial Key|rounds #texts work linear equation (SUC=90%)
5 192-bit 15 211222 5l76.32 8.02r — 8.08
6 192-bit 16 2122:84 9l186.84 8.02r — 5.48

introducing the idea of enough number of plaintexts and almost-correct wrong
key. We have shown that Algorithm 6 is estimated to break 16-round RC6 with

24-byte keys by using

2122-84 plaintexts with the success probability of 90%.

References

1.

2.

10.

11.

J. Borst, B. Preneel, and J. Vandewalle, “Linear Cryptanalysis of RC5 and RC6,”
Proc. Fast Software Encryption, LNCS 1636, pp.16-30, 1999.

S. Contini, R. Rivest, M. Robshaw, and Y. Yin, “The Security
of the RC6 Block Cipher. v 1.0,” August 20, 1998. Available at
http://www.rsasecurity.com /rsalabs/rc6/.

S. Contini, R. Rivest, M. Robshaw, and Y. Yin, “Improved analysis of some sim-
plified variants of RC6,” Proc. Fast Software Encryption, LNCS 1636, pp.1-15,
1999.

R.J. Freund and W.J, Wilson, Statistical Method, Academic Press, San Diego, 1993.
H. Gilbert, H. Handschuh, A. Joux, and S. Vaudenay, “A Statistical Attack on
RC6,” Proc. Fast Software Encryption, LNCS 1978, pp.64-74, 2000.

H. Handschuh and H. Gilbert, “x? Cryptanalysis of the SEAL Encryption Algo-
rithm,” Proc. Fast Software Encryption, LNCS 1267, pp.1-12, 1997.

L. Knudsen and W. Meier, “Correlations in RC6 with a reduced number of rounds,”
Proc. Fast Software Encryption, LNCS 1978, pp.94-108, 2001.

A. Menezes, P.C. van Oorschot, and S. Vanstone, Handbook of applied cryptogra-
phy, CRC Press, Inc., Boca Raton, 1996.

A. Miyaji and M. Nonaka, “Cryptanalysis of the Reduced-Round RC6,” Proc.
ICICS 2002, LNCS 2513@Qpp.480-494, 2002.

R. Rivest, “The RC5 Encryption Algorithm,” Proc. Fast Software Encryption,
LNCS 1008, pp.86-96, 1995.

R. Rivest, M. Robshaw, R. Sidney, and Y. Yin, “The RC6 Block Cipher. v1.1,”
August 20, 1998. Available at http://www.rsasecurity.com/rsalabs/rc6/.

12.

13.

14.

T. Shimoyama, M. Takenaka, and T. Koshiba, “Multiple linear cryptanalysis of a
reduced round RC6,” Proc. Fast Software Encryption, LNCS 2365, pp.76-88. 2002.
T. Shimoyama, K. Takeuchi, and J. Hayakawa, “Correlation Attack to the Block
Cipher RC5 and the Simplified Variants of RC6,” 3rd AES Candidate Conference,
April 2000.

S. Vaudenay, “An Experiment on DES Statistical Cryptanalysis,” Proc. 3rd ACM
Conference on Computer and Communications Security, ACM Press, pp.139-147,
1996.

