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あらまし 楕円曲線による公開鍵暗号の手法が Koblitzと Millerによって提
案された．一方，スマートカードによる署名や認証を実現するには，スマート
カードに蓄えられるデータ量や計算量がより小さいことが望まれる．本論文で
は，安全性を保ちながらそのような条件を満たす楕円曲線を構成する方法を示
す．

Abstract Koblitz ([5]) and Miller ([6]) proposed a method by which the
group of points on an elliptic curve over a finite field can be used for the public
key cryptosystems instead of a finite field. To realize signature or identification
schemes by a smart card, we need less data size stored in a smart card and
less computation amount by it. In this paper, we show how to construct such
elliptic curves while keeping security high.



1 Introduction

Public key cryptosystems based on the discrete logarithm problem on an elliptic curve
(EDLP) can offer small key length cryptosystems. If an elliptic curve is chosen to avoid
the Menezes-Okamoto-Vanstone reduction ([9]), then the only known attacks on EDLP are
the Pollard ρ−method ([11])and the Pohlig-Hellman method ([10]). So up to the present,
such elliptic curve cryptosystems on E/Fq are secure if #E(Fq) is divisible by a prime only
more than 30 digits ([3]).
If we use an elliptic curve E/Fq for digital signature or identification by a smart card

([12]), data size and computation amount of signature generation should be as small as
possible. We may publish only the x-coordinate x(P ) of a public key P and one bit necessary
to recover the y-coordinate y(P ) of P since the public key of an elliptic curve point is 2 times
as large as the definition field Fq. Then we can reduce the data size to one half. But it will
cause the computation amount to recover y(P ).
In this paper, we investigate an elliptic curve suitable for cryptosystems, in the sense

that it requires less data size and less computation, while maintaining the security. We also
show the advantage of our elliptic curve in the case of the Schnorr’s digital signature scheme
on an elliptic curve.
This paper is organized as follows. Section 2 summarizes the addition formula of an

elliptic curve ([13]). Section 3 describes the Schnorr signature on an elliptic curve, and show
the data size and the computation amount for two cases, the basic version and the reducing-
data version. Section 4 discusses the elliptic curve which gives cryptosystems that reduce
both of data sizes and the computation amount.

2 Addition formula of Elliptic curve

Cryptosystems on an elliptic curve E/Fq, for example the Diffie-Hellman key distribution
and ElGamal cryptosystems, require the computation of kP (P ∈ E(Fq)). We will discuss
the computation amount of kP . For simplicity, we neglect addition, subtraction and mul-
tiplication by a small constant in Fq because they are much faster than multiplication and
division in Fq.
Let K be a finite field Fq of characteristic 6= 2, 3. An elliptic curve over K is given as

follows,

E : y2 = x3 + ax+ b (a, b ∈ K, 4a3 + 27b2 6= 0).

Then the set of K-rational points on E (with a special element O at infinity), denoted E(K),
is a finite abelian group, where E(K) = {(x, y) ∈ K2|y2 = x3 + ax + b} ∪ {O}. For the
curve E, the addition formulas in the affine coordinate are the following. Let P = (x1, y1),
Q = (x2, y2) and P +Q = (x3, y3) be points on E(K).
• Curve addition formula in the affine coordinates (P 6= ±Q)

x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1, (1)

λ =
y2 − y1

x2 − x1
;
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• Curve doubling formula in the affine coordinates (P = Q)

x3 = λ2 − 2x1,

y3 = λ(x1 − x3)− y1, (2)

λ =
3x2

1 + a

2y1

.

The formula ( 1) requires two multiplications and one division in K, while the formula ( 2)
requires three multiplications and one division in K. The computation amount of division
in K is more than that of multiplication in K. So we often use the projective coordinates to
avoid divisions in K. The addition formulas in the projective coordinates are the following.
Let P = (X1, Y1, Z1), Q = (X2, Y2, Z2) and P +Q = (X3, Y3, Z3).
• Curve addition formula in the projective coordinates (P 6= ±Q)

X3 = vA,

Y3 = u(v2X1Z2 − A)− v
3Y1Z2, (3)

Z3 = v3Z1Z2,

where u = Y2Z1 − Y1Z2, v = X2Z1 −X1Z2, t = X2Z1 +X1Z2, A = u
2Z1Z2 − v2t;

• Curve doubling formula in the projective coordinates (P = Q)

X3 = 2hs,

Y3 = w(4B − h)− 8Y1
2s2, (4)

Z3 = 8s3,

where w = aZ1
2 + 3X1

2, s = Y1Z1, B = X1Y1s, h = w
2 − 8B. The formula ( 3) requires 15

multiplications, while the formula ( 4) requires 12 multiplications. For the use of cryptosys-
tems, we may set z(P ) = Z1 to one in the formula ( 3). Then the formula ( 3) requires 12
multiplications.
Subtractions are as expensive as additions over elliptic curves. So the computation

amount of kP by the addition-subtraction method ([2, 8]) is less than that by the binary
method, while both methods need memory storage only for P . We assume to compute kP
by the addition-subtraction method. The computation by the addition-subtraction requires
n times of curve doubling and n

3
times of curve adding on the average, where n = |K |. Com-

putation of kP in the projective coordinate requires one division and two multiplications in
the final stage. Since n is larger than about 100, the computations in the projective coordi-
nates are faster than that in the affine coordinates if the ratio of the computation amount
of division in K to that of multiplication in K is larger than 9. In order to compare the
computation amount of Schnorr signature scheme on a finite field and on an elliptic curve,
we assume to compute kP in the projective coordinate by the addition-subtraction method
and compute the power residue by the binary method.

3 Elliptic curve cryptosystems

If E(K) and a basepoint P ∈ E(K) are carefully chosen, then the only known attacks on
the cryptosystems are the square root attacks. EDLP on such E to the base P is secure up
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to the present ([3]), if the order of P , ord(P ), is divisible by more than a 30-digit prime.
Here we summarize the Schnorr signature on such an elliptic curve and establish a basis for
evaluation of the elliptic curve proposed in the next chapter.
Let M ∈ be a message. User A sends the message M to user B with her or his

signature of M .

• Initialization

— system parameter

◦ E : y2 = x3 + ax+ b (a, b ∈ Fp ; p is a prime of n(≥ 97) bits).

◦ P ∈ E(Fp) : a basepoint (chosen as the above).

◦ l = ord(P ) (l is m(≥ 97) bits).

— a one-way hash function h : l × → {0, · · · , 2t − 1}, where t is the security
parameter.

• Key generation
User A randomly chooses an integer s , a secret key, and makes public the point
PA = −sP as a public key.

• Signature generation

1 Pick a random number k ∈ {1, ..., l} and compute

R = kP = (rx, ry). (5)

Here rx = x(R) and ry = y(R).

2 Compute e := h(rx,M) ∈ {0, · · · , 2t − 1}.

3 Compute y ≡ k + se (mod l) and output the signature (e, y).

• Signature verification

1 Compute R = yP + ePA = (rx, ry) and check that e = h(rx,M).

As we described in Section 2, the computation of kP requiresm curve doublings and m
3
curve

additions on the average, where k is a m-bit number. Extending the addition-subtraction
method to the computation in the verification, we can calculate yP + ePA in m curve dou-
blings and 1

3
(m− t)+ 5

9
t curve additions on the average with precomputations of ±(P ±PA),

which require about the same computaion amount as one curve addition.
Here we set n,m = 128. Then the known attacks on such an elliptic curve cryptosystems

requires at least 264 elliptic curve operations. This is roughly equal to that of the original
Schnorr on Fp (p is 512 bits). If lower security is required, then n,m can be replaced by a
smaller number like 97. For the security parameter, here we set t = 128. Of course if we use
EC versions for identification, we can set t ≥ 20.
We will present two versions of Schnorr signature on an elliptic curve. One is the basic

Schnorr signature on an elliptic curve described above, called Basic EC version. Another is
called Reducing data EC version. In this version, only x(PA) and the least significant bit
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of y(PA) are published as a public key to reduce the data size. The same is done for the
basepoint P . On the other hand, the original Schnorr signature scheme on Fp, called Finite
field version (p is 512 bits, the security parameter t=128) roughly has the same security as
that on the above elliptic curves. So the size of the definition field of Finite field version is
four times as large as that of Basic and Reducing data EC versions.
We compare Basic EC version, Reducing data EC version and Finite field version, with

respect to data size. Table 1 shows the comparison.
• Basic EC version
The system key is a, p, P, and l (640 bits). The secret key is s (128 bits). They are stored
in a smart card. So the data size stored in a smart card is 768 bits. The public key is (PA)
(256 bits) and the signature is e and y (256 bits).
• Reducing data EC version
In this version, we have to publish one more parameter 00b00 of E as a system key to recover a
point by the x-coordinate of the point and the least significant bit of the y-coordinate of the
point. It requires power residue to recover the y-coordinate of P and increases computation
for signature. The system key is a, b, p, x(P ), the least significant bit of y(P ) and l (641
bits). The secret key is s (128 bits). So the data size stored in a smart card is 769 bits. It is
almost equal to that of Basic EC version. The public key is (x(PA) and the least significant
bit of y(PA)) (129 bits) and the signature is e and y (256 bits).
• Finite field version
The system key of Finite field version is a set of the definition field, the basepoint and the
order of basepoint (1164 bits), where the size of the definition field is 512 bits and the order
of basepoint is 140 bits. The secret key is 140 bits. So the data size stored in a smart card
is 1304 bits.
The size of the definition fields of both EC versions is reduced to 25% of Finite field

version. But the stored data size is not so reduced (59%). This is because an elliptic curve
point has 2 coordinates and we need a parameter to decide E.
Let us compare the three cases with respect to the computation amount. We assume

the computation method that we described in Section 2. Table 2 shows the comparison of
the computation amount of signature generation and verification. Here we assume m(n) =
(n/t)2m(t), where m(n) denotes the amount of work to perform one modular multiplication
whose modulus size is n bits. We assume the ratio of the computation amount of division
in K to that of multiplication in K to 10. We see the computation amount of signature
generation of Reducing data EC version is reduced to 67% of Finite field version. It is not
so reduced as the size of the definition field. This is because the computation amount of one
elliptic curve addition is much more than that of one multiplication in the same definition
field and we need to recover a basepoint.
We see that both EC versions seem to be better than Finite field version for both points of

the data size and the computation amount. But actually they are not so efficient considering
the less size of the definition field of E. For the stored data size, the ratio of the stored data
size to the definition field for both EC versions is 6. On the other hand, for Finite field
version, the ratio is 2.5. For the computation amount, one elliptic curve addition requires
about 12 multiplications. If we require higher security, for example t = 160, then we will
have to construct an elliptic curve over at least a 160-bit finite field. Then the advantage for
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EC versions shown in Table 1 and 2 decreases.

System Key Secret Key Public Key Signature size

Basic EC version 640 128 256 256
Reducing data EC version 641 128 129 256

Finite field version 1164 140 512 268

Table 1: Comparison of data size(in bits)

Signature Generation Signature Verification

Basic EC version 129 151
Reducing data EC version 141 175

Finite field version 210 242

Table 2: Comparison of the computation amount(# of 512-bit modular multiplications)

In the next section, we construct an elliptic curve cryptosystem, which has
(1)the less ratio of the stored data size to the definition field than 6;
(2)the same public key size as Reducing data EC version;
(3)the less computation amount than that of Basic EC version.
It will be also best implementation for the higher security parameter.

4 Elliptic curves suitable for Cryptosystems

If E(Fp) and the basepoint P ∈ E(Fp) are appropriately chosen, then the only known attacks
on the cryptosystems are the square root attacks. We first discuss a method to construct
such elliptic curves and then investigate what elliptic curve among them is suitable for
implementation with respect to less data size (key length) and less computation amount.

4.1 Decision of the class of elliptic curves

One method to avoid the recent attack is to construct EDLP on E/Fp with p elements ([7]).
We describe a modified method to decide the class of such elliptic curves. There are two
phases for the decision of E/Fp with p elements.
The first phase is to find an appropriate prime p. Such p is a form of p = db2 + db+ d+1

4

(b is an integer) for d ∈ {3, 11, 19, 43, 67, 163}. Such integers d enable us to construct easily
the j-invariant jd of E/Fp with p elements for the prime p, which is uniquely determined by
d. Table 3 lists integers d and the j-invariant jd.
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d jd

3 0
11 (−25)3

19 (−25 ∗ 3)3

43 (−26 ∗ 3 ∗ 5)3

67 (−25 ∗ 3 ∗ 5 ∗ 11)3

163 (−26 ∗ 3 ∗ 5 ∗ 23 ∗ 29)3

Table 3: Integers d and j-invariant jd

Once the prime p = db2 + db + d+1
4
and jd are given, then the next phase is to decide

the class of E/Fp with p elements. There is a little difference between the case of d = 3 and
others. First we investigate the case of d ∈ {11, 19, 43, 67, 163}. Then the elliptic curves over
Fp with the j-invariant jd are given as follows.

Ec,d : y
2 = x3 + 3c2adx+ 2c

3ad, ad =
jd

1728− jd
(∀c ∈ F ∗p ).

For each d, we can classify {Ec,d|c ∈ F ∗p } into two equivalence classes of twists, namely

Ed = {Ec,d|c ∈ F
∗
p ,

Ã
c

p

!
= 1} and E 0d = {Ec,d|c ∈ F ∗p ,

Ã
c

p

!
= −1},

where
³
c
p

´
denotes the Legendre symbol. Then only one of the two classes gives the elliptic

curves with p elements. A general condition to decide the class was investigated ([1]). In
our case, the condition can be simplified as follows.

Theorem 1 p p = db2 + db + d+1
4

b d ∈
{11, 19, 43, 67, 163} p

Ed

Ã
αd
p

!
= −1,

E 0d

Ã
αd
p

!
= 1,

αd d αd

Now we get the following procedure to decide the class of elliptic curves with p elements.

Procedure 1

1 Search a large prime p such that p = db2+db+d+1
4
(b is an integer) for d ∈ {11, 19, 43, 67, 163}.

2 Calculate
³
α
p

´
. If

³
α
p

´
= −1, then Ed is the class. Else if

³
α
p

´
= 1, then E 0d is the class.
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d αd

11 3 ∗ 7
19 3
43 2 ∗ 5 ∗ 7
67 3*5*7*11*31
163 2*3*5*7*11*19*23*29*127

Table 4: Integers d and αd

Next we will investigate the case of d = 3. Then the elliptic curves over Fp (p =
3b2 + 3b+ 1) with the j-invariant jd are given as follows.

Eξ : y
2 = x3 + ξ (∀c ∈ F ∗p ). (6)

In this case, we can classify {Eξ |c ∈ F ∗p } into six equivalence classes of twists, namely

E3,i = {Eξ|xi ∈ F
∗
p ,

Ã
ξ

p

!
6

= (−ω)i} (0 · i · 5,ω =
−1 +

√
−3

2
),

where
³
ξ
p

´
6
denotes the sixth power residue symbol. Then exactly one of the six classes gives

the elliptic curves with p elements. We have a next formula on the number of rational points
of the elliptic curves ( 6).

Theorem 2 ([4]) p ≡ 1 (mod 3) p = ππ π ∈ [ω] π ≡ 2 (mod 3)

#Eξ(Fp) = p+ 1 +

Ã
4ξ

π

!
6

π +

Ã
4ξ

π

!
6

π. (7)

Using the formula ( 7), the condition to decide the class can be given as follows.

Theorem 3 p p = 3b2 + 3b + 1 b
p

E3,1 b ≡ 0, 2, 4 (mod 6),

E3,5 b ≡ 1, 3, 5 (mod 6).

We prove only the case of b ≡ 1 (mod 6). As for the other cases, we can do the

same way. Let π = (2b+ 1)ω + (b+ 1). Then p = ππ and π ≡ 2 (mod 3). Since
³

4
π

´
6
= ω,

we get that #Eξ(Fp) = p if and only ifÃ
ξ

π

!
6

ω2π +

Ã
ξ

π

!
6

ωπ = −1,

that is, tr(ω
³
ξ
π

´
6
π) = −1. So we get

³
ξ
π

´
6
= −ω2. This means that the class which gives

elliptic curves with p elements is E3,5.

Now we get the following procedure to decide the class of elliptic curves with p elements.
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Procedure 2

1 Search a large prime p such that p = 3b2 + 3b+ 1 (b is an integer).

2 If b ≡ 0, 2, 4 (mod 6), then E3,1 is the class. Else if b ≡ 1, 3, 5 (mod 6), then E3,5 is the
class.

We have seen that the time to decide the class of E/Fp with p elements depends on the
time finding p = db2 + db + d+1

4
for d ∈ {3, 11, 19, 43, 67, 163}. We can easily find such a

prime. In fact we were convinced experimentally that finding a prime p = db2 + db + d+1
4

in the range of 30 ∼ 90 digits is as easy as finding a prime in that range. So we can easily
decide the class of E/Fp with p elements which gives secure cryptosystems.

4.2 Selection of an elliptic curve and a basepoint

Elliptic curve cryptosystems require the computation of kP , where P = (X1, Y1, 1) is a fixed
point called basepoint. It is accomplished by repeated doubling, adding and subtracting of
P . If we can select a basepoint P with a small x-coordinate X1 or a small y-coordinate Y1,
the amount of computation of kP will be reduced. Especially in the case of signature and
identification by a smart card, reducing of total data size stored in a smart card and the
computation amount by a smart card is important. If fewer parameters represent an elliptic
curve and a basepoint, the data stored in a smart card is reduced. Furthermore we wish to
recover P easily from the parameters.
In the last section, we have decided the class of elliptic curves which gives the secure

cryptosystems. Note that any elliptic curve E/Fp of the class and any basepoint P ∈ E(Fp)
give cryptosystems with the same security. We will discuss how to select E of the class and
P in E suitable for cryptosystems, in the sense that it reduces computation amount of kP
and necessary data size to be stored. We will classify d into two cases, d = 3 and others.

• Proposed scheme A
First we deal with the case of d ∈ {11, 19, 43, 67, 163}. For a given p = db2+ db+ d+1

4
, we

know which class, Ed or E 0d, gives an elliptic curve with p elements in Section 4.1. Without
loss of generality, we will discuss the case of Ed. Let y0 = x3

0 + 3adx0 + 2ad for x0 ∈ Fp.
Then we get one elliptic curve in Ed and the basepoint following ( 8).

Ed 3 Ey0,d, Ey0,d 3 P = (y0x0, y
2
0) if

Ã
y0

p

!
= 1 (8)

If y0 satisfies the condition of ( 8) for x0 = 0, then we get Ed 3 Ey0,d and Ey0,d 3 P = (0, 4ad
2).

In fact such y0 satisfies the condition of ( 8) if and only ifÃ
y0

p

!
=

Ã
2ad
p

!
= 1.

Except for d = 19, there exists p = db2 + db+ d+1
4
which satisfies

³
2a
p

´
= 1. Combining the

condition on p to decide a class (i.e.
³
α
p

´
= −1 or 1), we obtain that such an elliptic curve
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over Fp exits if and only if
³
β
p

´
= −1 in both cases, Ed and E 0d. Table 5 shows the value of

βd.

d βd

11 3 ∗ 7
43 3 ∗ 7
67 7*31
163 7*11*19*127

Table 5: Integers d and βd

We were also convinced experimentally that, for ∀p = db2+db+d+1
4
(d ∈ {11, 43, 67, 163}),

such an elliptic curve exists with a probability of about one half. Here is one example for a
128-digit prime in the case of d = 11.

E : y2 = x3 + 12a3x+ 16a4; E(Fp) 3 P = (0, 4a
2),

p = 1701 41183 46046 92395 60785 96622 40717 16369,

a = 527 15357 39869 82616 07887 30307 87012 55349.

Let us use this elliptic curve Ey0,d and basepoint P = (0, 4ad
2) for Schnorr signature,

where Ey0,d = E and a = ad. We further assume that the public key PA is represented by
x(PA) and the least significant bit of y(PA). The computation of kP requires the addition
to the basepoint P , which is calculated in 9 modular multiplications. So the computation
amount of kP is reduced to 1932m(128). The computation of yP+ePA requires

1
3
(m−t)+ 2

9
t

curve additions to ±P on the average. So the computation amount of yP + ePA is reduced
to 2316m(128). We can recover the basepoint in one modular multiplication, only if we store
ad. Since ord(P ) equals p, the system key is ad and p (256 bits). Table 6 shows the data
size and Table 7 shows the computation amount. The data size stored in a smart card is
reduced to one half of that of Reducing data EC version and Basic EC version. The public
key size is the same as that of Reducing data EC version.
The computation amount of the signature generation is reduced by 6% (resp. 14%) of

that of Basic EC version (resp. Reducing data EC version). The computation amount of the
signature verification is reduced by 10 % of that of Reducing data EC version. It is increased
by 5 % of that of Basic EC version. This is because we need one power residue to recover
one’s public key in the signature verification. If we publish PA instead of x(PA) and the
least significant bit of y(PA) as a public key, then the computation amount of the signature
verification is reduced by 3% of that of Basic EC version. Even in this case, the public key
size is only 50% of Finite field version.

• Proposed scheme B
Next we deal with the case of d = 3. For a given p = 3b2 + 3b+ 1, we know which class,

E3,1 or E3,5, gives the elliptic curve with p elements in Section 4.1. We only discuss the case
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of E3,1. As for the other case, we can do in the same way. An elliptic curve E/Fp with p
elements and a basepoint P is given as follows,

Eξ : y
2 = x3 + ξy0

3; Eξ(Fp) 3 P = (x0y0, y0
2),

(∀ξ such that

Ã
ξ

p

!
6

= −ω, ∀y0 = x0
3 + ξ ∈ Fp

∗2).

In this case, there doesn’t exist an elliptic curve with the point whose x-coordinate equals 0
because of ξ 6∈ Fp

∗2. But we can select a small ξ such that
³
ξ
p

´
6
= −ω and a small x0 such

that y0 = x0
3 + ξ ∈ Fp

∗2. Here is one example for a 128-digit prime.

E : y2 = x3 + 3 ∗ 43; E(Fp) 3 P = (4, 16),

p = 1701 41183 46046 92480 63157 20930 49376 39647

(x0 = 1, ξ = 3)

Let us use the elliptic curve Eξ and the basepoint P = (x0y0, y0
2) for Schnorr signature. We

further assume that one’s public data PA is represented by x(PA) and the least significant
bit of y(PA). Then the addition to P = (x0y0, y0

2) = (X1, Y1) is accomplished in 9 modular
multiplications because we can neglect the multiplications by a small constants X1 and Y1.
Furthermore the simple equation of E reduces the computation amount of doubling. It is
accomplished in 10 modular multiplications. As for the computation amount of kP , it is
reduced to 1676m(128). The computation amount of yP + ePA is reduced to 2060m(128).
As for the recovering the basepoint, we can recover it in a negligible computation amount
only if we store x0 and ξ whose data size is enough small. As for the data size, the data size
of x0 and ξ is neglected and ord(P ) equals p. So the size of system parameters x0, ξ and
p of Schnorr signature scheme on such Eξ is about the same as that of the definition field.
Table 6 shows the data size and Table 7 shows the computation amount.
We see that the elliptic curves and the basepoints in the case of d = 3 give good properties

for the cryptosystems, especially in the application of digital signature and identification by
a smart card. The data size stored in a smart card is reduced to one third of that of Reducing
data EC version and Basic EC version. The public key size is the same as that of Reducing
data EC version. The computation amount of the signature generation is reduced by 19%
(resp. 26%) of that of Basic EC version (resp. Reducing data EC version). The computation
amount of the signature verification is reduced by 6% (resp. 19%) of Basic EC version (resp.
Reducing data EC version). If we publish PA as a public key, then the computation amount
of the signature verification is reduced by 14% of that of Basic EC version.

System Key Secret Key Public Key Signature size

Proposed scheme A 256 128 129 256
Proposed scheme B 131 128 129 256

Table 6: Data size of Proposed schemes(in bits)
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Signature Generation Signature Verification

Proposed scheme A 121 158
Proposed scheme B 105 142

Table 7: Computation amount of cdProposed schemes (# of 512-bit modular multiplications)

5 Conclusion

Elliptic curve cryptosystems often require the computation of kP , where P is a fixed base-
point. We have proposed the elliptic curves and basepoints suitable for cryptosystems, in
the sense that they require less data size and less computation amount for kP . Especially if
we use the Proposed version B in Schnorr signature scheme by a smart card, we have seen
that
(1) the data size stored in a smart card is reduced to one third of that of Basic EC version
and Reducing data EC version;
(2) the data size of public key is reduced to one half of that of Basic EC version and is the
same as Reducing data EC version;
(3) the computation amount of the signature generation is reduced by 19% (resp. 26%) of
that of Basic EC version (resp. Reducing data EC version);
(4)The computation amount of the signature verification is reduced by 6% (resp. 19%) of
Basic EC version (resp. Reducing data EC version);
(5)In the case where we publish the point PA as a public key, the computation amount of
the signature verification is reduced by 14% of that of Basic EC version.
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