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Abstract. In this paper, we investigate a new concept, called share
selectable secret sharing, where no unauthorized set can obtain informa-
tion of the secret (in the information-theoretic sense) even if shares are
selectable as arbitrary values which are independent of the secret. We
propose two totally selectable (i.e., all users’ shares are selectable) secret
sharing schemes with unanimous structure. We also propose a quasi-
selectable (i.e., a part of each user’s share is selectable) secret sharing
scheme with certain hierarchical structures which contains special cases
of the hierarchical threshold structures introduced by Tamir Tassa in
TCC2004 (or its full version (J. Cryptology2007)). If all selectable shares
are randomly chosen, then our schemes are perfect. Finally, we discuss
the effect of the leakage information of the secret if a weak secret is
indicated as a selectable share.

1 Introduction

1.1 Cryptography with Information-Theoretic Security

In cryptography, security models are classified roughly according to computa-
tional security and unconditional security (or information-theoretic security).
An adversary is modeled as a probabilistic polynomial time algorithm in com-
putational security, whereas it is defined as an infinitely powerful adversary in
unconditional security. Nowadays, unconditional secure protocols have become
more noticeable as one of the post-quantum cryptographic schemes. Many un-
conditional secure protocols have been proposed so far. Secret sharing is one
of the most popular schemes among such primitives. Briefly, the flow of secret
sharing is described as follows. Each user is given a piece of the secret called
share, and an authorized set of users can recover the secret value by using their
shares. On the contrary, unauthorized set can obtain information of the secret.
Until now, several kind of research issues of secret sharing have been proposed,
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e.g., realizing flexible access structures [9241254TJ4244], multi secret sharing [6],
dynamic secret sharing [5], information rate (which indicates the lower bound of
the share size in the case of corresponding access structur) [TO/T2J3T], rational
secret sharing [I8120023127132] (i.e., with game-theoretic analyses), and so on. In
addition, for the purpose of establishing secret sharing with shorter share size,
computational secure secret sharing also have been proposed [328]. As one of
such schemes, computational secure on-line secret sharing schemes have been
proposed [11I22135J40], where an auxiliary public value is opened to abridge the
secret and the shares. Secret sharing is used in other cryptographic primitive
as a building tool, e.g., attribute-based encryption [2/34/45], threshold encryp-
tion [7II436], and so on. In this paper, we attempt to revisit secret sharing from
a perspective different from previous works above.

1.2 Research Background

Recently, construction of cryptographic protocols from weak secrets (e.g., a
short human selected password with low Shannon’s entropy) has been consid-
ered. Some examples are, password-based authenticated key exchange (where
cryptographically strong key can be exchanged even user has a very weak se-
cret) [TO/T7I26/30038/46], distributed public-key cryptography (where even if each
group member holds a small secret password only, they can associate to a public-
key cryptosystem) [IIg], and symmetric-key cryptography from weak secrets
(where two users share a secret key which might not be uniformly random) [I5],
and so on. However, to the best of our knowledge, there is no proposal of uncon-
ditional secret sharing with such attempt so far (here, we exclude computational
secure secret sharing which can treat such weak secrets under the computational
security). Moreover, no consideration has been made about the cases where a
dealer can “select” shares independently with the secret. As a simple example, in
the Shamir’s secret sharing scheme [37], a share is a random value on a randomly-
chosen polynomial (with the condition that the constant value equals the secret
value). That is, it is impossible to select the values of shares as particular values
(for certain purposes) in the Shamir’s secret sharing scheme.

1.3 Owur Contribution

In this paper, we innovate a new concept, called share selectable secret sharing,
where

— Shares are selectable as arbitrary values.

)

e The word “arbitrary” means that shares are independent of the secret.

— No unauthorized set can obtain information of the secret even if shares are
selectable.

! Note that unconditionally secure secret sharing requires that every qualified user
should have a share at least as large as the secret itself. Secret sharing is said to
be ideal if and only if the size of share is the same as that of the secret (i.e., the
corresponding information rate is 1).
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Of course, it is impossible to reconstruct the secret only from shares which are
independently selected of the secret. Therefore, we introduce an auxiliary public
value which works as a bridge between the secret and the shares. That is, it is
required that even if unauthorized set of users obtain the auxiliary public value,
it is not possible to obtain any information on the secret.

Briefly, we investigate ps-quasi selectable secret sharing, where pg is the se-
lectability ratio estimating the number of users’ shares that are selectable (i.e.,
ps=(|Share selectable users|/|All users|), and selectable secret sharing is said
to be totally selectable if and only if p;, = 1. In this paper, we propose two
(n,n)-threshold totally selectable secret sharing schemes, where n is the to-
tal number of users. We also propose a (1 — %)—quasi selectable secret sharing
scheme with certain hierarchical structures, where £ (0 < £ < n — 2,{ # 1)
is the number of users who have un-selectable shares. Briefly speaking, these
hierarchical structures contain special cases of the hierarchical threshold struc-
tures of Tassa [41] (or its full version [42]). Note that Tassa [41lJ42] (and [43] also)
applies polynomial derivatives and Birkhoff interpolation for achieving hierarchi-
cal structures, whereas we apply the classical Lagrange interpolation technique
only. That is, our quasi scheme implements hierarchical threshold structures by
different methodology from that of Tassa’s constructions.

Remark1: Trivial Non-ideal Share Selectable Secret Sharing with Flex-
ible Access Structures: Ito, Saito, and Nishizeki [24] proposed a secret sharing
scheme with general access structure from any (n,n) secret sharing scheme. Since
a (n,n)-threshold totally selectable secret sharing scheme can be constructed
easily (e.g., protocol 1 in Section 2), we also realize a totally selectable secret
sharing scheme with general access structure. However, this totally selectable
scheme is not ideal (i.e., the size of share is larger than that of the secret). We
make it clear that the main objective of this paper is to construct “ideal” secret
sharing schemes (i.e., the size of share is the same as that of the secret) with
share selectability, and we stick resolutely to such ideal schemes in this paper.

Remark2: The Csirmaz-Tardos On-line Secret Sharing: To the best of our
knowledge, the case that shares are independently selected with the secret to be
distributed has not been considered except in the following scheme proposed by
Csirmaz and Tardos. Very recently, Csirmaz and Tardos proposed on-line secret
sharing [I3] for graph based access structures (which is totally different from the
computational on-line ones [ITJ22/3540]). In the Csirmaz-Tardos on-line secret
sharing scheme, the dealer assigns shares in the order the participants show up
knowing only those qualified subsets whose all members she have seen. Users
form a queue in the on-line share distribution, and they receive their shares in
the order they appear. The users receive their shares one by one and the assigned
share cannot be changed later on. Csirmaz and Tardos insist that their on-line
scheme is useful when the set of users is not fixed in advance. Since their purpose
and construction method are totally different from ours, we do not discuss their
on-line secret sharing anymore although there might be somewhat relationships
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between share selectable secret sharing and the Csirmaz-Tardos on-line secret
sharing. There is space for argument on this point.

1.4 Requirement of Shannon’s Entropy of Selected Shares

Here, we clarify the requirement of selectable shares, especially, the difference
between selectable shares and weak secrets with low entropy. For achieving “per-
fect” secret sharing (i.e., no information can revealed from any unauthorized set
of users), we cannot assume that a low entropy value (e.g., a human selected
password) is indicated as a share. That is, we can say that:

— If selectable shares are randomly chosen, then our schemes are perfect.

e Le., we assume that the guessing probability of each share is smaller
than that of the secret itself, namely H(S) < H(W;) holds, where H (")
is the Shannon’s entropy, S and W; are the random variables induced by
the secret s and a share w;. We explain other notations in Section 2.

— If a weak secret is indicated as a selectable share, then users gain some
information by guessing the share of uncorrupted users.

e This setting is essentially the same as that of ramp secret sharing [4]29].

From the above considerations, first, we propose selectable secret sharing schemes.
We also prove that these schemes are perfect if selectable shares are randomly
chosen (Appendix). Finally, we discuss the effect of the leakage information of
the secret if a weak secret is indicated as a selectable share (Section 4).

1.5 Another Significance of the Share Selectability

Although our research starts with mainly mathematical interests, cryptographic
applications of share selectable secret sharing are also expected. For example, in
cryptographic schemes, where secret sharing approach is used, secret keys are
computed by using shares of the master key. That is, if a decryptor has legitimate
secret keys, then she can decrypt the corresponding ciphertext by combining the
secret keys in the secret sharing manner (e.g., applying Lagrange interpolations).
In this case, each share is also changed if access structures are changed. Hence
the secret keys of users need to be updated as well. For example, in access trees
(e.g., [19]), first a secret value of the root node is chosen, and next a polynomial
is defined with the condition that the constant value is equal to the root secret,
and a secret value of a child node is set as a value on the polynomial. So, a secret
value of the leaf node is computed at the end. Therefore, if the structure of the
access tree is changed, these procedures must be executed again. On the contrary,
each share can be independently selected under the share selectability. So, it is
expected that access structures can be updated by applying share selectable
secret sharing without changing secret keys of users. In an opposite manner,
secret keys might be updated without changing access structures and the master
key (which is the same motivation of proactive secret sharing [21I3339]). Since
we mainly focus on the share selectability, we do not argue on updating the
access structures or shares anymore.
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2 Preliminaries

Throughout this paper, we use the following notations. Let n € N be the number
of participants, p be a prime number of p > n (and ID mod p # 0 for all public
identity), H(X) be Shannon’s entropy of a random variable X, H(X|Y) be
conditional Shannon’s entropy of random variables X and Y, |X| be the number
of elements of a finite set X', and 2% be the family of all subsets of X'. Operations
are done over the field F,.

2.1 Share Selectable Secret Sharing

Here, we define share selectable secret sharing (notations are referred by [29]).
Let P = {P1, Ps,...,P,} be a set of participants, and D ¢ P be a dealer who
selects a secret s € S, computes the corresponding auxiliary public value v € U,
and gives a share w; € W; to P; € P for i € [1,n], where S denotes the set of
secrets, U denotes the set of auxiliary public values, and W, denotes the set of
possible shares that P; might receive. The access structure I" C 2% is a family
of subsets of P.

Definition 1 (Share selectable secret sharing). Let S, U, and W; be the
random variables induced by s, u, and w;, respectively, and V4 = {W;|P; € A}
be the set of random variable of shares given to every participant P; € A C P.
Let SSGen be a selectable-share generation algorithm, which takes as an input
the description of the underlying group G (in our schemes, G = Z,), and returns
a share w € G. A share selectable secret sharing scheme is said to be perfect if
the following holds.

0 (Ael)
H(S|V4,U) =
(V200 ={ sy (A 19
Our major argument is the secret s is not included in the input of the SSGen
algorithm. That is, a share w « SSGen(G) is totally independent with the secret
s, and is called selectable. Therefore, for a selectable share w,

H(S|V) = H(S)

holds, where V C W := U?:l W; be a random variable of shares induced by w.

As a remark, we definitely distinguish the equation H(S|V) = H(S) above
and the case that H(S|V4) = H(S) for A ¢ I' in conventional perfect secret
sharing manner. That is, in share selectable secret sharing, even if all selectable
shares are collected (i.e., A might be in I"), there is no way to recover the secret.
Therefore, if all shares are selectable, then some auxiliary public value u € U is
indispensable for reconstructing the secret s. Note that if a part of shares are
non-selectable, then there is room for reconstructing the secret s without using
any auxiliary public value u € U.

Next, we define the selectability ratio which estimates the number of users’
shares that are selectable.
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Definition 2 (The Selectability Ratio). Let 0 < ny, < n be the number of
users who have a selectable share. The selectabilty ratio ps is defined as ps =
ns/n.

Definition 3 (Quasi Selectability and Total Selectability). A secret shar-
ing is said to be ps-quasi selectable secret sharing if its selectability ratio ps is
0 < ps < 1. A secret sharing is said to be totally selectable if its selectability
ratio ps s 1.

The case ps = 0 represents the conventional secret sharing schemes. Note that
there have been secret sharing schemes having ps; > 0. For example, for a secret
s € Zp, the dealer D selects w; € Z, for all i € [1,n — 1] (so, these shares
are selectable, since these can be selected independently with s), sets w, :=
5 — 3" wi (50, wy is unselectable), and gives w; to P; for all i € [1,n]. s can
be reconstructed by Y., w;. Then, obviously this scheme is a (1 — %)—quasi
selectable (n, n)-threshold secret sharing scheme, and is perfect.

3 Proposed Schemes

In this section, we propose two totally selectable (n,n)-threshold secret sharing
schemes, and a (1 — %)—quasi selectable secret sharing scheme with certain hi-
erarchical structures (¢ (0 < £ < n —2,¢ # 1) is defined in the third scheme).
The first construction (protocol 1) is somewhat trivial since it is a simple mod-
ification of the (1 — 1)-quasi selectable (n,n)-threshold secret sharing scheme
introduced in the previous section. However, this scheme is easy-to-understand
due to its simple structure. In our all schemes, the SSGen(Z,) algorithm simply
returns w € Zy.

Protocol 1 (The first scheme: A totally selectable (n,n)-threshold
secret sharing scheme).

Distribution Phase:

1. The dealer D selects the secret s € Zy,

2. D selects a share w; € Z,, for all i € [1,n] such that w; < SSGen(Z,).

3. D setsu:=s— Yy i w.

4. D gives w; to P; for all i € [1,n], and opens u as the auziliary public
value.

Reconstruction Phase: Compute s =u+ Y ., w;.

Next, we propose a polynomial-based totally selectable (n,n)-threshold secret
sharing scheme. This second scheme can be seen as a special case of our quasi one
(protocol 3). Let I D; be the (public) identity of P, € Pand I' = { Py, P, ..., P},
namely, I" is a (n, n)-threshold structure. We require ID; # ID; (i # j).
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Protocol 2 (The second scheme: A polynomial-based totally selectable
(n,n)-threshold secret sharing scheme).

Distribution Phase:

1. The dealer D selects the secret s € Zy.

2. D selects a share w; € Z,, for all i € [1,n] such that w; «— SSGen(Z,).

3. Let f(x) be a polynomial of degree at most n such that f(ID;) = w; (P; €
I') and f;(0) = s. D chooses IDp € Z;, such that IDp ¢ {ID;}}_,, and
computes u = f(IDp).

4. D gives w; to P; for all i € [1,n], and opens u as the auziliary public
value.

Reconstruction Phase: By using Lagrange interpolation, f(x) can be recon-
structed from (IDp,u) and all {(ID;,w;)}_;, and s = f(0) can be computed.

Next, we propose a (1 — %)—quasi selectable secret sharing scheme, which is the
most interesting construction in this paper. First, we define the access structures
of this quasi scheme.

Definition 4 (Hierarchical access structures realized in our quasi
scheme). Let £ (0 < £ < n — 2,0 # 1) be the number of users who have an
unselectable share, and set Pt := {Uy,Uj,, ..., Uj, } as the set of such £ users.
Let n' := n — £ be the number of user who have a selectable share, and set
P’ = {Ui,,Ui,,..., Ui, } as the set of such n' users. We require P = P*U P’
and PENP = 0. Let I C 27" is a family of subsets of P', and m = |I'"'|. For
Aj eI’ (je[l,m]), set |Aj| =n;. Let I'* .= {A € 27" |A| > k}, where k € N
be the threshold value and 2 < k < {. The actual access structure I' is defined as
follows.

I:={A:A=A"UA suchthat A*c T"*NA" €I}

As one exception, if £ =0, then I’ is restricted as the (n,n)-threshold structure
only.

Note that the restriction case (¢ = 0) is exactly the second construction, and
therefore the second scheme is a special case of the third scheme. In addition,
I' contains special cases of the hierarchical threshold structures [41,42}. For
example, let I be (n’,n')-threshold structure, then I' = {A C P : |[ANP/| =
n' AJAN|P U P > n' + k} holds. This is a special case of the hierarchical
threshold structures with kg = n’, k1 = n/+k, Py = P, and P; = P*. In addition
to this hierarchical threshold structure, the above I' can represent any kind of
access structure for P’ (not P). More precisely, we can achieve general access
structures [24I2544] for P’ although our scheme is ideal. Note that our result

2 In the hierarchical threshold structures, a set of users P is divided as N hierarchy
P :=UN,P; such that P, " P; =0 for 0 <i < j < N. Let k = (ko, k1,...,kn) be
monotonically increasing sequence of integers 0 < ko < - -- < kn. (k,n) hierarchical
threshold structure is defined as I' = {A C P : |[AN (U, Pi)| > ki Vi € [0, N]}.
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does not contradict with certain impossible results (e.g., there exist families
of special access structures with n participants where the size of some shares
increases unboundedly as n — oo, i.e., at least about n/logn times the secret
size [12]), since access structures are restricted as threshold ones for P* (that is,
for P = P*UP’, our access structure is not general).

Here, we give our quasi scheme. We omit the case { = 0 in the following
scheme, since it has already been shown as the second scheme.

Protocol 3 (The third scheme : A (1-%)-quasi selectable secret sharing
scheme).

Distribution Phase:

1. The dealer D selects the secret s € Zy.

2. D selects a share w; € Zy for all P; € P such that w; < SSGen(Zy).

3. D chooses 1D 4; € Zy for all j € [1,m] such that ID 4, & {ID;}}_, and
D4, #1D4, (i # j).

4. For each A; € I'" (j € [1,m)]), let f;(x) be a polynomial of degree at
most n; such that f;(ID;) = w; (U; € Aj) and f;(0) = s. Set D; =
(ID,, f;(ID4,).

5. Let g(x) be a polynomial of degree at most m — 1 such that g(ID4;) =
fi(ID4;) for all j € [1,m)].

6. For all P; € P, D computes w; := g(ID;) (we make it clear that this step
is NOT for users P; € P’, their shares {w;}p,ep: have been “selected”
in Step 2).

7. D randomly chooses (m —k) coordinates on the polynomial g(x), exclud-
ing all Dj and (ID;,g(ID;)) for all P; € P*, and sets these (m — k)
coordinates as w. If k > m, then u = (.

8. D gives w; to P; for all i € [1,n], and opens u as the auziliary public
value.

Reconstruction Phase:

1. As in the Shamir (k,£)-threshold secret sharing, by using Lagrange inter-
polation, g(x) is reconstructed from all w; of P; € P* (and u if k < m).
2. By using Lagrange interpolation, f;(x) can be reconstructed from (1D 4;,
g(IDy,)) and (ID;,w;) for all P; € Aj € I, and s = [f;(0) can be

computed.

The first and second schemes are totally selectable (n, n)-threshold secret sharing
schemes, and the third scheme is a (1 — %)—quasi selectable secret sharing scheme
realizing I" defined in Definition 4. Security proofs are given in the Appendix.

4 Share Selectable Secret Sharing with Weak Shares

In this Section, we discuss the effect of the leakage information of the secret
when a weak secret (e.g., a short human selected password with low Shannon’s
entropy) is indicated as a selectable share. To give the maximum information to
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an unauthorized set of users A, we consider the situation where (1) A will be an
authorized set if only one more user (who has a share w) is added to 4, (2) wisa
selectable share, and (3) w is the weakest share in the underlying system (i.e., for
the random variables W induced by w, H(W) = min{H(W;) : H(W;) < H(S)}
holds). Note that w is a independent value of the secret s. Therefore, the mutual
information between s and w is 0 since I(S; W) := H(S)+ HW) - H(S,W) =
H(S)+H(W)—H(S)—H(W) = 0. It is thus easy to conclude that H(S|V4,U) =
H(W) < H(S) holds.

5 Conclusion and Future Work

In this paper, we investigate the new concept share selectable secret sharing,
where a dealer D can select shares independent of the secret. We propose two
totally selectable (i.e., all users’ share are selectable) secret sharing schemes
with unanimous structure, and a quasi-selectable (i.e., a part of users’ share
are selectable) secret sharing scheme with certain hierarchical structures which
contains special cases of the hierarchical threshold structures [41J42]. Our quasi
scheme can be seen as an ideal secret sharing with flexible hierarchical struc-
tures which has not been done before to the best of our knowledge, and is of
independent interest.

Although our research resorts mainly on the mathematical interest, applica-
tions of share selectable secret sharing are also realizable (as discussed in Section
1.5). As future work, it might be interesting to update access structures (resp.
shares) without changing shares (resp. access structures).
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Appendix: Security Proofs

Here, we give security proofs of our schemes. As a reminder, we do not assume
that a weak share is indicated as a selectable share (such weak cases has been
considered in Section 4).

Theorem 1. The first scheme is a totally selectable (n,n)-threshold secret shar-
ing scheme.

Proof. The condition H(S|V4,U) = 0 is clear when A = P, since s can be re-
constructed by computing s = u+Y ., w;. In addition, the condition H(S|V) =
H(S) holds since each w; is independently chosen with the secret s. W.l.o.g., we
set V4 := (P1,..., P,—1) as the unqualified set of users. Then, since the secret s
is independent from (u,ws,...,wp—1), H(S|Va,U) = H(S) holds. 0
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Theorem 2. The second scheme is a totally selectable (n,n)-threshold secret
sharing scheme.

Since the second scheme is a special case of the third scheme, we give the security
proof of Theorem 2 with the proof of Theorem 3.

Theorem 3. The third scheme is a (1—%)-qua3i selectable secret sharing scheme
realizing I defined in Definition 4.

As in Theorem 1, the condition H(S|V4,U) =0 (A € I') and H(S|V) = H(S)
hold, where ¥V C W := Ule W; be a random variable of shares of users in P’.
So, the remaining part is H(S|V4,U) = H(S) if A & I'. Before giving the proof,
we prove the following Proposition and Lemmas. Below in this proposition, the
notation (M, N) represents the numbers of rows and columns, respectively.

Proposition 1. Let A be an M x N matriz over a field, and the first column
of Ais C = [c1,c,...,cm|", where A =] C | B]. Then the first component
of the solution for simultaneous equation Ax = s is not unique if and only if

rank(A) = rank(B).

Proof. Let W4 = {x|Ax = 0}. Then dim W4 = N — rank(A). We assume that
u is a solution for Ax = s. Then we can express the general solution for Ax = s
as € = u + «’, where x’ satisfies Az’ = 0. We further assume that =’ satisfies
Bx"” = 0. Then,

The first component of x, which is the solution for Az = s , is unique.
= z'=[0,2"]".

<— dimW4 =dim Wp

<= N —rank(A) =N —1—rank(B)

< rank(A) = rank(B)+1

Since rank(A) is equal to rank(B) or rank(B) + 1, then the first component
of the solution for simultaneous equation Ax = s is not unique if and only if
rank(A) = rank(B). O

Next, we prove the following Lemma. For simplicity, we assume that g(z) is
a polynomial of degree at most m — 1 which passes through m coordinates
(ID4,, fi(ID4;)). Let Ps be an “imaginary” participant who has g(z) as Ps’s
share, and P’ be the set of users. Note that, here P¢ is not considered, since
P, can be seen as P’ by using the Shamir (k, £)-threshold scheme for the secret
g(z). Let C be the set of malicious participants such that they know the shares
of one another.

Lemma 1. We assume that the number of malicious participants bet (n'+1 > t)
in n' participants and one imaginary participant Ps. We calculate simultaneous
equations for coefficient polynomial f; (j =1,2,...,m) and shares of n' +1—1t
honest participants. Let V(n' 4+1,m,t) be the number of unknown quantities and
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R(n'4+1, m,t) be the number of simultaneous equations for malicious participants.
Then V(n' +1,m,t) and R(n' + 1,m,t) satisfy the following:

, C(RW A Lm )4 —t+1) (P g0)
V(n+1’m’t){R(n’+1,m,t)+(n’—t—m+2)(PSEC)

Proof.

The case of P, & C: W.lo.g., we assume that P; (i = 1,2,...,t) are mali-
cious participants. Let C = {Py, Ps,...,P;} € I' be the set of malicious
participants. A polynomial of degree at most n; is made for each qualified
set A;. So, the number of coefficients of the polynomial (except the secret
value s) is n;. We add the share of n’ — ¢ honest participants, the share
of a special participant Ps (i.e., a polynomial g(z)) and the secret value s
to this, Vi(n' +1,m,t) = 1+ n' —t +m+ 377" n;. Now we assume that
Pe Ay, (j = 1,2,...,7;), ie, r; is the number of qualified sets P; be-
longs to. Then we can obtain r; simultaneous equations. More specifically,
wi = fe,(ID;) = fx,(ID;) = -+ = f, (ID;). Moreover, we add a condition
such that each polynomial f; passes through coordinate (ID4;, f;(ID.a;)),
R(n' +1,m,t) = m + " r; holds. Then 37 r; = Y7 | n; holds, and
therefore Z:il ri = ny =V +1L,mit)—(m+n —t+1)=R(n +
1,m,t) —m holds.

The case of P, € C: W.lo.g., we assume that P; (i =1,2,...,¢t — 1) are ma-
licious participants. Let C = {Ps, Py, Pa,..., P,_1} € I represents the set of
malicious participants. Similar to the case of Ps ¢ C, the number of coeffi-
cients of the polynomial (except the secret value s) is n;. We add the share of
n/ — (t—1) honest participants and the secret value s to this, V(n'+1,m,t) =
14n'—(t—1)+>7", n; holds. Moreover, R(n'+1,m,t) = m+2?;1 r; holds.
So Z?;l ri=y g ng =V +1,mt)— (0 —t+2)= R0 +1,m,t)—m
holds. O

Lemma 2. We assume that Ps & C. In this situation, the secret value s cannot
be determined with R(n' 4+ 1,m,n’) simultaneous equations.

Proof. Let I'" = {A' = AU{Us}: A€ I'}. For any B; € I'", let f;(z) = s +
ajr+aj, i+ ~+aj, " be the polynomial associated with B; = {Ps, Pj,, Pj,,

P }. Note that f;(ID4,) = g(ID4,). So, simultaneous equations for s, a;,,
Ajgs - - '7ajnvg(ID.Aj) are (1)

10 ID; ID;? .- ID;" ; wj,
10 ID;, ID,? .- ID,™ g(IfAf) Wi,

.o . . . . J1 :
Nj=1:: : - : : and N; aj, = : (1)
1 0 IDj, IDj, *--- IDj, ™ : Wi,

1-1 wg; @aj® -+ @45 aj,,. 0
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1+m+z;n:1 n;

—
Moreover, we define that C = [ 1,1,...,1 |7,
i 0---00 0]
My : . o
0 IDj ID;? --- ID;"™ 0---00---0
0 IDj, ID;? --- ID;,"™ 0---0 0---0
Mj=|: : C : and M'= | : .1 .. ...
0 IDj, IDj, *---ID;, ™ 0---0 0---0
—1IDa, IDg,* -+ IDy,"™ 0---00---0
Do My,
0 00---0 i
Then, all simultaneous equations are as follows:
S
g(ID.A1)
all
alnl
9(ID4,)
c My =
9(IDa,)| L™
G,
L Om,,,

Here, we prove that matrices My, Ms, ..., M, are regular. Let ap, (h =1,2,...,
n;+1) be column vectors and ¢;, € I, be scalars on M;. Then cia1+coaz+-- -+
Cn;+1@n;+1 = 0 holds. Let M ]’ be the matrix which is M; except the first column
and the (n; +1)'th row. Then M; is regular, since it is a Vandermonde matrix.
We can obtain that co = ¢3 = ... = ¢y;41 = 0 since a; = [0,0,...,0,—1]%.
Therefore —c¢; = 0 holds (and so ¢; = 0). That is, M; is regular.

Let C; =[1,1,...,1]7 (j = 1,...,m) which is the first column of N;. Then,
there exist o;; € F), such that C; = Z:Z—fl «a;a;. Since this condition is satisfied
forall j (j =1,2,...,m), rank([C | N]) = rank(N) holds. By Proposition 1,
an unqualified set cannot compute any information about s. ]

Similar to the above, we prove Corollary 1. The notion was defined in the proof
of Lemma 2.

Corollary 1. We assume that Ps & C. In this situation, g(ID4;) (j = 1,2,..
m) cannot be determined from R(n' 4+ 1,m,n’) simultaneous equations.

*
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Proof. Similar to Lemma 2, let C; = [1,1,...,1]7 which is the first column
of Nj;. Then, there exist a; € I, such that C; = Z:Z—fl a;a;. Then also
[C; | a2 a3 -+ an;41] is a Vandermonde matrix. Then, there exist §; (i =

1,2,...,n; + 1) such that a1 = 5:C; + Z:Z;Ll Bia;. By Proposition 1, an un-

qualified set cannot compute any information about g(ID.4;). We previously
assumed that 1D 4, # ID ;. Therefore g(1D 4;) only appear on N;, and an un-
qualified set cannot compute any information about g(IDy;) (j = 1,2,...,m).

O

By Lemma 2 and Corollary 3, Theorem 3 is proven by regarding as the share of
P, g(x), is distributed by using the Shamir (k, £)-threshold secret sharing.

Next, we assume that Ps; € C, i.e., malicious participants can obtain a poly-
nomial g(z). We can obtain the corollary as follows:

Corollary 2. We assume that an access structure for n' participants and one
special participant Py is unanimous, i.e., (n'+1,n'+1) threshold structure. Then
Vn'+1,m,t) > R(n' + 1,m,t).

Proof. The case Ps ¢ C, obviously hold. We assume that P; € C. Then the num-
ber of participants that can collude is n’ (n’ — 1 participants and P). Therefore
V(n'+1,m,t) = R(n'+1,m,t)+(n'—t—m+2) > R(n'+1,m, t)+(n'—n'—142) =
R(n' 4+ 1,m,t) + 1 holds. O

Lemma 3. We assume that an access structure for n' participants and one
special participant Py is unanimous, i.e., (n' + 1,n' + 1) threshold structure.
Then the secret value s cannot be determined from R(n'+1,m,n’) simultaneous
equations.

Proof. Let f(z) = s+ajz+azx®+-- +auz™ be the polynomial associated with
B={P;, P, P2, ..., Py}. W.lo.g., we assume P; to be the honest participant.
So, malicious participants can obtain simultaneous equation as follows (2):

1-11Dy ID? ... IDY y 0
10 ID, ID} --- IDY s o
N’ = : and N’ as | = . (2)
1 0 ID, ID? --- ID, : w./
10 IDp IDp?--- IDp™ an g(IBD)

Similar to Lemma 2, the (n’ 4+ 1) x (n’ 4+ 1) matrix which is N’ except the first
column is Vandermonde. Moreover, the (n’ + 1) x (n’ + 1) matrix which is N’
except the second column is also Vandermonde. By Proposition 1, the set of
malicious participants cannot determine the secret value s and the shares of
honest participants. O

By Lemma 3, Theorem 2 is proven by regarding as the share of P, i.e., g(IDp) =
f(IDp), is publicly opened as u.
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