
An RFID Authentication Protocol Suitable for Batch-mode

Authentication

Rahman Mohammad Shahriar† Masakazu Soshi‡ Kazumasa Omote†
Atsuko Miyaji†

†Japan Advanced Institute of Science and Technology (JAIST)
1-1, Asahidai, Nomi, Ishikawa 923-1292, Japan

{mohammad, omote, miyaji}@jaist.ac.jp
‡Hiroshima City University

3-4-1 Ozuka-Higashi, Asa-Minami-Ku, Hiroshima, 731-3194, Japan

soshi@hiroshima-cu.ac.jp

Abstract Passive Radio Frequency Identification (RFID) tags are nowadays used in stores and

industries. These RFID tags are heavily constrained in computational and storage capabilities,

Supply-chain, inventory management are the areas where batch-mode authentication of RFID

tags is required in a secure and cost effective manner. The reader needs to forward to server

a small number of messages corresponding a large number of tags to keep the communication

cost as low as possible. Gene Tsudik proposed a trivial RFID authentication protocol named

YA-TRAP* [1]. Our proposal improves the efficiency of the aforementioned technique in a cost

effective way specially for batch-mode. The tag to reader and reader to server communication

costs are reduced maintaining the same level of security. Moreover, a tag is helped by a reader

to get operative from a non-operative state.

1 Introduction

Radio-Frequency IDentification (RFID) is an

automatic identification method, relying on stor-

ing and remotely retrieving data using devices

called RFID tags or transponders. An RFID

tag is an object that can be applied to or in-

corporated into a product, animal, or person

for the purpose of identification using radio

waves. Some tags can be read from several

meters away and beyond the line of sight of

the reader. Today, RFID is used in enterprise

supply chain management to improve the effi-

ciency of inventory tracking and management.

In both the popular press and academic circles,

RFID has seen a swirl of attention in the past

few years. One important reason for this is

the effort of large organizations, such as Wal-

Mart, Procter and Gamble, and the U.S. De-

partment of Defense, to deploy RFID as a tool

for automated oversight of their supply chains

[2]. In such an environment, it is required to

read and authenticate a large number of tags

within a small period of time. A key to safe

and secure supply chain is the emphasis on

authenticating the objects as well as tracking

them efficiently [[3] chapter 12] where unau-

thorized tracking of RFID tags is viewed as

a major privacy threat. Moreover, the com-

putation complexity and communication com-

plexity are two prime factors related to energy

consumptions of an RFID system where the

tags are highly resource constrained.

Our Contribution: In this paper, we improve

the efficiency of a trivial RFID authentication

protocol named YA-TRAP* [1] in a cost ef-

fective way specially for batch-mode. The tag

to reader and reader to server communication

costs are reduced while maintaining the same

level of security. The aforementioned proto-

col has a limitation where a valid tag becomes

non-operative after the tag is read equal to

the pre-stored threshold timestamp value. We

propose a reader-tag bothway authentication

protocol which helps a tag recover from the

dead state. Moreover, we reduce a tag’s com-

putation requirement while communicating with

the reader.

The remainder of the paper is organized as fol-

lows: section 2 presents the description of the

operating environment, section 3 describes the

previous work. Next our scheme is proposed

achievements are discussd in section 4. Section

5 shows the comparison between the previous

work and our scheme. And finally the section

6 includes some concluding remarks.

2 Operating Environment

We assume that the adversary, can be ei-

ther passive or active. It can corrupt or at-

tempt to impersonate or incapacitate any en-

tity or track RFID tags. Namely, an adver-

sary succeeds to trace a tag if it has a non-

negligible probability to link multiple authen-

tication and/or state update sessions of the

same tag. Compromise of a set of tags should

not lead to the adversary’s ability to track

other tags. Furthermore, the possibility of

Denial of Service (DoS) attack, i.e., attacks

that aim to disable the tags should be in a

minimum level. The legitimate entities are:

tags, readers and servers. A reader is a device

querying tags for identification information. It

has also computational and storage capabili-

ties. A server is a trusted entity that knows

and maintains all information about tags, their

assigned keys and any other such information.

A server is assumed to be physically secure

and not subject to attacks. Multiple readers

might be assigned to a single server. A server

only engages in communication with its con-

stituent readers. All communication between

server and reader is assumed to be over private

and authentic channel. Moreover, servers and

readers maintain loosely synchronized clocks.

Both reader and server have ample storage and

computational capabilities. We assume that

an RFID tag has no clock and small amounts

of ROM to store a key and non-volatile RAM

to store temporary timestamp. With power

supplied by reader, a tag can perform a modest

amount of computation and change its perma-

nent state information stored in its memory.

The reader to tag messages are all in plaintext

that means the adversary has full access to the

messages.

In batch mode, a reader scans numerous tags,

collects replies and sometime later performs

their identification and authentication in bulk.

The batch mode is appropriate when circum-

stances prevent or inhibit contacting the back-

end server in real time. An inventory control

system, where readers are deployed in a remote

warehouse and have no means of contacting a

back-end server in real time is such an appli-

cation.

Each tag RFIDi is initialized with at least

the following values: ki, T0, Tmaxi ; ki is a tag-

specific value that serves two purposes: (1) tag

identifier, and (2) cryptographic key. Thus, its

size (in bits) is required to serve as sufficiently

strong cryptographic key for the purposes of

Message Authentication Code (MAC) compu-

tation. In practice, a 128-bit ki will most prob-

ably suffice. T0 is the initial timestamp as-

signed to the tag. This value does not have

to be a discrete counter, per se. For example,

T0 can be the time-stamp of manufacture. T0

need not be tag-unique; an entire batch of tags

can be initialized with the same value. The

bit-size of T0 depends on the desired granu-

larity of time and the number of times a tag

can be authenticated. Tmaxi can be viewed as

the highest possible time-stamp. Tmaxi is a

tag specific secret value. This threshold value

can be changed in case a tag becomes inac-

tive due to exceeding the value. Each tag

is further equipped with a sufficiently strong,

uniquely seeded pseudo-random number gen-

erator (PRNG). For a tag RFIDi, PRNG
j
i

denotes the j-th invocation of the (unique)

PRNG of tag i. No synchronization whatso-

ever is assumed as far as PRNG-s on the tags

and either readers or servers. In other words,

given a value PRNGji , no entity (including a

server) can recover ki or any other information

identifying RFIDi. Similarly, given two val-

ues PRNGji and PRNG
k
j , deciding whether

i = j must be computationally infeasible.

3 Previous Work

Before going to state the original YA-TRAP*

algorithm, we are describing the parameters

used here. We continue to use most of these

parameters in our scheme. Tri , Rri , ETri : times-

tamp, random challenge, epoch token sent by

the reader. ETri allows a tag to ascertain that

the reader-supplied Tri is not too far into the

future. This token changes over time, but its

frequency of change (epoch) is generally much

slower than the unit of Tri .For example, Tti
and Tri are measured in minutes, whereas, the

epoch token might change daily. At any given

time, a tag holds its last time-stamp Tti and

the its last epoch token ETti . When a reader

queries a tag (in step 1), it includes ETri , the

current epoch token. The tag calculates the-

offset of ETri as ν in step 2.2. Assuming a

genuine reader, this offset represents the num-

ber of epochs between the last time the tag

was successfully queried and ETri . If Tri is

deemed to be plausible in the first two OR

clauses of step 2.3, the tag computes ν succes-

sive iterations of the hash function H() over

its prior epoch token ETti and checks if the

result matches ETri . In case of a match, the

tag concludes that Tti is not only plausible but

is at mostINT time units (e.g., one day) into

the future.

Algorithm 1 (YA-TRAP*) [1]Tag← Reader:

T jri , Rri , ETri
[2] Tagi:

[2.1] δ = T jri − T jti
[2.2] ν = bT jri/INT c− bT jri/INT c
[2.3] If (δ ≤ 0) or T jri > Tmaxi or Hν(ETti) 6=
ETri
[2.3.1] Hidi = PRNGi

j

[2.3.2] Hauthi = PRNGi
j+1

[2.3.2] Hauthi = PRNGi
j+2

[2.4] else T jti = T
j
ri, ETti = ETri

[2.4.1] Hidi = HMACki(Tt)

[2.4.2] Rti = PRNG
j+1
i

[2.4.3] Hauthi = HMACki(Rti , Rri)

[3] Tag → Reader: Hidi , Rti ,Hauthi
[4] Reader → Server: Hidi , Rri , Rti , T

j
ri , Hauthi

[5] Server:

[5.1] s = LOOKUP (HASHTABLETri
, Hidi)

[5.2] if(s == −1)
[5.2.1] MSG = TAG-ID-ERROR

[5.3] else if (HMACKs(Rti , Rri) 6= Hauth)
[5.3.1] MSG=TAG-AUTH-ERROR

[5.4] else MSG=TAG-VALID

[6] Server → Reader: MSG

A tag needs to compute 3 keyed hash op-

erations including a PRNG and in addition,

needs to compute ν hashes over ETt. The

communication cost of Tag to Reader is 3 mes-

sages per Tag. The communication cost of

Reader to Server is 5 messages per Tag. That

means, for n number of tags, the total message

is 5n. This needs a huge amount of resource

for communication in case of batch-mode au-

thentication. Eventhough a tag is valid, it be-

comes non-operative when Tri exceeds Tmaxi .

That means, after being read for several times,

when the valid timestamp value Tri sent by the

reader becomes higher than the Tmaxi stored

in a valid tag, this valid tag no longer responds

correctly to the reader.

The protocol is vulnerable to DoS attacks. DoS

resistance in YA-TRAP* is limited by the mag-

nitude of the system-wide INT parameter. Once

revealed by the server and distributed to the

genuine readers, the current epoch token ETr

is not secret; it can be easily snooped by the

adversary. Therefore, the adversary can still

incapacitate tags for at most the duration of

INT if it queries each victim tag with the

current epoch token and the maximum pos-

sible Tri value withinthe current epoch. More-

over, an adversary can permanently incapac-

itate a tag by feeding arbitrary future times-

tamps and making it exceed the stored thresh-

old value Tmaxi .

The scheme can be made forward secure by

adding an extra step in tag’s operation as shown

by the author: [2.4.6] Kν
i = Hν(Ki) As a

result of this modification, the computation

of ephemeral tables by the server has to be

changed.

4 Our Scheme

We will describe our scheme here.

1.Instead of HMAC, SQUASH, proposed by

Shamir [4] is used. This executes in fewest

gates and operates in a single block.

2. A tag computes hash of its last updated T jti ,

hash of Rri and Rti and makesHauthi by XOR-

ing them. The tag then sends this Hauthi and

Rti to the reader. After receiving responses

from the tags, the reader aggregates all the

Hauthi by XOR-ing them. The security of ag-

gregate hash functions has been shown in [5].

The reader groups the values it recieved from

each tag. After that, it concatenates all the

Rti into one message Rt. The reader forwards

H and Rt to server. Upon receiving them,

the serverlooksup its pre-computed hash val-

ues and matches their XOR-ed value with the

received H. It sends MSG = TAG−V ALID
back to reader to end the whole process.

Algorithm 2 (Proposed Algorithm) [1] Tag

← Reader: T jri , Rri , ETri
[2] Tagi:

[2.1] δ = T jri − T jti
[2.2] ν = bT jri/INT c− bT jti/INT c
[2.3] If (δ ≤ 0) or T jri > Tmaxi or Hν(ETti) 6=
ETri, then

Hidi = PRNGi
j, Hid0i = PRNGi

j+1, Hid0i =

PRNGi
j+2

[2.4] else T jti = T
j
ri, ETti = ETri

Hidi = HASH(T
j
ti
), Rti = PRNG

j+1
i , Hidi0 =

HASH(Rti , Rri)

[2.5] HASHauthi := Hidi ⊕Hidi0
[3] Tag → Reader: HASHauthi , Rti
[4] Reader:

[4.1] H =
Ln

i=1HASHauthi
[4.2] Rt = Rt1 k Rt2 k Rt3 k k Rtn
[5] Reader → Server: H,Rt

[6] Server:

[6.1] if
Ln

i=1(HASH(Tti)⊕HASH(Rri , Rti)) 6=
H

[6.1.1] MSG=TAG-AUTH-ERROR

[6.2] else MSG=TAG-VALID

[7] Server → Reader: MSG

4.1 Achievement of Our scheme

The server keeps the list of T jri , correspond-

ing to tag’s secret ki. So, it becomes possible

for the server to identify if there is any partic-

ular rogue tag. SQUASH reduces the number

of gates in the Tags.

The cost of Tag to Reader communication in-

cludes 2 messages instead of 3 of the original

scheme.

The cost of Reader to Server communication is

drastically reduced to constant number of mes-

sages by introducing aggregate function. For

Figure 1: Our Scheme

n number of tags, the communications needs

only 2 messages instead of 5n messages com-

pared to the original scheme.

4.2 Making a valid non-operative tag

into an operative one

As discussed earlier in section 3, a valid tag

can become non-operative after reaching the

threshold Tmaxi after being read by a valid

reader. Moreover, an adversary can perma-

nently incapacitate a tag by feeding arbitrary

future timestamps and making the tag exceed

the stored threshold value Tmaxi .

We propose a bothway challange-response method

where both the tag and reader authenticate

each other and then the reader replaces Tmaxi
sending the new value Tmaxinew to the tag.

The server keeps the table of valid tags and

the last issued timestamp Tri for each of the

tags. So, it can easily findout a valid tag when

it becomes non-operative. The reader sends a

’1’ and a hash of the last valid timestamp Tti
saved by the tag and Tmaxi . Sending the value

’1’ indicates the reader’s intention to change

the Tmaxi . Each tag has its own Tmaxi stored

which is its secret value. An adversary needs

to try 2n combinations to find the exact value

of Tmaxi where n is the number of bits in Tmaxi .

If the received hash value matches with the

computed hash value, the tag sends the re-

sponse asH(ki, Tmaxi). Otherwise it generates

a pseudo-random number PRNG. The random

number generated must be indistinguishable

from H(ki, Tmaxi). That means, the adver-

sary has to face the decision problem of distin-

guising the H(ki, Tmaxi) from a random value.

This indistinguishability featute is required to

protect against narrowing attack [1] which leads

into tracing the tag by an adversary. The use

of PRNGs to obfuscate the tag identity was

first introduced in [6]. The new timestamp

threshold value Tmaxinew is stored in memory

erasing the existing Tmaxi only after the reader

authenticates itself to the tag. However, the

reader generates Tmaxinew only when the tag

makes sure that itself is a dead tag. The reader

sends the value T by XOR-ing the Tmaxi and

Tmaxinew . This bothway authentication is done

by using hash functions. And its security is de-

pendent on the onewayness of the hash func-

tion. Note that, the tag does not need any ex-

tra circuitry for this hash computation. The

proposed method is as follows:

Algorithm 3 (Activating a non-operative tag)

[1] Tag ← Reader: 1, H(Tt, Tmaxi)

[2] Tag:

[2.1] if H(Tt, Tmaxi) is valid

[2.2] compute MSG=H(ki, Tmaxi)

[2.3] else MSG= PRNGi

[3] Tag → Reader: MSG

[4] Reader:

[4.1] Generate Tmaxinew > Tmaxi
[4.2] T = Tmaxi ⊕ Tmaxinew
[4.3] Set Tmaxi = Tmaxinew
[5] Tag ← Reader: T

[6] Tag:

[6.1] Extract Tmaxinew from T

[6.2] Set Tmaxi = Tmaxinew

5 Comparison of performance

We compare our work with the YA-TRAP*

here. Table 1 shows the comparison of secu-

rity features like Forward Security(For. Sec.),

DoS resistance (DoS rest.), Tag Tracing (Tag

Trc.)and whether tag bocomes non-operative

(Tag NOp). Our proposed scheme enhances

DoS resistance capability compared to YA-TRAP*

by helping a tag to get operative from non-

operative state. Table 2 is the comparison of

cost. It includes tag’s computaion(Tag comp),

Tag to Reader communication (TtoR comm.)

and Reader to Server communication (RtoS

comm.) costs.

Table 1: Performance Comparison (Security)

For. DoS Tag Tag

Sec. rest. Trc. NOp

YA-TRAP* yes limited no yes

Our Scheme yes enhanced no no

Table 2: Performance Comparison (Cost)

Tag TtoR RtoS

comp comm comm

YA-TRAP* 2 HASH 3 msg 5n msg

1 PRNG

Our Scheme 2 HASH 2 msg 2 msg

1 PRNG

6 Conclusion

In this paper, we improve the efficiency of

an RFID authentication procotol YA-TRAP*

from the view point of computational and com-

munication cost. Both the tag to reader and

reader to server communication costs are re-

duced to a constant number of messages which

is very useful for batch-mode authentication

environment. Moreover, we propose a scheme

which provides two fold advantages: it enhances

DoS resistance capability and it doesn’t allow

a tag to be non-operative.

References

[1] Gene Tsudik. A Family of Dunces: Triv-

ial RFID Identification and Authentication

Protocols: Privacy Enhancing Technolo-

gies 2007, 45-61

[2] A. Juels. RFID security and privacy:

A Research Survey. IEEE Journal on

SelectedAreas in Communication, 24(2),

February 2006.

[3] Peter H. Cole, Damith C. Ranasinghe.

Networked RFID Systems and Lightweight

Cryptography Raising Barriers to Prod-

uct Counterfeiting. Springer, e-ISBN

9783540716419

[4] Adi Shamir. SQUASH - A New MAC with

Provable Security Properties for Highly

Constrained Devices Such as RFID Tags.

Fast Software Encryption 2008, 144-157

[5] J. Katz, A.Y. Lindell. Aggregate Message

Authentication Codes. CT-RSA 2008,155-

169

[6] S. Weis, S. Sarma, R. Rivest, D. Engels.

Security and Privacy Aspects of Low- Cost

Radio Frequency Identification Systems.

Security in Pervasive Computing Confer-

ence (SPC ’03), 201-212

