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あらまし 最近，Nyberg-Rueppelにより離散対数問題に基づくメッセージ復元型署名とその変型が提案された ([?, ?])．
また彼らは２つの攻撃の存在を指摘しているが，これらが全変型にどのように適応されるかについては未検討であった．
著者はさらに４つの攻撃の存在を指摘するとともに，これら６つの攻撃が全変型に対してどのように適応されるかにつ
いて述べた．([?, ?])．またこれらのうち２つの攻撃に対しては，直接的な回避方法も検討した ([?, ?])．しかし，残りの
４つの攻撃に対しては，適当な冗長性関数を用いて回避する方法しか知られていない．本論文では，この残された４つ
の攻撃回避方法を示すとともに，既に提案されている攻撃の回避方法についてもさらに一般化する．この結果，エルガ
マルタイプのメッセージ復元型署名は，署名方式を再構築することにより，冗長性関数に依存せず直接的に，知られて
いる６つの攻撃に対して強化できることがわかる．またこれら回避方法に基づいて再構成された，全ての６つの攻撃に
対して強いメッセージ復元型署名を提案する．

Abstract Nyberg and Rueppel recently proposed a new ElGamal-type digital signature scheme with message
recovery feature and its six variants([?, ?]). They also pointed out two forgeries against some of their signatures. But
they did not investigate explicitly how to apply these forgeries to all variants including elliptic curves. The author
presented the further four forgeries and investigated deeply how to apply the six forgeries on all variants([?, ?]).
For the two forgeries, the author also investigated a condition to avoid them directly. For the other four forgeries,
only the method to prevent them by using a suitable redundancy generating function is known. In this paper, we
investigate a general condition to avoid the other four attack directly. We also generalize the proposed method for
one forgery. We conclude that ElGamal-type message recovery signature can be strengthened directly against all the
known six forgeries independent of a suitable redundancy generating function. Furthermore we show new message
recovery signatures strong against all the forgeries by reconstructing the signature scheme.



1 Introduction

The RSA signature([?]), which is based on the difficulty of factoring, has a message recovery

feature. On the other hand, the ElGamal signature([?]) and its six variants([?, ?]), which are based

on the difficulty of the discrete logarithm problem, do not have a message recovery feature. Here

we call them EG-signatures. Recently Nyberg and Rueppel proposed a method to add the message

recovery feature to all EG-signatures([?, ?]). The Nyberg-Rueppel’s signatures can achieve the

authenticated key exchange in one pass transaction.

The message recovery signatures can prevent forgeries indirectly by using a suitable redundancy

generating function such that any forged message does not contain the redundancy. Therefore

the complexity of redundancy should be determined by what forgeries are known. A typical

example([?]) for a redundancy generating function is rather complicated, which mainly aims at

RSA-signature: avoiding attacks by natural products and attacks by natural powers. The amount

of sending data with redundancy is at least double the amount of a message. However there

has not been such a research that prevents the forgeries directly by reconstructing the signature

scheme. Though six forgeries ([?, ?, ?]) for the Nyberg-Rueppel’s signatures are known, we can

prevent only two of them directly ([?, ?]). Therefore we must use a suitable redundancy generating

function to prevent the other four forgeries.

This paper’s motivation is: can the ElGamal-type message recovery signature be also strength-

ened directly against the other four forgeries without depending on redundancy? There are many

variants in the ElGamal-type signature([?]). Furthermore the ElGamal-type signature can be

defined on an elliptic curve as well([?], [?]). So can we reconstruct a message recovery signature

strong against the forgeries by using such varieties?

This paper analyzes a general condition for avoiding all the other four forgeries. We also

generalize further a condition for one forgery, which have been presented in [?]. As a result we

conclude that all the six forgeries are caused by the structure of Nyberg-Rueppel’s signatures

rather than the feature of ElGamal-type digital signature. Furthermore we show two message

recovery signatures strong against all the known six forgeries by reconstructing the signature

scheme.

This paper is organized as follows. Section?? summarizes the EG-signatures and Nyberg-

Rueppel’s signatures. Section?? describes the known forgeries against Nyberg-Rueppel’s signa-

tures. Section?? analyzes the general condition to avoid the five forgeries including one forgery

investigated a little in [?]. Section?? shows the message recovery signature strengthened against

all the forgeries.

2 Message recovery signature scheme

This section summarizes EG-signatures and Nyberg-Rueppel’s signatures which add the mes-

sage recovery feature to EG-signatures. The Nyberg-Rueppel’s signatures are collectively called

MR(p)-signatures in this paper. In any signature schemes, the trusted authority chooses system

parameters, that are a large prime p, a large integer factor q of p−1 and an element g ∈ ∗
p whose
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order is q. These system parameters are known to all users. The signer Alice has a secret key xA

and publishes its corresponding public key yA = g
x .

ElGamal based signature scheme

To sign a messagem ∈ ∗
p, she chooses a random number k ∈ q, and computes r1 = g

k (mod p),

r01 = r1 (mod q) and

ak ≡ b+ cxA (mod q), (1)

where (a, b, c) is a permutation of (±m,±r01,±s). Then the triplet (m; (r1, s)) constitutes the

signed message. The signature verification is done by checking the next equation,

ra
1 = g

byc
A (mod p). (2)

Message recovery signature scheme

MR(p)-signatures can be derived from EG-signatures by adding the message-mask equation (??)

and replacing m (resp. r01) by 1 (resp. r
0
2) in Equation (??). To sign a message m ∈ ∗

p, she

chooses a random number k ∈ q, and computes

r1 = gk (mod p) (3)

r2 = mr−1
1 (mod p) (4)

r02 = r2 (mod q)

ak ≡ b+ cxA (mod q), (5)

where (a, b, c) is a permutation of (±1,±r02,±s). Then the signature is given by (r2, s). The

message can be recovered by computing a recovery equation

m = gb/ay
c/a
A r2 (mod p) (6)

with Alice’s public key yA. The verification of the signature needs further steps that add re-
dundancy to the message before it is signed and that check the redundancy after recovery. The
signature equation (??) leads to the following six equations if we neglect the ± signs.

(S1) sk ≡ 1 + r02xA (mod q)
(S2) r02k ≡ 1 + sxA (mod q)
(S3) k ≡ s + r02xA (mod q)
(S4) sk ≡ r02 + xA (mod q)
(S5) r02k ≡ s + xA (mod q)
(S6) k ≡ r02 + sxA (mod q)

The ElGamal-type signatures can be constructed in other groups, as long as the discrete log-

arithm problem (DLP) is hard. So all the six MR(p)-signatures can be also constructed on an

elliptic curve, which are called MRE(p)-signatures in this paper. In MRE(p)-signatures, the sys-

tem parameters are: an elliptic curve E/ p, a basepoint G ∈ E( p) and the order q of G. The

signer Alice has a secret key xA and publishes the corresponding public key YA = xAG. Alice’s

procedure to make a signature on m ∈ ∗
p is done in the same way as MR(p)-signatures except

for Equations (??) and (??), where these are changed to:

R1 = kG, (7)

r2 = m x(R1)
−1 (mod p), (8)
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respectively. Here x(R1) denotes the x-coordinate of R1 and Equation (??) is computed in E.

Also in MRE(p)-signatures, the signature is given by (r2, s). The message can be recovered

by computing m = x
³

b
a
G+ c

a
YA

´
r2 (mod p), where b

a
G + c

a
YA is computed in E. Note that

the signature equations of MR(p)-signatures and MRE(p)-signatures are the same whereas the

message-mask equations are different each other.

3 Forgeries against MR(p)-signatures

Two types of forgery against MR(p)-signatures are presented in [?], which are called the recovery-

equation attack using the basepoint “g” and the signature-equation attack using g. The author

presents further four forgeries against MR(p)-signatures, which are called the recovery-equation

attack using Alice’s public key “yA”, the redundancy attack, the signature-equation attack us-

ing yA, and the homomorphism attack([?, ?]). The recovery-equation attack using yA and the

signature-equation attack using yA are constructed as well by changing the function of g in each

attack presented in [?] to yA. For simplicity, this section summarizes the main four forgeries

against the scheme (S3).

First forgery can compute a signature (r2, s) on a message of the form m =Mye
A for any chosen

M ∈ ∗
p without ever seeing any signature and Alice’s secret key.

The recovery-equation attack using yA

1. chooses ∀U, V ∈ q and ∀M ∈ ∗
p, and sets r2 =My

U
Ag

V (mod p)

2. sets s = −V and e = r02 + U (mod q)

3. sends (r2, s) as a signature on m =Mye
A.

We see that (r2, s) is a valid signature on m since

gsy
r0

2
A r2 = g

−V y
r0

2
AMy

U
Ag

V =Mye
A = m (mod p).

Next two forgeries assume the scenario of a known-message attack: a forger gets Alice’s signature

(r2, s) for a message m. Then the forger can compute a signature (r̃2, s̃) for a message m̃ without

the knowledge of Alice’s secret key.

The redundancy attack

1. computes mr−1
2 = r1(= g

k) (mod p).

2. chooses any number n ∈ p such that r̃2 = r
0
2 + nq 6= r2. (There are bp/qc variants.)

3. sets a message m̃ = r1r̃2 (mod p) and s̃ = s.

4. sends (r̃2, s̃) as a signature of m̃.

We see that (r̃2, s̃) is a valid signature for m̃ since

gs̃yr̃2
0

A r̃2 = g
sy

r0
2

A r̃2 = r1r̃2 = m̃ (mod p).

The signature-equation attack using yA
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1. sets r̃1 = g
sy

r0
2−n

A (= r1y
−n
A = gk−nx ) (mod p) for ∀n ∈ q−{0}. (There are q−1 variants.)

2. sets r̃2 = r
0
2 − n (mod q), s̃ = s and a message m̃ = r̃1r̃2 (mod p),

3. sends (r̃2, s̃) as a signature of m̃.

We see that (r̃2, s̃) is a valid signature of m̃ since

gs̃yr̃2
0

A r̃2 = g
sy

r0
2−n

A r̃2 = r̃1r̃2 = m̃ (mod p).

These three forgeries cannot control the forged message. The next attack can compute a sig-

nature (r̃2, s̃) for any message m̃ by assuming one chosen-message attack scenario: a forger can

get Alice’s signature (r2, s) on one message m ∈ {m̃g−n|n ∈ q}− {m̃}. For simplicity we set the

chosen-message m = m̃g.

The homomorphism attack

1. sets r̃2 = r2 and s̃ = s− 1.

2. sends (r̃2, s̃) as a signature of m̃.

We see that (r̃2, s̃) is a valid signature on m̃ since

gs̃yr̃2
0

A r̃2 = g
s−1y

r0
2

A r2 = mg
−1 = m̃ (mod p).

The homomorphism attack is the chosen-message attack scenario of the signature-equation attack

using g or yA. But all cases of applying the signature-equation attack on MR(p)-signatures are not

necessarily used in the homomorphism attack. The reason will be analyzed in the next section.

The above discussion applied four attacks only on scheme (S3) in MR(p)-signatures. From [?, ?],

we get Table?? that shows strongness of each signature against each forgery, where “††” denotes

strong and “†” denotes almost strong, “–” denotes vulnerable. For the meaning of “almost

strong”, we refer the reader to [?].

For the two attacks, the redundancy attack and the homomorphism attack, the condition to

avoid them was investigated in [?, ?]. In the next section, we will analyze the condition to avoid

the other four attacks. We will also investigate deeply the condition for the homomorphism attack.

MR(p)-signatures MRE(p)-signatures
(S1) (S2) (S3) (S4) (S5) (S6) (S1) (S2) (S3) (S4) (S5) (S6)

recovery-equation attack: g – – †† – †† – †† †† †† †† †† ††
: yA – †† – – – †† †† †† †† †† †† ††

redundancy attack – – – – – – † † † † † †
signature-equation attack: g †† †† – – – – †† †† – – – –

: yA – – – †† †† – – – – †† †† –
homomorphism attack †† – – †† – – †† †† †† †† †† ††

表 1: Strongness of MR(p)- and MRE(p)-signatures against forgeries
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4 Analyze the condition of forgery

This section describes how to improve the signature equation (??) and the message-mask equa-

tion (??) in order to avoid the five attacks, the recovery-equation attack g and yA, the signature-

equation attack g and yA, and the homomorphism attack.

4.1 Recovery-equation attack

Table?? says that all MR(p)-signatures are vulnerable to the recovery-equation attack either

using g or yA whereas all MRE(p)-signatures are strong against the attacks both using g and yA.

The result of the attack using g on MR(p)-signatures are shown in [?]. The other results are shown

in [?, ?]. But the condition on the attack has not been investigated. The following discussion first

analyzes the condition on the recovery-equation attack and next shows why MR(p)-signatures are

vulnerable whereas MRE(p)-signatures are strong against the attack.

For simplicity we deal with the attack using yA. From the recovery equation (??), if a forger

find a set of solutions of three variables (r2, s, e) for a chosen M ∈ ∗
p that satisfy

r2 = (My
e
A)g

−b/ay
−c/a
A , (9)

then (r2, s) is a valid signature on a special from m = Mge. For this special form, solving (??)

can be reduced to solving the next simultaneous equations for two variables (s, e),(
U = −b/a (mod q)

V = e− c/a (mod q)
(10)

by setting r2 = Mg
UyV

A for any chosen U, V ∈ q. Since (a, b, c) are represented by r2 and s, the

solutions of (??) always exist except for a special case such that the former equation of (??) does

not include s. But such a special case can be easily excluded by using ge instead of ye
A. Thus all

MR(p)-signatures are vulnerable to this attack using yA or g.

Next we investigate how to change the message-mask equation (??), which determines the

recovery-equation (??), so that solving (??) can not be reduced to solving (??). First we change

Equation (??) to

r2 = f(r1,m) (mod p), (11)

where f : p× p −→ p is a map, known to all users, with the following feature: m is computed

by m = f−1(r1, r2). Here Equation (??) can be changed from Equation (??) to

r2 = f(g
−b/ay

−c/a
A ,m). (12)

The recovery-equation attack forges a special-form message with e-powers of g or yA by solving

the simultaneous equation (??). From the above discussion, the recovery-equation attack succeeds

if and only if solving (??) is reduced to solving (??) for such a special-form m. Therefore the map

f must be chosen as follows.
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Theorem 1

?? ??

r2 = f(g
−b/ay

−c/a
A , mge) r2 = f(g

−b/ay
−c/a
A , mye

A)

Let us describe the above map f concretely. We set f(r1,m) = mf1(r1)
−1, where f1 is a map from

p to p. Namely we change Equation (??) to

r2 = mf1(r1)
−1. (13)

Then the recovery-equation attack forges a special-form message Mf1(y
e
A) by deriving the simul-

taneous equation (??) from

r2 =Mf1(y
e
A)/f1(g

b/ay
c/a
A ). (14)

What f1 does lead two algebraic relations on the three exponents e, b/a and c/a? If f1 is a

homomorphism, then Equation (??) is changed to

r2 =Mf1(g
−b/ay

e−c/a
A ).

So the three exponents e, b/a and c/a are converted to two algebraic relations (??). The recovery-

equation attack succeeds by first setting r2 =Mf1(g
UyV

A ) for any chosen U, V ∈ q, next solving

(??). In MR(p)-signatures, we can regard the map f1 as an identity map, a kind of a homomor-

phism map. Therefore solving (??) can be reduced to solving (??). In the case of the attack using

g, Equation (??) is as follows,

r2 =Mf1(g
e)/f1(g

b/ay
c/a
A ), (15)

where m =Mf(ge). The above discussion is summarized as follows.

Corollary 1 f1 e b/a c/a ??

??

??

From Corollary??, we would call the property that two algebraic relations are derived from Equa-

tion (??) or (??) as a homomorphism-like property. So we must choose f1 that does not have a

homomorphism-like property. Here we show each example of f and f1.

Example 1 f : p × p −→ p ((x, y) −→ x + y)

e b/a c/a

r2 = g
b/ay

c/a
A +Mye

A.

Mge

Example 2 f1 : p −→ p (x −→ x+ g) ??

r2 =M(y
e
A + g)/(g

b/ay
c/a
A + g).

e b/a c/a

??
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As for MRE(p)-signatures, the message-mask equation (??) is different from MR(p)-signatures.

In fact, Equation (??) is equal to the case that the map f1 in Equation (??) is the x-coordinate

function of an elliptic curve. The x-coordinate function on E, whatever an elliptic curve E is

chosen, has not homomorphism-like property: since Equation (??) is represented as

r2 =Mx(eG)/x

Ã
b

a
G+

c

a
YA

!
,

two algebraic relations among e, b/a and c/a can not be derived. The same also holds in Equation

(??). Therefore all MRE(p)-signatures are strong against the recovery-equation attack.

4.2 Signature-equation attack

This subsection shows why all MR(p)- and MRE(p)-signatures are vulnerable to the signature-

equation attack using either g or yA. We also show how to avoid this attack.

The signature-equation attack using the basepoint

Assume that a forger gets Alice’s signature (r2, s) for a message m in MR(p)-signatures. Then

the forger can always construct a new commitment r̃1 = r1/g = gk−1. He does not know the

correct discrete logarithm of r̃1 but more importantly he knows it is equal to the value subtracted

by 1 from the discrete logarithm of r1. First he converts the signature equation (??) standing

for the original m(= r1r2), r2, s and k to that for the new m̃(= r̃1r̃2), r̃2, s̃ and k − 1, maintaining

the congruity of the original signature equation: he tries to find (r̃2, s̃) satisfying the following

equation,

a(k − 1) ≡ (b− a) + cxA (mod q), (16)

where (a, b, c) is a pre-fixed permutation of (1, r02, s), and sets m̃ = r̃1r̃2. There exists a set of

(r̃2, s̃) satisfying (??) if and only if (a, b− a, c) is equal to the pre-fixed permutation of (1, r̃2
0, s̃):

either r̃2
0 or s̃ must be kept the same as the original r02 or s since the two coefficients a and c

are fixed. Therefore we see that the signature-equation attack succeeds if and only if we use the

schemes of b = s or b = r02 in Equation (??): schemes (S3) and (S5), or (S4) and (S6) respectively.

In scheme (S3) (resp. (S5)), a forger can generate the signature (r̃2, s̃) by setting r̃2 = r2 and

s̃ = s − 1 (resp. s̃ = s − r02) for m̃ = r̃1r̃2 = (r1/g)r2 = m/g. In scheme (S4) (resp. (S6)), he

can generate the signature (r̃2, s̃) on m̃ = r̃1r̃2 by setting s̃ = s and r̃2 ≡ r02 − s (mod q) (resp.

r̃2 ≡ r02 − 1 (mod q)). Note that, only in the schemes of setting r̃2 = r2 (i.e. (S3) and (S5)), m̃

is represented by m and a known parameter, g.

The signature-equation attack using Alice’s public key

The above attack uses a basepoint g in order to modify the original commitment r1 = g
k. Consider-

ing the signature equation (??), a forger can construct a different commitment r̃1 = r1/yA = g
k−x

by Alice’s public key yA. The following discussion is almost the same as the above attack using

g: first he converts Equation(??) standing for the original m(= r1r2), r2, s and k to that for the

new m̃(= r̃1r̃2), r̃2, s̃ and k − xA, namely tries to find (r̃2, s̃) satisfying the following equation,

a(k − xA) ≡ b+ (c− a)xA (mod q), (17)
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where (a, b, c) is a pre-fixed permutation of (1, r02, s) and (a, b, c− a) is the pre-fixed permutation
of (1, r̃2

0, s̃), and next sets m̃ = r̃1r̃2. Therefore the signature-equation attack using yA succeeds

if and only if we use the schemes of c = s or c = r02 in Equation (??): schemes (S2) and (S6), or

(S1) and (S3) respectively. In scheme (S2) (resp. (S6)), he can generate the signature (r̃2, s̃) by

setting r̃2 = r2 and s̃ = s− r02 (resp. s̃ = s− 1) for m̃ = r̃1r̃2 = (r1/yA)r2 = m/yA. In scheme (S1)

(resp. (S3)), he can generate the signature (r̃2, s̃) on m̃ = r̃1r̃2 by setting s̃ = s and r̃2 ≡ r02 − s
(mod q) (resp. r̃2 ≡ r02 − 1 (mod q)). Note that, in the same way as the attack using g, only in

the schemes of setting r̃2 = r2 (i.e. (S2) and (S6)), m̃ is represented by m and a known parameter,

yA.

As for MRE(p)-signatures, the same discussion as MR(p)-signatures holds since this attack

requires only the feature of the signature equation.

The necessary and sufficient condition for the signature-equation attack is that a forger can

construct the signature equation standing for a new commitment r̃1 = r1/g or r1/yA by converting

the original signature equation while maintaining its congruity. This condition is that a set of

coefficients (a, b, c) in the signature equation (??) satisfies (??) or (??). Thus the cases that

(a, b, c) is a permutation of (1, r02, s) (i.e. all MR(p)-signatures) are vulnerable to this attack.
In order to find the coefficients strong against the signature-equation attack, let us re-define

(a, b, c) = (ha(r
0
2, s, 1), hb(r

0
2, s, 1), hc(r

0
2, s, 1)) in Equation (??), where ha, hb, and hc are suitable

maps from q × q × q to q such that s can be computed in (??). Then these discussion are

generally summarized in the next theorem.

Theorem 2

(a, b, c) = (ha(r
0
2, s, 1), hb(r

0
2, s, 1), hc(r

0
2, s, 1)) ??

r2 s ha, hb hc

r̃2 s̃

ha(r
0
2, s, 1) = ha(r̃2

0, s̃, 1) hc(r
0
2, s, 1) = hc(r̃2

0, s̃, 1) hb(r
0
2, s, 1) − ha(r

0
2, s, 1) 6=

hb(r̃2
0, s̃, 1) ??

ha(r
0
2, s, 1) = ha(r̃2

0, s̃, 1) hb(r
0
2, s, 1) = hb(r̃2

0, s̃, 1) hc(r
0
2, s, 1) − ha(r

0
2, s, 1) 6=

hc(r̃2
0, s̃, 1) ??

Here “some pre-fixed values r̃2 and s̃” means trivial cases such that the signature-equation attack

succeeds if and only if r̃2
0 = r02 = 0 like the next Example??. Here we show one example.

Example 3 hb(r
0
2, s, 1) = r

0
2+ s+1 (a, b, c) = (r02, hb(r

0
2, s, 1), s)

r02k ≡ (r
0
2 + s+ 1) + sxA (mod q). (18)

s̃ = s r̃2
0 = r02 = 0

r02 ∈ q q − {0}

In the same way as Example??, any permutation of (a, b, c) = (r02, r
0
2 + s + 1, s) can avoid the

signature-equation attack by excepting each trivial case. Example?? is the optimal case since the

signature generation does not need inversions by precomputing 1
x +1

.
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4.3 Homomorphism attack

The homomorphism attack extends the idea of the signature-equation attack to forge any mes-

sage. Table?? shows that all MR(p)-signatures (S1)∼(S6) are not necessarily vulnerable to the

homomorphism attack though all of them are vulnerable to the signature-equation attack using

g or yA. This subsection deals with the cases (S1)∼(S6) in MR(p)-signatures. We investigate

why some cases are extended to the homomorphism attack and how to avoid the homomorphism

attack in such cases.

The signature-equation attack is extended to the homomorphism attack if and only if the forged

m̃ by the signature-equation attack can be represented only by an original m and a known pa-

rameter like g or yA. In fact, only in such a case, a suitable chosen-message for an intentional

message can be constructed. In Section??, we have seen that in schemes (S2), (S3), (S5), and

(S6) the message m̃ forged by either the signature-equation attack using g or yA depends only on

a message m and known parameters, whereas in schemes (S1) and (S4) m̃ depends both on m

and the signature (r2, s) by using any signature-equation attack. So the homomorphism attack is

serious only in the cases of (S2), (S3), (S5) and (S6).

The condition for the homomorphism attack is more explicitly written as follows: the forged

message m̃ by the signature-equation attack is represented, using Equation (??), as

m̃(= r̃1r̃2) = ∃ϕ(m, g, p, q, yA), (19)

where ϕ is a suitable function to p such that m = ϕ−1(m̃, g, p, q, yA) exists. This means that m̃

is independent of the parameters k, r2 and s which the signer Alice can take arbitrarily. Then a

chosen-message m for an intentional message m̃ can be defined as m = ϕ−1(m̃, g, p, q, yA).

Let us improve Equation (??) so that m̃ is not denoted by ∃ϕ in Equation (??). We change

Equation (??) to (??) in Section??. In Equation (??), the relation between m and m̃ forged by

the signature-equation attack is represented as the following equation

m̃ = f−1(r̃1, r2) =

(
f−1(gk−1, r2) = mf−1(gkg−1, r2)/f

−1(gk, r2) (if the attack using g)

f−1(gk−x , r2) = mf−1(gky−1
A , r2)/f

−1(gk, r2) (if the attack using yA)
(20)

From the above discussion, the condition on f to avoid the homomorphism attack is as follows.

Theorem 3

??

k r2 ?? ??

Let us describe the above map f concretely by using f1 of Equation (??). Then the relation

between m and m̃ forged by the signature-equation attack is represented as the following equation

m̃ = f1(r̃1)r2 =

(
f1(g

k−1)r2 = mf1(g
kg−1)/f1(g

k) (if the attack using g)

f1(g
k−x )r2 = mf1(g

ky−1
A )/f1(g

k) (if the attack using yA)
(21)

What f1 does cancel k in Equation (??)? If f1 is a homomorphism, then the term k is cancelled.

So Equation (??) leads m̃ = ϕ(m, g, yA) in both cases. We can regard that MR(p)-signatures

use an identity map, a homomorphism map (a vulnerable map) as f1. The above discussion is

summarized as follows.
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Corollary 2 f1 k ??

??

From Corollary??, we would call the property that the term k in Equation (??) is cancelled as

a homomorphism-like property. So we must choose f1 that does not have a homomorphism-like

property. Here we show each example of f and f1.

Example 4 f ?? g ??

m̃ = m(gk−1 + r2)/(g
k + r2).

k r2 yA ??

Example 5 f1 ?? g ??

m̃ = mf1(g
k−1)/f1(g

k) = m(gk−1 + g)/(gk + g) = m(gk−2 + 1)/(gk−1 + 1).

k yA ??

As for MRE(p)-signatures, the map f1 in Equation (??) is the x-coordinate function. The

x-coordinate function on E, whatever an elliptic curve E is chosen, has not homomorphism-like

property:

x((k − 1)G)/x(kG) = x(kG− G)/x(kG) = ϕ(k,G),

where the term k is not cancelled in ϕ. Therefore all MRE(p)-signatures are strong against the

homomorphism attack.

Note that the signature-equation attack still holds even in the case using the above suitable f

or f1 unless the signature equation is changed.

5 Strengthened message recovery signature

Summarizing the result from Section?? and [?], we show two message recovery signatures

strong against all attacks in Section??, while adding a negligible computation amount to MR(p)-

signatures.

Strengthened message recovery signature over p

The system parameters are: a large prime p, an integer factor q (≈ p) of p − 1 and an element

g ∈ ∗
p whose order is q. The signer Alice has a secret key xA and its corresponding public key

yA = g
x . To sign a message m ∈ ∗

p, she chooses a random number k ∈ q such that

0 < r2 < q ([?]),

where for r1 = g
k (mod p), r2 is set to

10



r2 = m(r1 + g)
−1 (mod p) (Theorem??).

Then she computes s from

r2k ≡ (1 + r2 + s) + sxA (mod q) (Theorem?? and ??).

The signature is given by (r2, s). The message can be recovered by computing

m = (g(1+r2+s)/r2y
s/r2

A + g)r2 (mod p)

with Alice’s public key yA. Since this signature scheme requires the inversion of elements in q,

we suggest to use a prime q in order to avoid the further additional repeated trials of the random

parameter k.

Strengthened message recovery signature over E/ p

The system parameters are: an elliptic curve E/ p with p-elements, a basepoint G ∈ E( p) whose

order is p, where such a basepoint already avoids the redundancy attack. The signer Alice has a

secret key xA and the corresponding public key YA = xAG. To sign m ∈ ∗
p, she chooses a random

number k ∈ p, and computes R1 = kG,

r2 = m x(R1)
−1 (mod p) (Theorem??).

Then she computes s from

r2k ≡ (1 + r2 + s) + sxA (mod p) (Theorem?? and ??).

The signature is given by (r2, s). The message can be recovered by computing

m = x(1+r2+s
r2

G+ s
r2
YA)r2 (mod p).

We see that the latter example using an elliptic curve can avoid all the six attacks only by

changing the signature equation without requiring any repeated trial of the random parameter k,

while maintaining the original signature size.

6 Conclusion

We have analyzed the reason why MR(p)-signatures are vulnerable to the five forgeries, the

recovery-equation attack g and yA, the signature-equation attack g and yA, and the homomorphism

attack. We have shown that these forgeries result from three weaknesses in MR(p)-signatures:

1. the signature equations (S1) ∼ (S6),

2. two homomorphism-like properties in the message-mask equation (??),

Furthermore we have proved the general theorems to overcome such all weaknesses by reconstruct-

ing the signature scheme. We have also shown two strengthened message recovery signatures

against all the known six forgeries. Especially the example over an elliptic curve can be strong

against all the forgeries only by adding a negligible computation amount to the original scheme,

maintaining the original signature size. We have concluded that the DLP-based message recovery

signature can be strengthened directly against all the six forgeries.
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