
Efficient Privacy-Preserving Data Mining in
Malicious Model

Keita Emura1, Atsuko Miyaji2, and Mohammad Shahriar Rahman2

1 Center for Highly Dependable Embedded Systems Technology
2 School of Information Science

Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa, Japan 923-1292
{k-emura,miyaji,mohammad}@jaist.ac.jp

Abstract. In many distributed data mining settings, disclosure of the
original data sets is not acceptable due to privacy concerns. To address
such concerns, privacy-preserving data mining has been an active re-
search area in recent years. While confidentiality is a key issue, scalabil-
ity is also an important aspect to assess the performance of a privacy-
preserving data mining algorithms for practical applications. With this
in mind, Kantarcioglu et al. proposed secure dot product and secure set-
intersection protocols for privacy-preserving data mining in malicious
adversarial model using zero knowledge proofs, since the assumption of
semi-honest adversary is unrealistic in some settings. Both the computa-
tion and communication complexities are linear with the number of data
items in the protocols proposed by Kantarcioglu et al. In this paper, we
build efficient and secure dot product and set-intersection protocols in
malicious model. In our work, the complexity of computation and com-
munication for proof of knowledge is always constant (independent of the
number of data items), while the complexity of computation and commu-
nication for the encrypted messages remains the same as in Kantarcioglu
et al.’s work (linear with the number of data items). Furthermore, we
provide the security model in Universal Composability framework.

KeyWords: Privacy-preserving Data Mining, Malicious Model, Threshold Two-
party Computation, Efficiency

1 Introduction

1.1 Background

The information age has enabled many organizations to gather large volumes
of data through data mining. However, the usefulness of this data is negligible
if ‘meaningful information’ or ‘knowledge’ cannot be extracted from it. Confi-
dentiality is a key issue that arises in any huge collection of data. The need
for privacy is sometimes due to law (e.g., for medical databases) or can be mo-
tivated by business interests. However, a key utility of large databases today



II

is scientific or economic research. Despite the potential gain, this is often not
possible due to the confidentiality issues which arise, leading to concerns over
privacy infringement while performing the data mining operations.To address
this problem, several privacy-preserving distributed data mining protocols using
cryptographic techniques have been suggested. Depending on the adversarial be-
havior assumptions, those protocols use different models. Classically, two main
categories of adversaries have been considered:

Malicious adversaries: These adversaries may behave arbitrarily and are not
bound in any way to follow a specified protocol. Protocols that are secure in the
malicious model provide a very strong security guarantee as honest parties are
‘protected’ irrespective of an adversarial behavior of corrupted parties.

Semi-honest adversaries: These adversaries correctly follow the protocol spec-
ification, yet may attempt to learn additional information by analyzing the tran-
script of messages received during the execution.

Scalability is another important aspect to assess the performance of a privacy-
preserving data mining algorithm. In particular, scalability describes the effi-
ciency trends when data sizes increase. Such parameter concerns the increase of
both performance and storage requirements as well as the costs of the commu-
nications required by a data mining algorithm when it is used to compute some
joint data. For this reason, a privacy-preserving data mining algorithm has to
be designed and implemented with the capability of handling huge datasets that
may still keep growing. Therefore, the scalability measure is very important in
determining practical privacy-preserving data mining techniques.

Kantarcioglu et al. [10] showed several protocols on equality, dot product and
set-intersection operations that are useful to design privacy-preserving data min-
ing algorithms in malicious model for the first time. To the best of our knowledge,
this is the only work on designing dot product and set-intersection protocols in
privacy-preserving data mining area that involves malicious model. They utilize
homomorphic encryption with Non-Interactive Zero Knowledge (NIZK) proof
to realize their protocols. For a dot product, they provide an efficient protocol
designed against malicious adversaries assuming that at least one party is semi-
honest. They also prove that the given protocols are secure against malicious
adversaries. The computation and communication overhead for the NIZK proofs
of their secure dot product protocol can be expressed as O(n) where n is the size
of the input dataset, and the complexity of their secure set-intersection is O(D)
where D is the domain of data items (Given that party P0 has n items and party
P1 has m items, where both m and n are bigger than O(

√
D), or where n or m

equal to total item domain size D). Therefore, the efficiency of the protocol is
highly dependent on the size of the input dataset. In their protocols, for n data
items n NIZK proofs are computed and sent over the communication channel to
other party.

We estimate the size of n in the real world application. Let us consider a prac-
tical scenario, where two parties having huge amount of data want to mine their
data in a privacy-preserving way through some joint function using Kantarcioglu
et al.’s approach. For an example, according to [17],



III

- The US Library of Congress, among the largest databases of the world,
holds over 125 million items.

Now, if organizations having such very large databases want to compute some
data mining algorithm (for an example, two such libraries want to perform data
mining operations for research on efficient library-management) in a privacy-
preserving way using Kantarcioglu et al’s model, the computation and commu-
nication complexity for the n NIZK proofs of n data items (n= 125 million)
will pose a huge burden on both the computation and communication resources.
Each NIZK proof of plaintext used in Kantarcioglu et al.’s work requires 4 expo-
nentiations in ZN . That means, 500 million exponentiations will be required to
be computed!!! In other words, the number of NIZK proof grows linearly with the
number of data items n in the protocols proposed by Kantarcioglu et al.; such a
performance bottleneck must be addressed to design efficient privacy-preserving
data mining algorithms for practical implementation.
Applications of Dot Product and Set-Intersection: K-means clustering is
a simple and very commonly used clustering algorithm in data mining. It starts
with an unclustered dataset with n elements and one attributes and outputs clus-
ter assignments of each data element in the set. It requires prior knowledge of the
number of clusters k [8, 16, 2]. K-means clustering uses dot product and equal-
ity protocols as building blocks. Some recent studies [18, 19] provide privacy-
preserving association rule mining algorithms using vertically partitioned data.
These algorithms involve secure dot product computation with inputs of length
n, where n can be arbitrarily large. As for the secure set-intersection, to deter-
mine which customers appear on a ‘do-not-receive-advertisements’ list, a store
must perform a set-intersection operation between its private customer list and
the producer’s list.

1.2 Related Work

Cryptographic techniques have been used to design many different distributed
privacy-preserving data mining algorithms. In general, there are two types of as-
sumptions on data distribution: vertical and horizontal partitioning. In the case
of horizontally partitioned data, different sites collect the same set of informa-
tion about different entities. For example, different credit card companies may
collect credit card transactions of different individuals. Secure distributed pro-
tocols have been developed for horizontally partitioned data for mining decision
trees [13], k-means clustering [12], k-nn classifiers [9]. In the case of vertically
partitioned data, it is assumed that different sites collect information about the
same set of entities but they collect different feature sets. For example, both a
university and a hospital may collect information about a student. Again, secure
protocols for the vertically partitioned case have been developed for mining as-
sociation rules [18], and k-means clusters [8, 16]. All of those previous protocols
claimed to be secure only in the semi-honest model (we do not consider the
proposals which have not used standard cryptographic notions). In [10], authors
present two-party secure protocols in the malicious model for data mining. They
follow the generic malicious model definitions from the cryptographic literature,



IV

and also focus on the security issues in the malicious model, and provide the mali-
cious versions of the subprotocols commonly used in previous privacy-preserving
data mining algorithms. There has been some other works related to secure two-
party computation [1, 14]. In [1], the protocol has been shown secure assuming
that at least one-party behaves in semi-honest model. However, the protocol re-
quires both parties to engage in a ‘proof of decryption’ ability (where a sender
sends a set of ciphertexts to the receiver and checks whether the receiver can de-
crypt all the ciphertexts or not), which increases the communication overhead.
On the other hand, [14] proposed a two-party protocol to securely evaluate a
2DNF (Disjunctive Normal Form) formula using homomorphic encryption from
vector decomposition. But this protocol has been shown secure only in the semi-
honest adversarial model. Recently, [7] proposed efficient set operations against
the malicious adversaries. It is based on oblivious pseudorandom function eval-
uation in the standard model. They assume no trusted set up or trusted third
party for the computation, thus increasing the communication overhead. But
for data mining applications, assuming the existence of a trusted set up is not
unrealistic in practice (e.g., a government organization acting as a trusted party
may want to perform data mining operations on the data of some hospitals who
do not have any trust among themselves).

1.3 Our Contribution

Considering the problems mentioned above, we provide sophisticated modifica-
tions that lead to bigger increases in efficiency of the privacy-preserving data
mining algorithms. In this paper, we build efficient and secure dot product and
set-intersection protocols in the malicious model. Our approach is as follows:

- Each party generates the ciphertexts of its private data using Paillier’s
encryption.

- Product of all the ciphertexts is computed.
- The NIZK proof is computed using the result of the product, not for each

of the ciphertexts.
- All the ciphertexts and the proof of knowledge are sent to other party.
- The receiver first computes the product of the received ciphertexts, and

then verifies the proof of knowledge.
- Both the parties use Cramer’s threshold two-party computation to jointly

compute their data.
We apply the homomorphic property of Paillier cryptosystem to reduce the

number of NIZK proofs in our protocols. Although the constructions of our
protocols do not deviate a lot from that of [10], we say that the effect of our
construction for efficient implementation is huge. Our approach reduces the com-
putational and communication complexity of the proof of knowledge drastically.
In our work, computation and communication for the NIZK proofs are always
constant, i.e., they are independent of number of data items. In other words, to
perform data mining operation on n data items, we need only one NIZK proof.
However, the computation and communication for the ciphertexts are linear with
the number of data items (O(n), similar to that of [10]). We also provide the



V

security model in Universal Composability (UC) framework, since it gives a clear
view on the security of the protocol in real world scenario.

2 Cryptographic Primitives

2.1 Security Model: Universal Composability (UC)

Security in the UC framework implies that any adversary in the real-life model
can be emulated by an adversary in the ideal model. The advantage of this
paradigm is that it is possible to show that anything learned by the real-life
adversary during the protocol execution is computationally indistinguishable
from what is learned by an ideal model adversary. Since in the ideal model, any
adversary can learn at most the final result and what is implied by the final
result, proving that the real-life model adversary could be simulated by an ideal
model adversary implies that real-life adversary could not learn anything more
than the ideal model adversary. In other words, the real protocol execution reveal
no more information to an adversary than what is revealed to an ideal model
adversary. A detailed discussion on the UC framework can be found in [3].

2.2 Homomorphic encryption:

Let Epk(.) denote the encryption function with public key pk and Dsk(.) denote
the decryption function with private key sk. A public key cryptosystem is called
additive homomorphic if it satisfies the following requirements:
(1) given the encryption of plaintexts m1 and m2, Epk(m1) and Epk(m2), there
exists an efficient algorithm to compute the public key encryption of m1 + m2,
such that Epk(m1 + m2) := Epk(m1) +h Epk(m2).
(2) given a constant k and the encryption of m1, Epk(m1), there exists an efficient
algorithm to compute the public key encryption of k·m1, such that Epk(k·m1) :=
k ×h Epk(m1).

Paillier cryptosystem [15] based on composite residuosity assumption cap-
tures the homomorphic property. A detailed description can be found in [15].

2.3 Threshold Two-party Computation

Cramer et. al. proposed multi-party computation with threshold homomorphic
cryptosystem in [3]. Given the common public key pk, the private key sk corre-
sponding to pk is divided into two pieces sk0 and sk1. There exists an efficient,
secure protocol Dski

(Epk(m)) that outputs the random share of the decryption
result si along with the NIZK proof showing that ski is used correctly. Those
shares can be combined to calculate the decryption result. Also any single share
of the private key ski cannot be used to decrypt the ciphertext alone. In other
words, si does not reveal anything about the final decryption result. We use
the same special version of a threshold decryption such that only one party
learns the decryption result, as shown in [10]. Such a protocol could be eas-
ily implemented exploiting the fact that for any given Epk(m), the party that



VI

needs to learn the decryption result could generate Epk(r1) and then both par-
ties jointly decrypt the Epk(m) +h Epk(r1). Since only one party knows the r1,
only that party can learn the correct decryption result. To prove that a party
Pi knows a plaintext, the party can compute the Proof of Plaintext Knowledge
PPK(em) if he knows an element m in the domain of valid plaintexts such that
Dsk(em) = m. Similarly, to prove a multiplication is correct, a party Pi is given
an encryption Epk(m), and it chooses constant c and calculates Epk(m ·c). Later
on, Pi can give the Proof of Correct Multiplication PCM(em, ec, em·c) such that
Dsk(em·c) = Dsk(ec) ·Dsk(em).

We use the simulators in the security proofs for the above NIZK proofs due
to their security properties. The notion of security is such that the state of the
adversary returned by those simulators is statistically indistinguishable from
the state of the adversary in the real-life model. A different kind of scheme for
proof of knowledge named Public Key Encryption with Non-interactive Open-
ning (PKENO) in standard model [4–6, 11] has been proposed, which is more
efficient than the known NIZK proofs in standard model. For proving the knowl-
edge, a verifier needs to know the (ciphertext, proof, plaintext)-tuple. But for
data mining applications, the plaintext can not be revealed to the verifier. In
other words, PKENO is not suitable for our purpose. We use the NIZK proof of
[3, 10] in our scheme for fair comparison with the existing works in data mining
area.

3 Our Protocols

3.1 Underlying Idea

Our protocol differs from that of [10] in the process of computing the proof of
knowledge. After a party completes all the encryptions of its plaintexts, these
ciphertexts are multiplied to get a common ciphertext. Then the NIZK proof is
constructed for this common ciphertext.

- Let us assume that we have a set of ciphertexts such that {c1 = Epk(m1), c2 =
Epk(m2), . . . , cn = Epk(mn)} corresponding to the set of messages {m1,m2, . . . ,mn},
where n is the number of messages (the ciphertexts are constructed using Pail-
lier’s encryption).

- We compute the product of all the ciphertexts such that C =
∏n

i=1 ci =∏n
i=1 Epk(mi), and compute the NIZK proof for the product C as PPK(C).

Instead of computing NIZK proofs for each ciphertext ci where 1 ≤ i ≤ n, we
have now reduced the number of NIZK proof to one.

- To evaluate PPK(C), the verifier must compute C =
∏n

i=1 ci =
∏n

i=1 Epk(mi)
first. Then the verifier should verify the PPK(C). Note that, the plaintext of C
is equal to M :=

∑n
i=1 mi = (m1 + m2 + . . . + mn), due to the homomorphic

property of Paillier’s cryptosystem discussed above. The success probability of
an adversary A of cheating is 1

N ,where N is a composite number of two big
primes, and the probability is negligible (for Paillier encryption, we assume N
is 2048-bit (22048), so the success probability 2−2048 is negligible) (See Lemma 1
for proof).



VII

- Note that, we do not avoid the ciphertext computation and communication
cost (O(n)) to output all of the n ciphertexts, since all of them are necessary for
homomorphic encryption to compute the dot product or intersection. However,
for practical implementation, the additional costs (i.e., PPK or PCM) must
be reduced as much as possible. In our protocol, this additional cost does not
depend on the number of items. Due to the reduced number (constant) of proof
of knowledge, the following protocols can offer huge savings when the vectors
used for the dot product and the set-intersection have many components.

3.2 Efficient and Secure Dot Product Protocol

In a secure dot product protocol, it is required to check whether the final result
is correct. This is possible since at least one of the parties will behave semi-
honestly. If both parties are malicious, we do not care whether the privacy of
any party is protected or parties get correct results. Assuming that at least one
party will behave in a semi-honest fashion (the other party can do any malicious
act), an efficient protocol can be constructed. Assuming that at least one party
is semi-honest is consistent with the definitions of the malicious model. This
assumption was also made in [10]. Such an assumption does not reduce the
security guarantees provided by the malicious model.

The result of data mining algorithm res =
∑n

j=1(x0j · x1j) + r1 is evaluated
correctly by at least one party, assuming that at least one party is semi-honest.
Both P0 and P1 have enough information to calculate res. If both P0 and P1

compute the same res value, then computations must be correct, because at
least one of them is semi-honest and calculates correct res. Therefore, if we se-
curely make sure that both parties calculate the same value, then either of the
local calculations could be decrypted to reveal res to P0. In our protocol, each
party sends the encrypted inputs along with the PPK to each other, then each
party Pi locally computes its respective eresi = Epk(resi). Both parties jointly
decrypt one of those values to reveal res to P0, given that those two values are
equal. We do not need to send PCM for every multiplication. We provide the
details of the efficient secure dot product protocol in fig.1.

A note on secure equality protocol: The whole premise of our constructions
is that it leads to bigger increases in efficiency when there are a huge number
of data items to be processed. However, a secure equality protocol requires to
compute whether two data items are equal or not without revealing these items.
Therefore, the efficiency of a secure equality protocol under our approach remains
same as that in Kantarcioglu et al.’s work [10]. It is straight forward to construct
a secure equality protocol in malicious model, due to [10]. For this reason and
due to lack of space, we do not include the equality protocol here.

3.3 Efficient and Secure Set-Intersection Protocol

The main idea of this protocol construction is that we can represent the sets
owned by each party as a bit vector of size D, and use secure multiplication



VIII

Require: Two parties P0 and P1 with the shares pr0 and pr1 of the private key pr
and n bit vectors xij where xij belongs to Pi, and 1 ≤ j ≤ n.
Ensure: Return res =

∑n
j=1(x0j · x1j) + r1) to P0 and r1 to P1

for all Pi do
∀j, set cij ← exij = Epk(xij); Ci =

∏n
j=1 cij =

∏n
j=1 Epk(xij);

Create PPK(Ci)
if Pi = P1 then

pick rand r1 ∈ {0, 1}∗, set Cr1 ← er1 = Epk(r1), PPK(Cr1)
end if
Send all encryptions cij and PPK(Ci) to P1−i; when Pi = P1, send Cr1 and
and PPK(Cr1) as well

end for
for P0 do

Compute C1 =
∏n

j=1 c1j ; Check PPK(C1), PPK(Cr1) are correct else ABORT

Calculate eres0 = (Epk(x11)×h x01) +h . . . +h (Epk(x1n)×h x0n) +h Epk(r1)
= ex01·x11 +h ex02·x12 +h . . . +h ex0n.x1n +h er1
(/? due to homomorphic property of the encryption ?/)

end for
for P1 do

Compute C0 =
∏n

j=1 c0j ; Check PPK(C0) is correct else ABORT

Calculate eres1 = (Epk(x01)×h x11) +h . . . +h (Epk(x0n)×h x1n) +h Epk(r1)
= ex01·x11 +h ex02·x12 +h . . . +h ex0n.x1n +h er1
(/? due to homomorphic property of the encryption ?/)

end for
Jointly call decrypt equality protocol to check Dpr(eres1) = Dpr(eres0)
for all Pi do

If Secure equality protocol returns true for Dpr(eres1) = Dpr(eres0) then
Jointly call private decrypt function s.t. P0 learns Dpr(eres1)

(/? using threshold two-party computation ?/)
end If

end for

Fig. 1. Our proposed protocol that uses threshold multiparty computation with ho-
momorphic encryption to compute secure and efficient dot product

property of the homomorphic encryption, and we can then associate PPK/PCM
proofs to give secure set protocols in the malicious model. Let us assume that
x0j is set to 1 if P0 has item j in its private set else it is set to 0 (similarly for x1j

for P1). Clearly for calculating set-intersection, we need to calculate x0j ∧ x1j

for each j. Similarly, for set union, we need to calculate x0j ∨ x1j for all j. This
can be rewritten as ¬(¬x0j ∧ ¬x1j). Therefore, the dot product protocol for set
union can be used, too. The details of the set-intersection protocol is shown in
fig. 2. The same protocol can be used for two-party set union using ¬x0j and
¬x1j as the input values and negating the output bits.



IX

Require: Two parties P0 and P1 with the shares pr0 and pr1 of the private key pr
and input bit vectors of size D where xij is set to 1 if Pi has item j.
Ensure: Return D bit vector I representing the set-intersection where Ij is
set to 1 if item j is in the set-intersection.

for P0 do
∀j, set c0j ← Epk(x0j); C0 =

∏n
j=1 c0j =

∏n
j=1 Epk(x0j);

Create PPK(C0) to prove that each x0j is either 0 or 1.
Send all encryptions c0j and PPK(C0) to P1

end for
for P1 do

Compute C0 =
∏n

j=1 c0j ; Check PPK(C0) is correct else ABORT

∀j Calculate c1j ← Epk(x1j); C1 =
∏n

j=1 c1j =
∏n

j=1 Epk(x1j);

Create PPK(C1)
∀j Calculate c01j ← ex0j ×h x1j ; Compute C01 =

∏n
j=1 c01j ;

Create PCM(C01)
Send all ciphertexts c1j , c01j , PPK(C1), PCM(C01) to P0;

end for
for P0 do

Compute C1 =
∏n

j=1 c1j , C01 =
∏n

j=1 c01j ;

Check PPK(C1), PCM(C01) are correct else ABORT;
end for
Jointly call private decrypt function to learn Dpr(c01j)
Set Ij to Dpr(c01j)

Fig. 2. Our proposed protocol that uses threshold multiparty computation with ho-
momorphic encryption to compute secure and efficient set intersection

4 Security Analysis

Lemma 1. An adversary who does not know the input plaintexts of the dot
product or set-intersection protocols can successfully cheat using its own input
strings with negligible probability.

Proof: Note that we do not have to consider the permutation of messages (e.g.,
M = m1 +m2 = m2 +m1) in the following proof, since such factorization values
are reduced by division process of the probability computations. The number
of solution vectors (t1, . . . , tn) satisfying M =

∑n
j=1 tj is Nn−1, since we can

randomly choose tj ∈ Zp(j = 1, 2, . . . , n − 1), and set tn = M −
∑n−1

j=1 tj .
Cheating means that an adversary A can compute a PPK which is accepted by
the verifier although there exists a message m 6∈ {m1, . . . ,mn}. Therefore, the
probability of the randomly chosen vector (t1, . . . , tn) satisfying M =

∑n
j=1 tj is

Nn−1/Nn = 1/N . This implies that, the probability of a proof of false message
satisfying M =

∑n
j=1 mj is Nn−1/Nn = 1/N . This implies that, the probability

of a proof of false messages satisfying M :=
∑n

j=1 mj is Nn−1−1
Nn = 1

N (1− 1
Nn−1 ).

Next, we consider tj = mj(j = 1, 2, . . . , `), where ` < n is the number of real
messages A can capture. Let ` = n − 1, this means A has all the messages of



X

M except mn . Then tn = mn := M −
∑n−1

j=1 mj holds. This means that A has
valid messages of M , and the proof of M is not a forged proof. Therefore, we
set ` < n − 1. Then there exist Nn−`−1 − 1 number of pairs of (t`+1, . . . , tn)

such that (m1, . . . ,m`, t`+1, . . . , tn) satisfies M = (
∑`

j=1 mj) + (
∑n

j=`+1 tj) and

(t`+1, . . . , tn) 6= (m`+1, . . . ,mn). The number of vectors (t`+1, . . . , tn) is Nn−`

. Therefore, the probability of a proof made by valid messages of (m1, . . . ,m`)

and forged messages of (t`+1, . . . , tn) satisfying M = (
∑`

j=1 mj) + (
∑n

j=`+1 tj)

is Nn−`−1−1
Nn−` = 1

N (1− 1
Nn−`−1 ) ≤ 1

N . �
Note that, in the malicious model, authors may lie about their input. For

example, if the inputs are from {0, 1} domain, malicious attacker can replace
it with 2. In many cases, zero knowledge proofs are needed to protect against
such attacks. Completeness and soundness are the two properties that should
be achieved by the zero-knowledge proof to prevent the parties from behaving
in such malicious way. Completeness requires that an honest verifier is satisfied
with the prover, while soundness says that a dishonest party cannot convince an
honest party with incorrect input. By using the Lemma 1, we can achieve both
the properties considering that achieving such properties will fail with negligible
probability. In other words, if the statement (proof of knowledge) is true, the
honest verifier (that is, one following the protocol properly) will be convinced
of this fact by an honest prover, and if the statement (proof of knowledge) is
false, no cheating prover can convince the honest verifier that it is true, except
with some small probability. This gives us a sketch on why our approach of ZKP
construction works (of course with a negligible probability of failure).

The following two theorems state that our constructions are secure in UC
framework. We omit the proofs due to lack of space.

Theorem 1. The Dot Product protocol is secure in (secure equality, private
decrypt)-hybrid model assuming that the non-interactive zero knowledge proofs
(PPK) are secure in the presence of malicious adversaries.

Theorem 2. The Set-Intersection protocol is secure in (threshold decryption)-
hybrid model assuming that the non-interactive zero knowledge proofs are secure
in the presence of malicious adversaries.

5 Efficiency

Secure Dot Product: The complexity of secure dot product protocol pro-
posed in [10] can be expressed as O(n) where n is the size of the input dataset,
in other words the size of data items to be processed. Therefore, the efficiency of
the protocol is highly dependent on the size of the input dataset. The complex-
ity displayed in Table 1 involves both communication and computation times,
and the difference can be explained with the impact of communication and com-
putation overhead that the proof of knowledge brings. While the overhead of
ciphertext computation and communication in our protocol are similar to that
in [10], the overhead of computation and communication of proof of knowledge



XI

are constant in our protocol. This is a drastic reduction in computation and
communication.

Table 1. Secure Dot Product: Performance Comparison between [10] and our proposed
protocol

Schemes Computation Communication
ciphertext proof-of-knowledge ciphertext proof-of-knowledge

[10] O(n) O(n) O(n) O(n)
Ours O(n) O(1) O(n) O(1)

Secure Set-Intersection: Given that P0 has n items and P1 has m items, where
both m and n are bigger than O(

√
D) or where n or m equal to total item domain

size D, we (as well as [10]) suggest using the simple secure set-intersection and set
union protocols that are secure in the malicious model. According to Table 2, the
complexity (for proof of knowledge) in our protocol does not depend on the size
of data items, rather it is constant. Note that, we need PCM besides PPK in set-
intersection computation. PCM requires 6 exponentiations in ZN . Considering
the library example, [10] will require to compute 750 million exponentiations,
whereas our protocol requires only 6 exponentiations .

Table 2. Secure Set-Intersection: Performance Comparison between [10] and our pro-
posed protocol

Schemes Computation Communication
ciphertext proof-of-knowledge ciphertext proof-of-knowledge

[10] O(D) O(D) O(D) O(D)
Ours O(D) O(1) O(D) O(1)

6 Conclusion

In this paper, we have proposed efficient and secure dot product and set-intersection
protocols in malicious model which are useful for many practical applications.
These protocols can be used in various data mining algorithms as building blocks.
We provide sophisticated modifications that lead to bigger increases in efficiency
of the privacy-preserving data mining algorithms. Although the constructions of
our protocols do not deviate a lot from that of [10], the effect of our construction
for efficient implementation is huge. We do not avoid the ciphertext computa-
tion and communication cost (O(n)) to output all of the n ciphertexts that are
necessary to compute the dot product or intersection. Our approach drastically
reduces the computational and communication complexity of the proof of knowl-
edge. In our work, computation and communication for proof of knowledge is
always constant (independent of number of data items), while computation and
communication for encrypted messages remains linear with the number of data
items. We also provide the security model in UC framework.



XII

References

1. Boneh, D., Goh,E.G., and Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts.
TCC’05, LNCS, pp. 325–341. (2005)

2. Bunn, P., and Ostrovsky, R.: Secure Two-Party k-Means Clustering. ACM CCS’07,
pp. 486–497. (2007)

3. Cramer, R., Damgard, I., and Nielsen, J.B.: Multi-party computation from thresh-
old homomorphic encryption. EUROCRYPT’01, LNCS, pp. 280–299. (2001)

4. Damgard, I., Hofheinz, D., Kiltz, E., and Thorbek, R.: Public-Key Encryption with
Non-interactive Opening. CT-RSA’08, LNCS, pp. 239–255. (2008)

5. Damgard, I., Thorbek, R.: Non-interactive proofs for integer multiplication. EU-
ROCRYPT’07, LNCS, pp. 412–429. (2007)

6. Galindo, D., Libert, B., Fischlin, M., Fuchsbauer, G., Lehmann, A., Manulis,
M., and Schroder, D.: Public-Key Encryption with Non-interactive Opening: New
Constructions and Stronger Definitions. AFRICACRYPT’10, LNCS, pp. 333–350.
(2010)

7. Hazay, C., and Nissim, K.: Efficient Set Operations in the Presence of Malicious
Adversaries. Public Key Cryptography - PKC’10, LNCS, pp. 312–331. (2010)

8. Jagannathan, G. and Wright, R.N.: Privacy-preserving distributed k-means clus-
tering over arbitrarily partitioned data. ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 593–599. (2005)

9. Kantarcioglu, M. and Clifton, C.: Privately computing a distributed k-nn classifier.
PKDD’04, LNCS, pp. 279–290. (2004)

10. Kantarcioglu, M., and Kardes, O.: Privacy-preserving data mining in the malicious
model. International Journal of Information and Computer Security, Vol. 2, No. 4,
pp. 353–375. (2008)

11. Lai, J., Deng, R.H., Liu, S., and Kou, W.: Efficient CCA-Secure PKE from Identity-
Based Techniques. CT-RSA’10, LNCS, pp. 132–147. (2010)

12. Lin, X., Clifton, C. and Zhu, M.: Privacy-preserving clustering with distributed
EM mixture modeling. Knowledge and Information Systems, July, Vol. 8, No. 1,
pp. 68–81. (2005)

13. Lindell, Y. and Pinkas, B.: Privacy preserving data mining, CRYPTO’00, LNCS,
pp. 36–54. (2000)

14. Okamoto,T., and Takashima,K.: Homomorphic Encryption and Signatures from
Vector Decomposition. Pairing-Based Cryptography - Pairing’08, LNCS, pp. 57–
74. (2008)

15. Paillier, P.: Public-key cryptosystems based on composite degree residue classes.
EuroCrypt’99, LNCS, pp. 223–238. (1999)

16. Su, C., Bao, F., Zhou, J., Takagi, T., Sakurai, K.: Security and Correctness Analysis
on Privacy-Preserving k-Means Clustering Schemes. IEICE Trans. Fundamentals,
Vol.E92-A, No.4, pp. 1246–1250. (2009)

17. Top 10 Largest Databases in the World. http://www.worldsbiggests.com/2010/02/top-
10-largest-databases-in-world.html

18. Vaidya, J. and Clifton, C.: Privacy preserving association rule mining in vertically
partitioned data. ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 639–644. (2002)

19. Yang, Z. and Wright, R.N. Privacy-preserving computation of Bayesian networks
on vertically partitioned data. IEEE Transactions on Knowledge and Data Engi-
neering, Vol. 18, No. 9, pp. 1253–1264.(2006)


