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Abstract Nyberg and Rueppel recently proposed a new ElGamal-type digital signature scheme with message
recovery feature and its six variants([?, ?]). They also pointed out two forgeries against some of their signatures. But
they did not investigate explicitly how to apply these forgeries to all variants including elliptic curves. The author
presented the further four forgeries and investigated deeply how to apply the six forgeries on all variants([?, ?]).
For the two forgeries, the author also investigated a condition to avoid them directly. For the other four forgeries,
only the method to prevent them by using a suitable redundancy generating function is known. In this paper, we
investigate a general condition to avoid the other four attack directly. We also generalize the proposed method for
one forgery. We conclude that EIGamal-type message recovery signature can be strengthened directly against all the
known six forgeries independent of a suitable redundancy generating function. Furthermore we show new message
recovery signatures strong against all the forgeries by reconstructing the signature scheme.



1 Introduction

The RSA signature([?]), which is based on the difficulty of factoring, has a message recovery
feature. On the other hand, the ElGamal signature([?]) and its six variants([?, ?]), which are based
on the difficulty of the discrete logarithm problem, do not have a message recovery feature. Here
we call them EG-signatures. Recently Nyberg and Rueppel proposed a method to add the message
recovery feature to all EG-signatures([?, ?]). The Nyberg-Rueppel’s signatures can achieve the
authenticated key exchange in one pass transaction.

The message recovery signatures can prevent forgeries indirectly by using a suitable redundancy
generating function such that any forged message does not contain the redundancy. Therefore
the complexity of redundancy should be determined by what forgeries are known. A typical
example([?]) for a redundancy generating function is rather complicated, which mainly aims at
RSA-signature: avoiding attacks by natural products and attacks by natural powers. The amount
of sending data with redundancy is at least double the amount of a message. However there
has not been such a research that prevents the forgeries directly by reconstructing the signature
scheme. Though six forgeries ([?, ?, ?]) for the Nyberg-Rueppel’s signatures are known, we can
prevent only two of them directly ([?, ?]). Therefore we must use a suitable redundancy generating
function to prevent the other four forgeries.

This paper’s motivation is: can the ElGamal-type message recovery signature be also strength-
ened directly against the other four forgeries without depending on redundancy? There are many
variants in the ElGamal-type signature([?]). Furthermore the ElGamal-type signature can be
defined on an elliptic curve as well([?], [?]). So can we reconstruct a message recovery signature
strong against the forgeries by using such varieties?

This paper analyzes a general condition for avoiding all the other four forgeries. We also
generalize further a condition for one forgery, which have been presented in [?]. As a result we
conclude that all the six forgeries are caused by the structure of Nyberg-Rueppel’s signatures
rather than the feature of ElGamal-type digital signature. Furthermore we show two message
recovery signatures strong against all the known six forgeries by reconstructing the signature
scheme.

This paper is organized as follows. Section?? summarizes the EG-signatures and Nyberg-
Rueppel’s signatures. Section?? describes the known forgeries against Nyberg-Rueppel’s signa-
tures. Section?? analyzes the general condition to avoid the five forgeries including one forgery
investigated a little in [?]. Section?? shows the message recovery signature strengthened against

all the forgeries.

2 Message recovery signature scheme

This section summarizes EG-signatures and Nyberg-Rueppel’s signatures which add the mes-
sage recovery feature to EG-signatures. The Nyberg-Rueppel’s signatures are collectively called
MR (p)-signatures in this paper. In any signature schemes, the trusted authority chooses system
parameters, that are a large prime p, a large integer factor ¢ of p— 1 and an element g € Z; whose



order is q. These system parameters are known to all users. The signer Alice has a secret key xa
and publishes its corresponding public key ya = ¢*+.
ElGamal based signature scheme
To sign a message m € Z;, she chooses a random number k € ., and computes r, = g (mod p),
ry=r1 (mod ¢) and

ak = b+ cxa

(1)

where (a, b, c) is a permutation of (£m,+r],+s). Then the triplet (m;(ry,s)) constitutes the

(mod g),

signed message. The signature verification is done by checking the next equation,

(2)

rd = gbyCA (mod p).

Message recovery signature scheme

MR (p)-signatures can be derived from EG-signatures by adding the message-mask equation (??)
and replacing m (resp. 1) by 1 (resp. r5) in Equation (??). To sign a message m € Z;, she
chooses a random number k € 2Z;, and computes

ri = g (mod p) (3)
ro = mr;t  (mod p) (4)
r, = r, (mod q)

ak = b+ cxa (mod q), (5)

where (a,b,c) is a permutation of (1,47}, £s). Then the signature is given by (rz,s). The

message can be recovered by computing a recovery equation

"2y rz  (mod p)

(6)

with Alice’s public key ya. The verification of the signature needs further steps that add re-
dundancy to the message before it is signed and that check the redundancy after recovery. The
signature equation (??) leads to the following six equations if we neglect the + signs.

m=4g

(S1) [ sk  =1+r5Xa (mod q)
(S2) | I’k =1+ sxa (mod q)
(S3) | k =S+ I)Xa (mod q)
(S4) | sk =r5+xa (mod q)
(S5) | r5k =s+xa (mod q)
(S6) | k =r5 + SXa (mod q)

The ElGamal-type signatures can be constructed in other groups, as long as the discrete log-
arithm problem (DLP) is hard. So all the six MR(p)-signatures can be also constructed on an
elliptic curve, which are called MRE(p)-signatures in this paper. In MRE(p)-signatures, the sys-
tem parameters are: an elliptic curve E/Fj, a basepoint G € E(Fp) and the order ¢ of G. The
signer Alice has a secret key xa and publishes the corresponding public key Yao = zaG. Alice’s
procedure to make a signature on m € Z; is done in the same way as MR(p)-signatures except
for Equations (??) and (??), where these are changed to:

Ry =

ro =

kG,
m z(Ry) ™

(7)
(8)

(mod p),
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respectively. Here z(R;) denotes the z-coordinate of R; and Equation (??) is computed in E.
Also in MRE(p)-signagures, the signature is given by (r,s). The message can be recovered
by computing m = x gG + YA r2 (mod p), where gG + £Ya is computed in E. Note that
the signature equations of MR(p)-signatures and MRE(p)-signatures are the same whereas the

message-mask equations are different each other.

3 Forgeries against MR(p)-signatures

Two types of forgery against MR(p)-signatures are presented in [?], which are called the recovery-
equation attack using the basepoint “g” and the signature-equation attack using g. The author
presents further four forgeries against MR(p)-signatures, which are called the recovery-equation
attack using Alice’s public key “ya”, the redundancy attack, the signature-equation attack us-
ing ya, and the homomorphism attack([?, ?]). The recovery-equation attack using ya and the
signature-equation attack using ya are constructed as well by changing the function of g in each
attack presented in [?] to ya. For simplicity, this section summarizes the main four forgeries
against the scheme (S3).

First forgery can compute a signature (7, s) on a message of the form m = Mya for any chosen
M e Z; without ever seeing any signature and Alice’s secret key.

The recovery-equation attack using ya

1. chooses YU,V € Zy and YM € Z;, and sets r, = Mygg' (mod p)
2. setss=—-Vande=r,+U (mod q)
3. sends (77, s) as a signature on m = Myi.
We see that (ry, s) is a valid signature on m since
s, 12 Vv, "o U oV e
9°YRT2 = 97 Ya Mypg' = Mya =m  (mod p).

Next two forgeries assume the scenario of a known-message attack: a forger gets Alice’s signature
(r2, s) for a message m. Then the forger can compute a signature (15, §) for a message m without
the knowledge of Alice’s secret key.

The redundancy attack

1. computes mr;* =r1(= ¢g) (mod p).

2. chooses any number n € Z, such that 7, = 15, + ng # r,. (There are |p/q| variants.)
3. sets a message m = r17; (mod p) and § = s.

4. sends (77, 5) as a signature of m.

We see that (17, §) is a valid signature for m since
= /a0 o r0 - ~ B
GYR T2 = §PYprT2 = 1172 = m  (mod p).

The signature-equation attack using ya



)_
L. sets 71 = g%y (= rya" = g¢"™4)  (mod p) for Vn € Zy—{0}. (There are ¢ — 1 variants.)
2. sets 1, =15 —n  (mod ¢), § = s and a message m = r17, (mod p),
3. sends (77, §) as a signature of m.

We see that (17, §) is a valid signature of m since

ggyXZOFZ = gsy;o2 “r, =i, = m  (mod p).

These three forgeries cannot control the forged message. The next attack can compute a sig-
nature (77, §) for any message m by assuming one chosen-message attack scenario: a forger can
get Alice’s signature (7, s) on one message m € {mg "|n € Z;} — {m}. For simplicity we set the
chosen-message m = mg.

The homomorphism attack

1. sets 7, =71, and § = s — 1.
2. sends (77, §) as a signature of m.

We see that (17, §) is a valid signature on m since
~ o~ 0
YR T2 = g° yrs =mg ™t = (mod p).

The homomorphism attack is the chosen-message attack scenario of the signature-equation attack
using g or ya. But all cases of applying the signature-equation attack on MR(p)-signatures are not
necessarily used in the homomorphism attack. The reason will be analyzed in the next section.
The above discussion applied four attacks only on scheme (S3) in MR(p)-signatures. From [?, ?],
we get Table?? that shows strongness of each signature against each forgery, where “i1” denotes

“—" denotes vulnerable. For the meaning of “almost

strong and “{” denotes almost strong,
strong”, we refer the reader to [?].

For the two attacks, the redundancy attack and the homomorphism attack, the condition to
avoid them was investigated in [?, ?]. In the next section, we will analyze the condition to avoid

the other four attacks. We will also investigate deeply the condition for the homomorphism attack.

MR(p)-signatures MRE(p)-signatures
(S1) | (S2) [ (S3) | (S4) [ (S5) | (S6) | (S1) | (S2) | (S3) | (S4) | (S5) | (S6)
recovery-equation attack: g — ] — ] — i — 1 Tt Tt Tt 1 1
YAl — | T — | — | o — | it ot T it
redundancy attack | — [ — | — [ —[] —| — T T T T T T
signature-equation attack: g Tt Tt — ] =1 =1 — Tt = —_ T =1 =T =
YA | — | — | — | i ot = = = =] ] it] —
homomorphism attack | 7t | — | — | 1| —| — | it ] tt] ft] ft] it

O 1: Strongness of MR(p)- and MRE(p)-signatures against forgeries



4 Analyze the condition of forgery

This section describes how to improve the signature equation (??) and the message-mask equa-
tion (??) in order to avoid the five attacks, the recovery-equation attack g and ya, the signature-
equation attack g and ya, and the homomorphism attack.

4.1 Recovery-equation attack

Table?? says that all MR(p)-signatures are vulnerable to the recovery-equation attack either
using g or ya whereas all MRE(p)-signatures are strong against the attacks both using g and ya.
The result of the attack using g on MR(p)-signatures are shown in [?]. The other results are shown
in [?, ?]. But the condition on the attack has not been investigated. The following discussion first
analyzes the condition on the recovery-equation attack and next shows why MR(p)-signatures are
vulnerable whereas MRE(p)-signatures are strong against the attack.

For simplicity we deal with the attack using ya. From the recovery equation (??), if a forger
find a set of solutions of three variables (r2, s, e) for a chosen M € Z; that satisfy

_ —c/
ro = (MyR)g 2 ya", (9)

then (rp, s) is a valid signature on a special from m = Mg®. For this special form, solving (??)
can be reduced to solving the next simultaneous equations for two variables (s, e),

¢ U =-b/a (mod q)

V =e—c/a (mod q) (10)

by setting r, = MgYyx for any chosen U,V € Z,. Since (a,b,c) are represented by r, and s, the
solutions of (??) always exist except for a special case such that the former equation of (??) does
not include s. But such a special case can be easily excluded by using ¢° instead of y4. Thus all
MR (p)-signatures are vulnerable to this attack using ya or g.

Next we investigate how to change the message-mask equation (??), which determines the
recovery-equation (?7?), so that solving (??) can not be reduced to solving (??). First we change
Equation (??) to

r2 = f(ri,m) (mod p), (11)

where f : Z,x Ly — Z, is a map, known to all users, with the following feature: m is computed
by m = f~Y(ry,72). Here Equation (??) can be changed from Equation (??) to

— —c/
r2 = flg™"Pya"% m). (12)

The recovery-equation attack forges a special-form message with e-powers of g or ya by solving
the simultaneous equation (??). From the above discussion, the recovery-equation attack succeeds
if and only if solving (??) is reduced to solving (??) for such a special-form m. Therefore the map
f must be chosen as follows.



Theorem 1 The recovery-equation attack is invalid for the DLP-based message recovery signature
with a new message-mask equation (?? ) if and only if two algebraic relations (?? ) are derived from
neither ry = f(g™ ay;C/a, mg®) norry = f(g™ ay;(:/a, mys)-

Let us describe the above map f concretely. We set f(ry,m) = mfi(r1)~!, where f; is a map from
Zy to iZy. Namely we change Equation (??) to

o = mfl(rl)_l' (13)

Then the recovery-equation attack forges a special-form message M fi(ya) by deriving the simul-
taneous equation (??) from

r2 = M fi(y2)/ f1(9"2yn ). (14)

What f1 does lead two algebraic relations on the three exponents e, b/a and c/a? If f; is a
homomorphism, then Equation (??) is changed to

B —c/
T2 = M f1(g7™3yn 7).

So the three exponents e, b/a and c/a are converted to two algebraic relations (??). The recovery-
equation attack succeeds by first setting r, = M f1(g”yx ) for any chosen U,V € Z,, next solving
(??). In MR(p)-signatures, we can regard the map f; as an identity map, a kind of a homomor-
phism map. Therefore solving (??) can be reduced to solving (??). In the case of the attack using
g, Equation (??) is as follows,

ra = Mfi(¢°)/ i(g”2YR"), (15)

where m = M f(g®). The above discussion is summarized as follows.

Corollary 1 If f1 is a homomorphism map, then the three exponents e, b/a and c/a of both {??)
and (??) are converted to two algebraic relations. Therefore the DLP-based message recovery
signature with such a message-mask equation (??) is vulnerable to the recovery-equation attack.

From Corollary??, we would call the property that two algebraic relations are derived from Equa-
tion (??) or (??) as a homomorphism-like property. So we must choose f; that does not have a
homomorphism-like property. Here we show each example of f and f;.

Example 1 Define a map f: Zyx Zy — Z, ((x,y) — = +y). Then two algebraic relations
among e, b/a and c¢/a cannot be derive from

/
r2 = g"%Ya" + My

The same also holds in the case of M g®. Therefore the recovery-equation attack is invalid.

Example 2 Define a map f1: Zy — Zy (x — x + g). Then Equation (??) is

/
ro = M(y& + 9)/(¢"%ya" + ).

From the above equation, two algebraic relations among e, b/a and c/a can not be derived. The
same also holds in Equation (??). Therefore the recovery-equation attack is invalid.



As for MRE(p)-signatures, the message-mask equation (??) is different from MR(p)-signatures.
In fact, Equation (??) is equal to the case that the map f; in Equation (??) is the z-coordinate
function of an elliptic curve. The z-coordinate function on E, whatever an elliptic curve E is
chosen, has not homomorphism-like property: since Equation (??) is represented as

A !
b c
rp = Mz(eG)/x -G+ =Ya
a a

two algebraic relations among e, b/a and ¢/a can not be derived. The same also holds in Equation
(??). Therefore all MRE(p)-signatures are strong against the recovery-equation attack.

4.2 Signature-equation attack

This subsection shows why all MR(p)- and MRE(p)-signatures are vulnerable to the signature-
equation attack using either g or ya. We also show how to avoid this attack.
The signature-equation attack using the basepoint
Assume that a forger gets Alice’s signature (7, s) for a message m in MR(p)-signatures. Then

k-1 He does not know the

the forger can always construct a new commitment 7, = r;/g = g
correct discrete logarithm of 71 but more importantly he knows it is equal to the value subtracted
by 1 from the discrete logarithm of r;. First he converts the signature equation (??) standing
for the original m(= ry7,),r2, s and k to that for the new m(= 7173),7%, § and k — 1, maintaining
the congruity of the original signature equation: he tries to find (73, §) satisfying the following
equation,

a(k—-1)=(b—a)+cxa (mod q), (16)

where (a,b,c) is a pre-fixed permutation of (1,r%,s), and sets m = 717%. There exists a set of
(72, §) satisfying (??) if and only if (a,b — a, ¢) is equal to the pre-fixed permutation of (1,75, §):
either 75’ or § must be kept the same as the original 75 or s since the two coefficients a and c
are fixed. Therefore we see that the signature-equation attack succeeds if and only if we use the
schemes of b = s or b = r4 in Equation (??): schemes (S3) and (S5), or (S4) and (S6) respectively.
In scheme (S3) (resp. (S5)), a forger can generate the signature (77, §) by setting 7, = r, and
§=s—1(resp. § =s—1%) for m = rrp = (r1/g)r2 = m/g. In scheme (S4) (resp. (S6)), he
can generate the signature (73, 3) on m = 7175 by setting § = s and 7, =15, — s (mod q) (resp.
7, =15 —1 (mod q)). Note that, only in the schemes of setting > = r, (i.e. (S3) and (S5)), ™
is represented by m and a known parameter, g.

The signature-equation attack using Alice’s public key

The above attack uses a basepoint g in order to modify the original commitment r; = g¥. Consider-
ing the signature equation (??), a forger can construct a different commitment 7 = ry /ya = gk=*+
by Alice’s public key ya. The following discussion is almost the same as the above attack using
g: first he converts Equation(??) standing for the original m(= ryr,), 72, s and k to that for the
new m(= r173),72, 5 and k — xa, namely tries to find (77, 5) satisfying the following equation,

alk —xza) =b+ (c —a)za (mod q), (17)



where (a, b, ¢) is a pre-fixed permutation of (1,75, s) and (a,b,c — a) is the pre-fixed permutation
of (1,75, 3), and next sets m = r17,. Therefore the signature-equation attack using ya succeeds
if and only if we use the schemes of ¢ = s or ¢ = r} in Equation (??): schemes (S2) and (S6), or
(S1) and (S3) respectively. In scheme (S2) (resp. (S6)), he can generate the signature (77, 3) by
setting 7, = 1, and § = s —r} (resp. § = s — 1) for m = 717 = (r1/ya)r2 = m/ya. In scheme (S1)
(resp. (S3)), he can generate the signature (77, 5) on m = 7175 by setting § = s and 7, =15 — s
(mod q) (resp. 72 =715, — 1 (mod q)). Note that, in the same way as the attack using g, only in
the schemes of setting /, = r;, (i.e. (S2) and (S6)), 7 is represented by m and a known parameter,
YA

As for MRE(p)-signatures, the same discussion as MR(p)-signatures holds since this attack
requires only the feature of the signature equation.

The necessary and sufficient condition for the signature-equation attack is that a forger can
construct the signature equation standing for a new commitment 7; = r1/g or r1/ya by converting
the original signature equation while maintaining its congruity. This condition is that a set of
coefficients (a,b,c) in the signature equation (?7?) satisfies (??) or (??). Thus the cases that
(a,b,c) is a permutation of (1,75,s) (i.e. all MR(p)-signatures) are vulnerable to this attack.
In order to find the coefficients strong against the signature-equation attack, let us re-define
(a,b,c) = (ha(ry,s,1), ho(rh, s, 1), he(r5, 8, 1)) in Equation (??), where ha, hy, and h are suitable
maps from Zq x Zy x Zy to Zy such that s can be computed in (??). Then these discussion are
generally summarized in the next theorem.

Theorem 2 The signature-equation attack is invalid for the DLP-based message recovery signa-
ture with the new coefficient (a,b, c) = (ha(ry, s, 1), hp(ry, s, 1), he(rh, 5,1)) in Equation (??) if and
only if for chosen ro, and s, three maps ha, hy, and he satisfy the next two conditions for all but
some pre-fired values 5 and §:

1. if ha(rh,s,1) = ha(72',5,1) and he(rh,s,1) = he(r2',8,1), then hy(ry,s,1) — ha(rh,s,1) #
hy(75',8,1) (avoiding Equation (??) ),

2. af ha(rh,s,1) = ha(r2',8,1) and hy(rh,s,1) = hy(r2',5,1), then he(rh, s,1) — ha(rh,s,1) #
he(72',8,1) (aveiding Equation (??) ).

Here “some pre-fixed values 7, and §” means trivial cases such that the signature-equation attack

succeeds if and only if 75" = r5 = 0 like the next Example??. Here we show one example.

Example 3 Set hy(r5,s,1) = 5+ s+ 1 and a coefficient (a,b, c) = (15, ho(15, 8,1), s). Namely the
signature equation is as follows,

rok = (ry+ s+ 1)+ sza  (mod q). (18)

Then the signature-equation attack does not succeed except for § = s and 7' =15, = 0. So we can
easily except such a trivial case by restricting ry, € Zy to £y — {0}.

In the same way as Example??, any permutation of (a,b,c¢) = (15,75 + s + 1,s) can avoid the

signature-equation attack by excepting each trivial case. Example?? is the optimal case since the

1

signature generation does not need inversions by precomputing YRR



4.3 Homomorphism attack

The homomorphism attack extends the idea of the signature-equation attack to forge any mes-
sage. Table?? shows that all MR(p)-signatures (S1)~(S6) are not necessarily vulnerable to the
homomorphism attack though all of them are vulnerable to the signature-equation attack using
g or ya. This subsection deals with the cases (S1)~(S6) in MR(p)-signatures. We investigate
why some cases are extended to the homomorphism attack and how to avoid the homomorphism
attack in such cases.

The signature-equation attack is extended to the homomorphism attack if and only if the forged
m by the signature-equation attack can be represented only by an original m and a known pa-
rameter like g or ya. In fact, only in such a case, a suitable chosen-message for an intentional
message can be constructed. In Section??, we have seen that in schemes (S2), (S3), (S5), and
(S6) the message m forged by either the signature-equation attack using g or ya depends only on
a message m and known parameters, whereas in schemes (S1) and (S4) /m depends both on m
and the signature (72, s) by using any signature-equation attack. So the homomorphism attack is
serious only in the cases of (S2), (S3), (S5) and (S6).

The condition for the homomorphism attack is more explicitly written as follows: the forged
message m by the signature-equation attack is represented, using Equation (??), as

ﬁl(: 7’71772> = 3¢(m7g7p7 q, yA)a (19)

where ¢ is a suitable function to Z, such that m = ¢*(m, g,p, ¢, ya) exists. This means that m
is independent of the parameters k, r, and s which the signer Alice can take arbitrarily. Then a
chosen-message m for an intentional message m can be defined as m = p=1(m, g, p, ¢, ya).

Let us improve Equation (??) so that m is not denoted by J¢ in Equation (??). We change
Equation (??) to (??) in Section??. In Equation (??), the relation between m and 7 forged by
the signature-equation attack is represented as the following equation

o= L5, ) = ¢ Yt r)  =mf g, r2)/f (g5, r2) (if the attack using g)

’ F G ) =mf g yat, )/ (g5, m2)  (if the attack using ya)
(20)
From the above discussion, the condition on f to avoid the homomorphism attack is as follows.
Theorem 3 The homomaorphism-attack is invalid for the DLP-based message recovery signature
if the signature-equation attack does not work for it (i.e. if it satisfies Theorem?? ), or if the term

k orry in Equation (??) is not cancelled with a new message-mask equation (?7? ).

Let us describe the above map f concretely by using f; of Equation (??). Then the relation
between m and m forged by the signature-equation attack is represented as the following equation

= f1(1)r = ¢ fi(@YHre  =mfi(g8¢7Y)/f1(¢") (if the attack using g)
SR fi(g s = mfi(gyat)/f1(g") (if the attack using ya)

What f; does cancel k£ in Equation (??)? If f; is a homomorphism, then the term k is cancelled.

(21)

So Equation (??) leads m = ¢(m, g,ya) in both cases. We can regard that MR(p)-signatures
use an identity map, a homomorphism map (a vulnerable map) as fi. The above discussion is
summarized as follows.



Corollary 2 If f is a homomorphism map, the term k in Equation (??) is cancelled in both
cases. Therefore the DI P-based message recovery signature with a message-mask equation (??) is
vulnerable to the homomorphism-attack.

From Corollary??, we would call the property that the term k in Equation (??) is cancelled as
a homomorphism-like property. So we must choose f; that does not have a homomorphism-like

property. Here we show each example of f and f;.

Example 4 With the same map [ defined in Evample??, the case using g in Equation {??) is

m = m(g*" +r2) /(g +r2).
So neither the term k nor v, are cancelled. The same also holds in the case using ya in (?7?).
Therefore the homomaorphism attack is invalid.

Example 5 With the same map f1 defined in Example??, the case using g in Equation (??) is

m=mfi(g )/ f(g") = m(d +9)/(g" + 9) = m(d P+ 1) /(¢ +1).

So the term k is not cancelled. The same also holds in the case using ya in (??). Therefore the

homomaorphism attack is invalid.

As for MRE(p)-signatures, the map f1 in Equation (??) is the z-coordinate function. The
z-coordinate function on E, whatever an elliptic curve E is chosen, has not homomorphism-like
property:

z((k - 1)G)/z(kG) = z(kG — G)/xz(kG) = ¢(k, G),
where the term k is not cancelled in . Therefore all MRE(p)-signatures are strong against the
homomorphism attack.

Note that the signature-equation attack still holds even in the case using the above suitable f

or f1 unless the signature equation is changed.

5 Strengthened message recovery signature

Summarizing the result from Section?? and [?], we show two message recovery signatures
strong against all attacks in Section??, while adding a negligible computation amount to MR(p)-
signatures.

Strengthened message recovery signature over Z,

The system parameters are: a large prime p, an integer factor ¢ (= p) of p — 1 and an element
g € Z; whose order is q. The signer Alice has a secret key xa and its corresponding public key
ya = g**. To sign a message m € Z;, she chooses a random number k € 2Zq such that

0<r<q ([?)),

where for 71 = g% (mod p), r is set to
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r, =m(ry +g)~* (mod p) (Theorem??).

Then she computes s from
rok = (14+r;+ ) +sza (mod g) (Theorem?? and ??).
The signature is given by (72, s). The message can be recovered by computing
m = (g&*r2r 922" 4 g)r,  (mod p)

with Alice’s public key ya. Since this signature scheme requires the inversion of elements in 27,
we suggest to use a prime ¢ in order to avoid the further additional repeated trials of the random
parameter k.

Strengthened message recovery signature over E/F,

The system parameters are: an elliptic curve E/F, with p-elements, a basepoint G € E(F,) whose
order is p, where such a basepoint already avoids the redundancy attack. The signer Alice has a
secret key xa and the corresponding public key Ya = xaG. To sign m € Z, she chooses a random
number k € Z,, and computes Ry = kG,

r, =mx(Ry)™* (mod p) (Theorem??).
Then she computes s from
rok = (14+1r,4+8)+sxa (mod p) (Theorem?? and ?7?).
The signature is given by (72, s). The message can be recovered by computing
m = x(H:—iJ’SG + 2Ya)r2  (mod p).

We see that the latter example using an elliptic curve can avoid all the six attacks only by
changing the signature equation without requiring any repeated trial of the random parameter k,

while maintaining the original signature size.

6 Conclusion

We have analyzed the reason why MR(p)-signatures are vulnerable to the five forgeries, the
recovery-equation attack g and ya, the signature-equation attack g and ya, and the homomorphism
attack. We have shown that these forgeries result from three weaknesses in MR(p)-signatures:

1. the signature equations (S1) ~ (S6),

2. two homomorphism-like properties in the message-mask equation (??),

Furthermore we have proved the general theorems to overcome such all weaknesses by reconstruct-
ing the signature scheme. We have also shown two strengthened message recovery signatures
against all the known six forgeries. Especially the example over an elliptic curve can be strong
against all the forgeries only by adding a negligible computation amount to the original scheme,
maintaining the original signature size. We have concluded that the DLP-based message recovery

signature can be strengthened directly against all the six forgeries.
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